Math3806 Lecture Note 4 Appendix

Heng Peng

March 9, 2020

(ロ)、(型)、(E)、(E)、 E) の(の)

- P2. The selection of significant level α is relatively subjective. Accepting the null hypothesis cannot say that the null hypothesis is right, and only can say there is no strong evidence to reject it.
- P3. Two degree of freedoms of Hotelling's T^2 or F distribution: p is from the sample mean, n p is the degree of freedom of the sample covariance matrix.

P5. Example 4.1.

S11

$$\bar{\mathbf{x}} = \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \end{bmatrix} = \begin{bmatrix} \frac{6+10+8}{3} \\ \frac{9+6+3}{3} \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$$

$$s_{11} = \frac{(6-8)^2 + (10-8)^2 + (8-8)^2}{3-1} = 4,$$

$$s_{22} = \frac{(9-6)^2 + (6-6)^2 + (3-6)^2}{3-1} = 9,$$

$$= \frac{(6-8)(9-6) + (10-8)(6-6) + (8-8)(3-6)}{3-1} = -3$$

► Example 4.1. (continuous) Hence

$$\mathbf{S} = \begin{bmatrix} 4 & -3 \\ -3 & 9 \end{bmatrix}, \text{ and } \mathbf{S}^{-1} = \frac{1}{4 \cdot 9 - (-3)(-3)} \begin{bmatrix} 9 & 3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} \\ \frac{1}{9} & \frac{4}{27} \end{bmatrix}$$

Hence

$$T^{2} = 3[8-9,6-5] \begin{bmatrix} \frac{1}{3} & \frac{1}{9} \\ \frac{1}{9} & \frac{4}{27} \end{bmatrix} \begin{bmatrix} 8-9 \\ 6-5 \end{bmatrix} = 3[-1,1] \begin{bmatrix} -\frac{2}{9} \\ \frac{1}{27} \end{bmatrix} = \frac{7}{9}$$

and Since n = 3 and p = 2, T^2 has the distribution of a

$$\frac{(3-1)2}{3-2}F_{2,3-2} = 4F_{2,1}$$

random variable.

P5. Example 4.2. n = 20, p = 3,

$$\bar{\mathbf{x}} = \begin{bmatrix} 4.640\\ 45.400\\ 9.965 \end{bmatrix}, \ \mathbf{S} = \begin{bmatrix} 2.879 & 10.010 & -1.810\\ 10.010 & 199.788 & -5.640\\ -1.810 & -5.640 & 3.628 \end{bmatrix}$$

and

$$\mathbf{S}^{-1} = \begin{bmatrix} .586 & -.022 & .258 \\ -.022 & .006 & -.002 \\ .258 & -.002 & .402 \end{bmatrix}.$$

$$T^{2} = 20[4.640 - 4, 45.400 - 50, 9.965 - 10] \\ \times \begin{bmatrix} .586 & -.022 & .258 \\ -.022 & .006 & -.002 \\ .258 & -.002 & .402 \end{bmatrix} \begin{bmatrix} 4.640 - 4 \\ 45.400 - 50 \\ 9.965 - 10 \end{bmatrix} = 9.74.$$

The critical value is

$$\frac{(n-1)p}{n-p}F_{p,n-p}(.10) = \frac{19\cdot 3}{17}F_{3,17}(.10) = 3.353\cdot 2.44 = 8.18$$

But $T^2 = 9.74 > 8.18$, and hence consequently, we reject H_0 at the 10% level of significance.

P9. Example 4.3. n = 42, p = 2.

$$\bar{\mathbf{x}} = \begin{bmatrix} .563\\ .603 \end{bmatrix}, \mathbf{S} = \begin{bmatrix} .0144 & .0117\\ .0117 & .0146 \end{bmatrix}, \mathbf{S}^{-1} = \begin{bmatrix} 203.018 & -163.391\\ -163.391 & 200.228 \end{bmatrix}$$

The eigenvalue and eigenvector pairs for \boldsymbol{S} are

$$\lambda_1 = .026, \mathbf{e}_1^T = [.704, .710], \text{ and } \lambda_2 = .002, \mathbf{e}_2^T = [-.710, .704].$$

The 95% confidence ellipse for μ consists of all values (μ_1, μ_2) satisfying

$$42[.564 - \mu_1, .603 - \mu_2] \begin{bmatrix} 203.018 & -163.391 \\ -163.391 & 200.228 \end{bmatrix} \begin{bmatrix} .563 - \mu_1 \\ .603 - \mu_2 \end{bmatrix}$$
$$\leq \frac{2 \cdot 41}{40} F_{2,40}(.05)$$

Since $F_{2,40}(.05) = 3.23$,

$$\begin{array}{rrrr} 42(203.018)(.564-\mu_1)^2 & + & 42(200.228)(.603-\mu_2)^2 \\ & - & 84(163.391)(.564-\mu_1)(.603-\mu_2) \leq 6.62 \end{array}$$

• Example 4.3. continuous. If $\mu_0 = [.562, .589]^T$, then

Hence $\mu_0 = [.562, .589]^T$ is in the confidence region. Equivalently, for a test of $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$ at $\alpha = 0.05$ level of significance, we will not reject the null hypothesis H_0 .

The center of the joint confidence ellipsoid is at $\bar{\mathbf{x}}^{T} =$ [.564, .603], the axes lie along \mathbf{e}_{1} and \mathbf{e}_{2} with the half-lengths of the major and minor axes are given by

$$\sqrt{\lambda_1} \sqrt{\frac{p(n-1)}{n(n-p)}} F_{p,n-p}(\alpha) = \sqrt{0.026} \sqrt{\frac{2(41)}{42(40)}} (3.23) = 0.64$$
$$\sqrt{\lambda_2} \sqrt{\frac{p(n-1)}{n(n-p)}} F_{p,n-p}(\alpha) = \sqrt{0.002} \sqrt{\frac{2(41)}{42(40)}} (3.23) = 0.018$$

P14. Example 4.4. The 95% simultaneous T^2 intervals for the two component means are

$$\left(\bar{x}_{1} - \sqrt{\frac{p(n-1)}{(n-p)}} F_{p,n-p}(.05) \sqrt{\frac{s_{11}}{n}}, \ \bar{x}_{1} + \sqrt{\frac{p(n-1)}{(n-p)}} F_{p,n-p}(.05) \sqrt{\frac{s_{11}}{n}} \right)$$

$$= \left(.564 - \sqrt{\frac{2(41)}{40}} 3.23 \sqrt{\frac{0.0144}{42}}, .564 + \sqrt{\frac{2(41)}{40}} 3.23 \sqrt{\frac{0.0144}{42}} \right)$$

$$= (.516, .612)$$

$$\left(\bar{x}_2 - \sqrt{\frac{p(n-1)}{(n-p)}} F_{p,n-p}(.05) \sqrt{\frac{s_{22}}{n}}, \ \bar{x}_2 + \sqrt{\frac{p(n-1)}{(n-p)}} F_{p,n-p}(.05) \sqrt{\frac{s_{22}}{n}} \right)$$

$$= \left(.603 - \sqrt{\frac{2(41)}{40}} 3.23 \sqrt{\frac{0.0146}{42}}, .603 + \sqrt{\frac{2(41)}{40}} 3.23 \sqrt{\frac{0.0146}{42}} \right)$$

$$= (.555, .651)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

P14. Example 4.5. n = 87, p = 3,

$$\bar{\mathbf{x}} = \begin{bmatrix} 526.29 \\ 54.69 \\ 25.13 \end{bmatrix}, \ \mathbf{S} = \begin{bmatrix} 5808.06 & 597.84 & 222.03 \\ 597.84 & 126.05 & 23.39 \\ 222.03 & 23.39 & 23.11 \end{bmatrix}$$

$$\frac{p(n-1)}{n-p}F_{p,n-p}(\alpha) = \frac{3(87-1)}{87-3}F_{3,84}(.05) = \frac{3(86)}{84}(2.7) = 8.29.$$

Then we obtain the simultaneous confidence statements

$$\begin{split} 526.29 - \sqrt{8.29} \sqrt{\frac{5808.06}{87}} &\leq \mu_1 \leq 526.29 + \sqrt{8.29} \sqrt{\frac{5808.06}{87}},\\ \text{or } 503.06 \leq \mu_1 \leq 550.12\\ 54.69 - \sqrt{8.29} \sqrt{\frac{126.05}{87}} &\leq \mu_2 \leq 54.69 + \sqrt{8.29} \sqrt{\frac{126.05}{87}},\\ \text{or } 51.22 \leq \mu_2 \leq 58.16\\ 25.13 - \sqrt{8.29} \sqrt{\frac{23.11}{87}} \leq \mu_3 \leq 25.13 + \sqrt{8.29} \sqrt{\frac{23.11}{87}},\\ \text{or } 23.65 \leq \mu_3 \leq 26.61 \end{split}$$

The simultaneous T²-intervals above are wider than univariate intervals because all three must hold with 95% confidence.

P18. Example 4.6,
$$n = 96$$
, $p = 7$. From the result 4.5,
simultaneous 90% confidence limits are given by
 $\bar{x}_i \pm \sqrt{\chi_7^2(.10)}\sqrt{\frac{5ii}{n}}$, $i = 1, ..., 7$ where $\chi_7^2(.10) = 12.02$.
Thus, with approximately 90% confidence,
 $28.1 \pm \sqrt{12.02}\frac{5.76}{\sqrt{96}}$, contains μ_1 , or $26.06 \le \mu_1 \le 30.14$
 $26.6 \pm \sqrt{12.02}\frac{5.85}{\sqrt{96}}$, contains μ_2 , or $24.53 \le \mu_2 \le 28.67$
 $35.4 \pm \sqrt{12.02}\frac{3.82}{\sqrt{96}}$, contains μ_3 , or $34.05 \le \mu_3 \le 36.75$
 $34.2 \pm \sqrt{12.02}\frac{5.12}{\sqrt{96}}$, contains μ_4 , or $32.39 \le \mu_4 \le 36.01$
 $23.6 \pm \sqrt{12.02}\frac{3.76}{\sqrt{96}}$, contains μ_5 , or $22.27 \le \mu_5 \le 24.93$
 $22.0 \pm \sqrt{12.02}\frac{3.93}{\sqrt{96}}$, contains μ_6 , or $20.61 \le \mu_6 \le 23.39$
 $22.7 \pm \sqrt{12.02}\frac{4.03}{\sqrt{96}}$, contains μ_7 , or $21.27 \le \mu_7 \le 24.13$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

P23. Example 4.7. The T^2 -statistic for testing $H_0: \delta^T = [\delta_1, \delta_2] = [0, 0]$ is constructed from the difference of paired observation

Then

$$\bar{\mathbf{d}} = \begin{bmatrix} \bar{d}_1 \\ \bar{d}_2 \end{bmatrix} = \begin{bmatrix} -9.36 \\ 13.27 \end{bmatrix}, \quad \mathbf{S}_d = \begin{bmatrix} 199.26 & 88.38 \\ 88.38 & 418.61 \end{bmatrix}$$

and

$$T^{2} = 11[-9.36, 13.27] \left[\begin{array}{c} .0055 & -.0012 \\ -.0012 & .0026 \end{array} \right] \left[\begin{array}{c} -9.36 \\ 13.27 \end{array} \right] = 13.6$$

Taking $\alpha = .05$, we find that $[p(n-1)/(n-p)]F_{p,n-p}(.05) = [2(10)/9]F_{2,9}(0.05) = 9.47 < T^2$. Hence we reject H_0 and conclude that there is a nonzero mean difference between the measurements of the two laboratories.

 Example 4.7 continuous. The 95% simultaneous confidence intervals for the mean differences δ₁ and δ₂ are

$$\delta_{1}: \bar{d}_{1} \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p}(\alpha) \sqrt{\frac{s_{d_{1}}^{2}}{n}} = -9.36 \pm \sqrt{9.47} \sqrt{\frac{199.26}{11}}$$

or (-22.46, 3.74)
$$\delta_{2}: 13.27 \pm \sqrt{9.47} \sqrt{\frac{418.61}{11}}, \text{ or } (-5.71, 32.25).$$

The 95% simultaneous confidence interval include zero, yet the hypothesis $H_0: \delta = 0$ was rejected at the 5% level. What are we to conclude ?

P27. Example 4.8. First, note that S_1 and S_2 are approximately equal, so that it is reasonable to pool them. Hence

$$\mathbf{S}_{pooled} = \frac{49}{98}\mathbf{S}_1 + \frac{49}{98}\mathbf{S}_2 = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix}$$

and

$$\mathbf{\bar{x}}_1 - \mathbf{\bar{x}}_2 = [-1.9, .2]^T.$$

So the confidence ellipse is centred at $[-1.9, .2]^T$. The eigenvalues and eigenvectors of \mathbf{S}_{pooled} are obtained from the equation

$$0 = |\mathbf{S}_{pooled} - \lambda \mathbf{I}| = \lambda^2 - 7\lambda + 9$$

consequently $\lambda_1 = 5.303$ and $\lambda_2 = 1.697$. The corresponding eigenvectors \mathbf{e}_1 and \mathbf{e}_2 determined from $\mathbf{S}_{pooled}\mathbf{e}_i = \lambda_i \mathbf{e}_i, i = 1, 2$.

$$\boldsymbol{e}_1^{\mathcal{T}} = [.290,.957], \mathsf{and} \boldsymbol{e}_1^{\mathcal{T}} = [.957,-.290]$$

Example 4.8.continuous. By

$$\left(\frac{1}{n_1} + \frac{1}{n_2}\right)c^2 = \left(\frac{1}{50} + \frac{1}{50}\right)\frac{(98)(2)}{(97)}F_{2,97}(.05) = .25$$

since $F_{2,97}(.05) = 3.1$. The confidence ellipse extends

$$\sqrt{\lambda_i}\sqrt{\left(rac{1}{n_1}+rac{1}{n_2}
ight)c^2}=\sqrt{\lambda_i}\sqrt{.25}$$

unit along the eigenvector \mathbf{e}_i , or 1.15 units in the \mathbf{e}_1 direction and .65 units in the \mathbf{e}_2 .

P29. Result 4.9, Type Error: $[(1/n_1 + 1/n_2) \mathbf{S}_{pooled}]$ should be

$$\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2.$$

P33. Example 4.9.
$$n_1 = 271$$
, $n_2 = 138$, $n_3 = 107$ and
 $|\mathbf{S}_1| = 2.783 \times 10^{-8}$, $|\mathbf{S}_2| = 89.539 \times 10^{-8}$,
 $|\mathbf{S}_3| = 14.579 \times 10^{-8}$, and $|\mathbf{S}_{pooled}| = 17.398 \times 10^{-8}$. Taking
the nature logarithms of the determinants gives
 $\ln |\mathbf{S}_1| = -17.397$, $\ln |\mathbf{S}_2| = -13.926$, $\ln |\mathbf{S}_3| = -15.741$, and
 $\ln |\mathbf{S}_{pooled}| = -15.564$. Then we calculate

$$u = \left[\frac{1}{270} + \frac{1}{137} + \frac{1}{106} - \frac{1}{270 + 137 + 106}\right] \left[\frac{2(4^2) + 3(4) - 1}{6(4+1)(3-1)}\right]$$

= 0.0133

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Example 4.9. Continuous.

$$M = [270 + 137 + 106](-15.564) - [270(-17.397) + 137(-13.926) + 106(-15.741)]$$

= 289.3

and C = (1 - .0133)289.3 = 285.5. Referring C to a χ^2 with the degree of freedom $\nu = 4(4+1)(3-1)/2 = 20$, it is clear that H_0 is rejected at any reasonable level of significance.