Math3806 Lecture Note 4 Appendix

Heng Peng

March 9, 2020

P2. The selection of significant level α is relatively subjective. Accepting the null hypothesis cannot say that the null hypothesis is right, and only can say there is no strong evidence to reject it.
P3. Two degree of freedoms of Hotelling's T^{2} or F distribution: p is from the sample mean, $n-p$ is the degree of freedom of the sample covariance matrix.
P5. Example 4.1.

$$
\begin{aligned}
& \overline{\mathbf{x}}=\left[\begin{array}{c}
\bar{x}_{1} \\
\overline{x_{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{6+10+8}{3} \\
\frac{9+6+3}{3}
\end{array}\right]=\left[\begin{array}{l}
8 \\
6
\end{array}\right] \\
& s_{11}=\frac{(6-8)^{2}+(10-8)^{2}+(8-8)^{2}}{3-1}=4 \text {, } \\
& s_{22}=\frac{(9-6)^{2}+(6-6)^{2}+(3-6)^{2}}{3-1}=9, \\
& s_{11}=\frac{(6-8)(9-6)+(10-8)(6-6)+(8-8)(3-6}{3-1}=-3
\end{aligned}
$$

- Example 4.1. (continuous) Hence

$$
\mathbf{S}=\left[\begin{array}{cc}
4 & -3 \\
-3 & 9
\end{array}\right], \text { and } \mathbf{S}^{-1}=\frac{1}{4 \cdot 9-(-3)(-3)}\left[\begin{array}{ll}
9 & 3 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{9} \\
\frac{1}{9} & \frac{4}{27}
\end{array}\right]
$$

Hence

$$
T^{2}=3[8-9,6-5]\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{9} \\
\frac{1}{9} & \frac{4}{27}
\end{array}\right]\left[\begin{array}{c}
8-9 \\
6-5
\end{array}\right]=3[-1,1]\left[\begin{array}{c}
-\frac{2}{9} \\
\frac{1}{27}
\end{array}\right]=\frac{7}{9}
$$

and Since $n=3$ and $p=2, T^{2}$ has the distribution of a

$$
\frac{(3-1) 2}{3-2} F_{2,3-2}=4 F_{2,1}
$$

random variable.

P5. Example 4.2. $n=20, p=3$,

$$
\overline{\mathbf{x}}=\left[\begin{array}{c}
4.640 \\
45.400 \\
9.965
\end{array}\right], \mathbf{S}=\left[\begin{array}{ccc}
2.879 & 10.010 & -1.810 \\
10.010 & 199.788 & -5.640 \\
-1.810 & -5.640 & 3.628
\end{array}\right]
$$

and

$$
\left.\begin{array}{c}
\mathbf{S}^{-1}=\left[\begin{array}{ccc}
.586 & -.022 & .258 \\
-.022 & .006 & -.002 \\
.258 & -.002 & .402
\end{array}\right] \\
T^{2}=\quad 20[4.640-4,45.400-50,9.965-10] \\
\end{array} \begin{array}{ccc}
.586 & -.022 & .258 \\
-.022 & .006 & -.002 \\
.258 & -.002 & .402
\end{array}\right]\left[\begin{array}{c}
4.640-4 \\
45.400-50 \\
9.965-10
\end{array}\right]=9.74 .4 .
$$

The critical value is

$$
\frac{(n-1) p}{n-p} F_{p, n-p}(.10)=\frac{19 \cdot 3}{17} F_{3,17}(.10)=3.353 \cdot 2.44=8.18
$$

But $T^{2}=9.74>8.18$, and hence consequently, we reject H_{0} at the 10% level of significance.

P9. Example 4.3. $n=42, p=2$.

$$
\overline{\mathbf{x}}=\left[\begin{array}{l}
.563 \\
.603
\end{array}\right], \mathbf{S}=\left[\begin{array}{ll}
.0144 & .0117 \\
.0117 & .0146
\end{array}\right], \mathbf{S}^{-1}=\left[\begin{array}{cc}
203.018 & -163.391 \\
-163.391 & 200.228
\end{array}\right]
$$

The eigenvalue and eigenvector pairs for \mathbf{S} are

$$
\lambda_{1}=.026, \mathbf{e}_{1}^{T}=[.704, .710], \text { and } \lambda_{2}=.002, \mathbf{e}_{2}^{T}=[-.710, .704] .
$$

The 95% confidence ellipse for $\boldsymbol{\mu}$ consists of all values (μ_{1}, μ_{2}) satisfying

$$
\begin{aligned}
& 42\left[.564-\mu_{1}, .603-\mu_{2}\right]\left[\begin{array}{cc}
203.018 & -163.391 \\
-163.391 & 200.228
\end{array}\right]\left[\begin{array}{c}
.563-\mu_{1} \\
.603-\mu_{2}
\end{array}\right] \\
\leq & \frac{2.41}{40} F_{2,40}(.05)
\end{aligned}
$$

Since $F_{2,40}(.05)=3.23$,

$$
\begin{aligned}
42(203.018)\left(.564-\mu_{1}\right)^{2} & +42(200.228)\left(.603-\mu_{2}\right)^{2} \\
& -84(163.391)\left(.564-\mu_{1}\right)\left(.603-\mu_{2}\right) \leq 6.62
\end{aligned}
$$

- Example 4.3. continuous. If $\boldsymbol{\mu}_{0}=[.562, .589]^{T}$, then

$$
\begin{aligned}
42(203.018)(.564-.562)^{2} & +42(200.228)(.603-.589)^{2} \\
& -84(163.391)(.564-.562)(.603-.589) \\
& =1.30 \leq 6.62
\end{aligned}
$$

Hence $\boldsymbol{\mu}_{0}=[.562, .589]^{T}$ is in the confidence region. Equivalently, for a test of $H_{0}: \boldsymbol{\mu}=\boldsymbol{\mu}_{0} \quad$ vs $H_{1}: \boldsymbol{\mu} \neq \boldsymbol{\mu}_{0}$ at $\alpha=0.05$ level of significance, we will not reject the null hypothesis H_{0}.

- The center of the joint confidence ellipsoid is at $\overline{\mathbf{x}}^{\top}=[.564, .603]$, the axes lie along \mathbf{e}_{1} and \mathbf{e}_{2} with the half-lengths of the major and minor axes are given by

$$
\begin{aligned}
& \sqrt{\lambda_{1}} \sqrt{\frac{p(n-1)}{n(n-p)} F_{p, n-p}(\alpha)}=\sqrt{0.026} \sqrt{\frac{2(41)}{42(40)}(3.23)}=0.64 \\
& \sqrt{\lambda_{2}} \sqrt{\frac{p(n-1)}{n(n-p)} F_{p, n-p}(\alpha)}=\sqrt{0.002} \sqrt{\frac{2(41)}{42(40)}(3.23)}=0.018
\end{aligned}
$$

P14. Example 4.4. The 95% simultaneous T^{2} intervals for the two component means are

$$
\left.\begin{array}{rl}
& \left(\bar{x}_{1}-\sqrt{\frac{p(n-1)}{(n-p)} F_{p, n-p}(.05)} \sqrt{\frac{s_{11}}{n}}, \bar{x}_{1}+\sqrt{\frac{p(n-1)}{(n-p)}} F_{p, n-p}(.05)\right. \\
\frac{s_{11}}{n}
\end{array}\right)
$$

P14. Example 4.5. $n=87, p=3$,

$$
\begin{gathered}
\overline{\mathbf{x}}=\left[\begin{array}{c}
526.29 \\
54.69 \\
25.13
\end{array}\right], \mathbf{S}=\left[\begin{array}{ccc}
5808.06 & 597.84 & 222.03 \\
597.84 & 126.05 & 23.39 \\
222.03 & 23.39 & 23.11
\end{array}\right] \\
\frac{p(n-1)}{n-p} F_{p, n-p}(\alpha)=\frac{3(87-1)}{87-3} F_{3,84}(.05)=\frac{3(86)}{84}(2.7)=8.29 .
\end{gathered}
$$

Then we obtain the simultaneous confidence statements

$$
\begin{gathered}
526.29-\sqrt{8.29} \sqrt{\frac{5808.06}{87}} \leq \mu_{1} \leq 526.29+\sqrt{8.29} \sqrt{\frac{5808.06}{87}} \\
\text { or } 503.06 \leq \mu_{1} \leq 550.12 \\
54.69-\sqrt{8.29} \sqrt{\frac{126.05}{87}} \leq \mu_{2} \leq 54.69+\sqrt{8.29} \sqrt{\frac{126.05}{87}} \\
\text { or } 51.22 \leq \mu_{2} \leq 58.16 \\
25.13-\sqrt{8.29} \sqrt{\frac{23.11}{87}} \leq \mu_{3} \leq 25.13+\sqrt{8.29} \sqrt{\frac{23.11}{87}} \\
\text { or } 23.65 \leq \mu_{3} \leq 26.61
\end{gathered}
$$

- The simultaneous T^{2}-intervals above are wider than univariate intervals because all three must hold with 95% confidence.

P18. Example 4.6, $n=96, p=7$. From the result 4.5, simultaneous 90% confidence limits are given by $\bar{x}_{i} \pm \sqrt{\chi_{7}^{2}(.10)} \sqrt{\frac{s_{i i}}{n}}, i=1, \ldots, 7$ where $\chi_{7}^{2}(.10)=12.02$.
Thus, with approximately 90% confidence,
$28.1 \pm \sqrt{12.02} \frac{5.76}{\sqrt{96}}, \quad$ contains μ_{1}, \quad or $\quad 26.06 \leq \mu_{1} \leq 30.14$
$26.6 \pm \sqrt{12.02} \frac{5.85}{\sqrt{96}}, \quad$ contains μ_{2}, \quad or $\quad 24.53 \leq \mu_{2} \leq 28.67$
$35.4 \pm \sqrt{12.02} \frac{3.82}{\sqrt{96}}, \quad$ contains μ_{3}, or $34.05 \leq \mu_{3} \leq 36.75$
$34.2 \pm \sqrt{12.02} \frac{5.12}{\sqrt{96}}, \quad$ contains μ_{4}, \quad or $\quad 32.39 \leq \mu_{4} \leq 36.01$
$23.6 \pm \sqrt{12.02} \frac{3.76}{\sqrt{96}}, \quad$ contains μ_{5}, \quad or $\quad 22.27 \leq \mu_{5} \leq 24.93$
$22.0 \pm \sqrt{12.02} \frac{3.93}{\sqrt{96}}, \quad$ contains μ_{6}, or $\quad 20.61 \leq \mu_{6} \leq 23.39$
$22.7 \pm \sqrt{12.02} \frac{4.03}{\sqrt{96}}, \quad$ contains μ_{7}, \quad or $\quad 21.27 \leq \mu_{7} \leq 24.13$

P23. Example 4.7. The T^{2}-statistic for testing
$H_{0}: \boldsymbol{\delta}^{T}=\left[\delta_{1}, \delta_{2}\right]=[0,0]$ is constructed from the difference of paired observation

$$
\begin{array}{llllllllllll}
d_{j 1}=x_{1 j 1}-x_{2 j 1}: & -19, & -22, & -18, & -27, & -4, & -10, & -14, & 17, & 9, & 4, & -19 \\
d_{j 2}=X_{1 j 2}-x_{2 j 2}: & 12, & 10, & 42, & 15, & -1, & 11, & -4, & 60, & -2, & 10, & -7
\end{array}
$$

Then

$$
\overline{\mathbf{d}}=\left[\begin{array}{l}
\bar{d}_{1} \\
\bar{d}_{2}
\end{array}\right]=\left[\begin{array}{c}
-9.36 \\
13.27
\end{array}\right], \quad \mathbf{S}_{d}=\left[\begin{array}{cc}
199.26 & 88.38 \\
88.38 & 418.61
\end{array}\right]
$$

and
$T^{2}=11[-9.36,13.27]\left[\begin{array}{cc}.0055 & -.0012 \\ -.0012 & .0026\end{array}\right]\left[\begin{array}{c}-9.36 \\ 13.27\end{array}\right]=13.6$
Taking $\alpha=.05$, we find that $[p(n-1) /(n-p)] F_{p, n-p}(.05)=$ $[2(10) / 9] F_{2,9}(0.05)=9.47<T^{2}$. Hence we reject H_{0} and conclude that there is a nonzero mean difference between the measurements of the two laboratories.

- Example 4.7 continuous. The 95% simultaneous confidence intervals for the mean differences δ_{1} and δ_{2} are

$$
\begin{gathered}
\delta_{1}: \bar{d}_{1} \pm \sqrt{\frac{(n-1) p}{n-p} F_{p, n-p}(\alpha)} \sqrt{\frac{s_{d_{1}}^{2}}{n}}=-9.36 \pm \sqrt{9.47} \sqrt{\frac{199.26}{11}} \\
\quad \text { or }(-22.46,3.74) \\
\delta_{2}: 13.27 \pm \sqrt{9.47} \sqrt{\frac{418.61}{11}}, \quad \text { or }(-5.71,32.25) .
\end{gathered}
$$

The 95\% simultaneous confidence interval include zero, yet the hypothesis $H_{0}: \boldsymbol{\delta}=0$ was rejected at the 5% level. What are we to conclude ?

P27. Example 4.8. First, note that \mathbf{S}_{1} and \mathbf{S}_{2} are approximately equal, so that it is reasonable to pool them. Hence

$$
\mathbf{S}_{\text {pooled }}=\frac{49}{98} \mathbf{S}_{1}+\frac{49}{98} \mathbf{S}_{2}=\left[\begin{array}{ll}
2 & 1 \\
1 & 5
\end{array}\right]
$$

and

$$
\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}=[-1.9, .2]^{T}
$$

So the confidence ellipse is centred at $[-1.9, .2]^{T}$. The eigenvalues and eigenvectors of $\mathbf{S}_{\text {pooled }}$ are obtained from the equation

$$
0=\left|\mathbf{S}_{\text {pooled }}-\lambda \mathbf{I}\right|=\lambda^{2}-7 \lambda+9
$$

consequently $\lambda_{1}=5.303$ and $\lambda_{2}=1.697$. The corresponding eigenvectors \mathbf{e}_{1} and \mathbf{e}_{2} determined from
$\mathbf{S}_{\text {pooled }} \mathbf{e}_{i}=\lambda_{i} \mathbf{e}_{i}, i=1,2$.

$$
\mathbf{e}_{1}^{T}=[.290, .957], \text { ande }_{1}^{T}=[.957,-.290]
$$

- Example 4.8.continuous. By

$$
\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) c^{2}=\left(\frac{1}{50}+\frac{1}{50}\right) \frac{(98)(2)}{(97)} F_{2,97}(.05)=.25
$$

since $F_{2,97}(.05)=3.1$. The confidence ellipse extends

$$
\sqrt{\lambda_{i}} \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) c^{2}}=\sqrt{\lambda_{i}} \sqrt{.25}
$$

unit along the eigenvector \mathbf{e}_{i}, or 1.15 units in the \mathbf{e}_{1} direction and .65 units in the \mathbf{e}_{2}.
P29. Result 4.9, Type Error: $\left[\left(1 / n_{1}+1 / n_{2}\right) \mathbf{S}_{\text {pooled }}\right]$ should be

$$
\frac{1}{n_{1}} \mathbf{S}_{1}+\frac{1}{n_{2}} \mathbf{S}_{2}
$$

P33. Example 4.9. $n_{1}=271, n_{2}=138, n_{3}=107$ and
$\left|\mathbf{S}_{1}\right|=2.783 \times 10^{-8},\left|\mathbf{S}_{2}\right|=89.539 \times 10^{-8}$,
$\left|\mathbf{S}_{3}\right|=14.579 \times 10^{-8}$, and $\left|\mathbf{S}_{\text {pooled }}\right|=17.398 \times 10^{-8}$. Taking the nature logarithms of the determinants gives $\ln \left|\mathbf{S}_{1}\right|=-17.397, \ln \left|\mathbf{S}_{2}\right|=-13.926, \ln \left|\mathbf{S}_{3}\right|=-15.741$, and $\ln \left|\mathbf{S}_{\text {pooled }}\right|=-15.564$. Then we calculate

$$
\begin{aligned}
u & =\left[\frac{1}{270}+\frac{1}{137}+\frac{1}{106}-\frac{1}{270+137+106}\right]\left[\frac{2\left(4^{2}\right)+3(4)-1}{6(4+1)(3-1)}\right] \\
& =0.0133
\end{aligned}
$$

- Example 4.9. Continuous.

$$
\begin{aligned}
M= & {[270+137+106](-15.564)-[270(-17.397)} \\
& +137(-13.926)+106(-15.741)] \\
= & 289.3
\end{aligned}
$$

and $C=(1-.0133) 289.3=285.5$. Referring C to a χ^{2} with the degree of freedom $\nu=4(4+1)(3-1) / 2=20$, it is clear that H_{0} is rejected at any reasonable level of significance.

