Math3806 Lecture Note 6 Appendix

Heng Peng

March 30, 2020

P4.

$$
\begin{aligned}
\operatorname{Corr}(U, V) & =\frac{\mathbf{a}^{T} \Sigma_{12} \mathbf{b}}{\sqrt{\mathbf{a}^{T} \Sigma_{11} \mathbf{a}} \sqrt{\mathbf{b}^{T} \Sigma_{11} \mathbf{b}}}=\frac{\mathbf{a}^{T} \Sigma_{11}^{1 / 2} \Sigma_{11}^{-1 / 2} \Sigma_{12} \Sigma_{22}^{-1 / 2} \Sigma_{22}^{1 / 2} \mathbf{b}}{\sqrt{\mathbf{a}^{T} \Sigma_{11} \mathbf{a}} \sqrt{\mathbf{b}^{T} \Sigma_{11} \mathbf{b}}} \\
& =\mathbf{a}^{*} \Sigma_{11}^{-1 / 2} \Sigma_{12} \Sigma_{22}^{-1 / 2} \mathbf{b}^{*}
\end{aligned}
$$

with $\left\|\mathbf{a}_{*}^{T}\right\|=\left\|\mathbf{b}_{*}^{T}\right\|=1$.
Hence by Cauchy inequality

$$
\operatorname{Corr}(U, V) \leq \mathbf{b}_{*}^{T} \Sigma_{22}^{-1 / 2} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1 / 2} \mathbf{b}_{*} \leq \rho_{1}^{* 2}
$$

or

$$
\operatorname{Corr}(U, V) \leq \mathbf{a}_{*}^{T} \Sigma_{11}^{-1 / 2} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1 / 2} \mathbf{a}_{*} \leq \rho_{1}^{* 2}
$$

and

$$
\Sigma^{1 / 2} \mathbf{a}=\mathbf{e}_{1}, \text { or } \quad \Sigma^{1 / 2} \mathbf{b}=\mathbf{f}_{1}
$$

- For standardized data $\mathbf{Z}^{(1)}=\left[Z_{1}^{(1)}, \ldots, Z_{p}^{(1)}\right]^{T}$ and $\mathbf{Z}^{(2)}=\left[Z_{1}^{(2)}, \ldots, Z_{q}^{(2)}\right]^{T}$, the canonical coefficients are unchanged (Why ?)

P6. Example 6-1.1.

$$
\rho_{11}^{-1 / 2}=\left[\begin{array}{cc}
1.0681 & -.2229 \\
-.2229 & 1.0681
\end{array}\right], \rho_{22}^{-1}=\left[\begin{array}{cc}
1.0417 & -.2083 \\
-.2083 & 1.0417
\end{array}\right]
$$

and

$$
\rho_{11}^{-1 / 2} \rho_{12} \rho_{22}^{-1} \rho_{21} \rho_{11}^{-1 / 2}=\left[\begin{array}{ll}
.4371 & .2178 \\
.2178 & .1096
\end{array}\right]
$$

The eigenvalues $\rho_{1}^{* 2}, \rho_{2}^{* 2}$ of $\rho_{11}^{-1 / 2} \rho_{12} \rho_{22}^{-1} \rho_{21} \rho_{11}^{-1 / 2}$ are obtained from

$$
\begin{aligned}
0 & =\left|\begin{array}{cc}
.4371-\lambda & .2178 \\
.2178 & .1096-\lambda
\end{array}\right| \\
& =(.4371-\lambda)(.1096-\lambda)-(2.178)^{2}=\lambda^{2}-.5467 \lambda+.0005
\end{aligned}
$$

yielding $\rho_{1}^{* 2}=.5458, \rho_{2}^{* 2}=.0009$. The eigenvector \mathbf{e}_{1} follows from the vector equation

$$
\left[\begin{array}{ll}
.4371 & .2178 \\
.2178 & .1096
\end{array}\right] \mathbf{e}_{1}=(.5458) \mathbf{e}_{1}
$$

Thus $\mathbf{e}_{1}^{T}=[.8947, .4466]$ and $\mathbf{a}_{1}=\rho_{11}^{-1 / 2} \mathbf{e}_{1}=[.8561, .2776]^{T}$.

- Example 6-1.1. Continuous. By Result 6.1, $\mathbf{f}_{1} \propto \rho_{22}^{-1 / 2} \rho_{21} \rho_{11}^{-1 / 2} \mathbf{e}_{1}$ and $\mathbf{b}_{1}=\rho_{22}^{-1 / 2} \mathbf{f}_{1}$. Consequently,

$$
\mathbf{b}_{1} \propto \boldsymbol{\rho}_{22}^{-1} \rho_{21} \mathbf{a}_{1}=\left[\begin{array}{cc}
1.0417 & -.2083 \\
-.2083 & 1.0417
\end{array}\right]\left[\begin{array}{l}
.8561 \\
.2776
\end{array}\right]=\left[\begin{array}{l}
.4026 \\
.5443
\end{array}\right]
$$

Scale \mathbf{b}_{1} so that

$$
\operatorname{Var}\left(V_{1}\right)=\operatorname{Var}\left(\mathbf{b}_{1}^{T} \mathbf{Z}^{(2)}\right)=\mathbf{b}_{1}^{T} \boldsymbol{\rho}_{22} \mathbf{b}_{1}=1
$$

This gives

$$
[.4026, .5443]\left[\begin{array}{cc}
1.0 & .2 \\
.2 & 1.0
\end{array}\right]\left[\begin{array}{l}
.4026 \\
.5443
\end{array}\right]=.5460
$$

and $\sqrt{.5460}=.7389$ so

$$
\mathbf{b}_{1}=\frac{1}{.7389}\left[\begin{array}{l}
.4026 \\
.5443
\end{array}\right]=\left[\begin{array}{l}
.5448 \\
.7366
\end{array}\right]
$$

- Example 6-1.1. Continuous. The first pair of canonical variates is

$$
U_{1}=\mathbf{a}_{1}^{T} \mathbf{Z}^{(1)}=.86 Z_{1}^{(1)}+.28 Z_{2}^{(1)}, \quad V_{1}=\mathbf{b}_{1}^{T} \mathbf{Z}^{(2)}=.54 Z_{1}^{(2)}+.74 Z_{2}^{(2)}
$$

and their canonical correlation is $\rho_{1}^{*}=\sqrt{\rho_{1}^{* 2}}=\sqrt{.5458}=.74$.

- The second canonical correlation $\rho_{2}^{*}=\sqrt{.0009}=.03$ is very small, and conveys very little information about the association between sets.

P6. Example 6-1.2. With $p=1$

$$
\mathbf{A}_{z}=[.86, .28], \quad \mathbf{B}_{z}=[.54, .74]
$$

so

$$
\boldsymbol{\rho}_{U_{1}, \mathbf{Z}^{(1)}}=\mathbf{A}_{z} \boldsymbol{\rho}_{11}=[.86, .28]\left[\begin{array}{cc}
1.0 & .4 \\
.4 & 1.0
\end{array}\right]=[.97, .62]
$$

and

$$
\boldsymbol{\rho}_{V_{1}, \mathbf{Z}^{(2)}}=\mathbf{B}_{z} \boldsymbol{\rho}_{22}=[.54, .74]\left[\begin{array}{cc}
1.0 & .2 \\
.2 & 1.0
\end{array}\right]=[.69, .85]
$$

We also obtain the correlations

$$
\boldsymbol{\rho}_{U_{1}, \mathbf{Z}^{(2)}}=\mathbf{A}_{z} \boldsymbol{\rho}_{12}=[.86, .28]\left[\begin{array}{cc}
.5 & .6 \\
.3 & .4
\end{array}\right]=[.51, .63]
$$

and

$$
\boldsymbol{\rho}_{V_{1}, \mathbf{Z}^{(1)}}=\mathbf{B}_{z} \boldsymbol{\rho}_{21}=[.54, .74]\left[\begin{array}{cc}
.5 & .3 \\
.6 & .4
\end{array}\right]=[.71, .46]
$$

