
2. Matrix Algebra and Random Vectors

2.1 Introduction

Multivariate data can be conveniently display as array of numbers. In general,
a rectangular array of numbers with, for instance, n rows and p columns is
called a matrix of dimension n× p The study of multivariate methods is greatly
facilitated by the use of matrix algebra.
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2.2 Some Basic of Matrix and Vector Algebra

Vectors

• Definition: An array x of n real number x1, x2, . . . , xn is called a vector, and
it is written as

x =


x1
x2
...
xn

 or x′ = [x1, x2, . . . , xn]

where the prime denotes the operation of transposing a column to a row.
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• Multiplying vectors by a constant c:

cx = x =


cx1
cx2

...
cxn


• Addition of x and y is defined as

x + y =


x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn
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Figure 2.2 Scatter multiplication and vector addition
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• Length of vectors, unit vector

When n = 2, x = [x1, x2]′, the length of x, written Lx is defined to be

Lx =
√
x21 + x22

Geometrically, the length of a vector in two dimension can be viewed as the
hypotenuse of a right triangle. The length of a vector x = [x1, x2, . . . , xn]′

and cx = [cx1, cx2, . . . , cxn]′

Lx =
√
x21 + x22 + · · ·+ x2n

Lcx =
√
c2x21 + c2x22 + · · ·+ c2x2n = |c|

√
x21 + x22 + · · ·+ x2n = |c|Lx

Choosing c = L−1x , we obtain the unit vector L−1x x, which has length 1 and
lies in the direction of x.
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• Angle, inner product. perpendicular

Consider two vectors x, y in a plane and the angle θ between them, as in
Figure 2.4. From the figure, θ can be represented as the difference the angle
θ1 and θ2 formed by the two vectors and the first coordinate axis. Since, by
the definition,

cos(θ1) =
x1
Lx
, cos(θ2) =

y1
Ly

sin(θ1) =
x2
Lx
, sin(θ2) =

y2
Ly

and
cos(θ2 − θ1) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2)

the angle θ between the two vectors is specified by

cos(θ) = cos(θ2 − θ1) =
y1
Ly
· x1
Lx

+
y2
Ly
· x2
Lx

=
x1y1 + x2y2

LxLy
.
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• Definition of inner product of the two vectors x and y

x′y = x1y1 + x2y2.

With the definition of the inner product and cos(θ),

Lx =
√

x′x, cos(θ) =
x′y

LxLy
=

x′y√
x′x
√

y′y
.

Example 2.1.(Calculating lengths of vectors and the angle between them)
Given the vectors x′ = [1 3 2] and y′ = [−2 1 − 1], find 3x and x + y. Next,
determine the length of x, the length of y, and the angle between x and y.
Also, check that the length of 3x is three times the length of x
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• A pair of vectors x and y of the same dimension is said to be linearly
dependent if there exist constants c1 and c2, both not zero, such that
c1x + c2y = 0. A set of vectors x1, x2, . . . , xk is said to be linearly dependent
if there exist constants c1, c2, . . . , ck, not all zero, such that

c1x1 + c2x2 + . . .+ ckxk = 0.

Linear dependence implies that at least one vector in the set can be written
as linear combination of the other vectors. Vector of the same dimension
that are not linearly dependent are said to be linearly independent.
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• projection (or shadow) of a vector x on a vector y is

Projection of x on y =
(x′y)

y′y
· y =

(x′y)

Ly

1

Ly
y

where the vector L−1y y has unit length. The length of the projection is

Length of projection =
|x′y|
Ly

= Lx

∣∣∣∣ x′y

LxLy

∣∣∣∣ = Lx| cos(θ)|

where θ is the angle between x and y.
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Example 2.2 (Identifying linearly independent vectors) Consider if the set
of vectors

x1 =

 1
2
1

 x2 =

 1
0
−1

 x3 =

 1
−2
1


is linearly dependent.
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Matrices

A matrix is any rectangular array of real numbers. We denote an arbitrary
array of n rows and p columns

A{n×p} =


a11 a12 . . . a1p
a21 a22 . . . a2p

... ... . . . ...
an1 an2 · · · anp



Example 2.3 (Transpose of a matrix) if

A{2×3} =

[
3 −1 2
1 5 4

]
then

A′{3×2} =

 3 1
−1 5
2 4
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The product cA is the matrix that results from multiplying each elements
of A by c. Thus

cA{n×p} =


ca11 ca12 . . . ca1p
ca21 ca22 . . . ca2p

... ... . . . ...
can1 can2 · · · canp


Example 2.4 (The sum of two matrices and multiplication of a matrix by
a constant) If

A{2×3} =

[
0 3 1
1 −1 1

]
B{2×3} =

[
1 −2 −3
2 5 1

]
then 4A and A + B ?
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The matrix product AB is

A{n×k}B{k×p} = the (n× p) matrix whose entry in the ith row and

jth column is the inner product of the ith row of A

and the jth column of B.

or

(i, j) entry of AB = ai1b1j + ai2b2j + · · ·+ aikbkj =

k∑
`=1

ai`b`j

Example 2.5 (Matrix multiplication) If

A =

[
3 −1 2
1 5 4

]
, B =

 −2
7
9

 , and C =

[
2 0
1 −1

]

then AB and CA ?
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Example 2.6 (Some typical products and their dimensions) Let

A =

[
1 −2 3
2 4 −1

]
, b =

 7
−3
6

 , c =

 5
8
−4

 , d =

[
2
9

]

Then Ab,bc′,b′c, and d′Ad ?

• Square matrices will be of special importance in our development of statistical
methods. A square matrix is said to be symmetric if A = A′ or aij = aji for
all i and j.

• Identity matrix I act like 1 in ordinary multiplication (1 · a = a · 1 = a),

I(k×k)A(k×k) = A(k×k)I(k×k) = A(k×k) for any A(k×k)
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• The fundamental scalar relation about the existence of an inverse number
a−1 such that a−1a = aa−1 = 1 if a 6= 0 has the following matrix algebra
extension: If there exists a matrix B such that

BA = AB = I

then B is called the inverse of A and is denoted by A−1.

Example 2.7 (The existence of a matrix inverse) For

A =

[
3 2
4 1

]
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• Diagonal matrices

• Orthogonal matrices

QQ′ = Q′Q = I or Q′ = Q−1.

• Eigenvalue λ with corresponding eigenvector x 6= 0 if

Ax = λx

Ordinarily, x is normalized so that it has length unity; that is x′x = 1.
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• Let A be a k×k square symmetric matrix. Then A has k pairs of eigenvalues
and eigenvectors namely

λ1 e1, λ2 e2, . . . , λk ek

The eigenvectors can be chosen to satisfy 1 = e′1e1 = · · · = e′ke and be
mutually perpendicular. The eigenvectors are unique unless two or more
eigenvalues are equal.

Example 2.8 (Verifying eigenvalues and eigenvectors) Let

A =

[
1 −5
−5 1

]
.

show that λ1 = 6 and λ2 = −4 is its eigenvalues and the corresponding
eigenvectors are e1 = [1/

√
2,−1/

√
2]′ and e2 = [1/

√
2, 1/
√

2].

18



2.3 Positive Definite Matrices

The study of variation and interrelationships in multivariate data is often
based upon distances and the assumption that the data are multivariate normally
distributed. Squared distance and the multivariate normal density can be
expressed in terms of matrix products called quadratic forms. Consequently,
it should not be surprising that quadratic forms play central role in multivariate
analysis. Quadratic forms that are always nonnegative and the associated
positive definite matrices.

• spectral decomposition for symmetric matrices

A(k×k) = λ1e1e′1 + λ2e2e′2 + · · ·+ λkeke′k

where λ1, λ2, . . . , λk are the eigenvalues and e1, e2, . . . , ek are the associated
normalized k × 1 eigenvectors. e′iei = 1 for i = 1, 2, . . . , k and e′iej = 0 for
i 6= j.
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• Because x′Ax has only square terms x2i and product terms xixk, it is called
a quadratic form. When a k × k symmetric matrix A is such that

0 ≤ x′Ax

for all x′ = [x1, x2, . . . , xk], both the matrix A and the quadratic form are
said to be nonnegative definite. If the equality holds in the equation
above only for the vector x′ = [0, 0, . . . , 0], then A or the quadratic form is
said to be positive definite. In other words, A is positive definite if

0 < x′Ax

for all vectors x 6= 0.

• Using the spectral decomposition, we can easily show that a k × k matrix A
is a positive definite matrix if and only if every eigenvalue of A is positive. A
is a nonnegative definite matrix if and only if all of its eigenvalues are greater
than or equal to zero.

20



Example 2.9 ( The spectral decomposition of a matrix) Consider the
symmetric matrix

A =

 13 −4 2
−4 13 −2
2 −2 10

 ,
find its spectral decomposition.

Example 2.10 ( A positive definite matrix quadratic form) Show that the
matrix for the following quadratic form is positive definite:

3x21 + 2x22 − 2
√

2x1x2.

• the “distance ” of the point [x1, x2, . . . , xp]
′ to origin

(distance)2 = a11x
2
1 + a22x

2
2 + . . .+ a2pp

+2(a12x1x2 + a13x1x3 + . . .+ ap−1,pxp−1xp)

• the square of the distance x to an arbitrary fixed point µ = [µ1, µ2, . . . , µp].
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• A geometric interpretation based on the eigenvalues and eigenvectors of the
matrix A.

For example, suppose p = 2, Then the points x′ = [x1, x2] of constant
distance c from the origin satisfy

x′Ax = a11x
2
1 + a222 + 2a12x1x2 = c2

By the spectral decomposition,

A = λ1e1e′1 + λ2e2e′2

so
x′Ax = λ1(x

′e1)
2 + λ2(x

′e2)
2

22
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2.4 A Square-Root Matrix

Let A be a k× positive definite matrix with spectral decomposition A =
k∑
i=1

λieie′i. Let the normalized eigenvectors be the columns of another matrix

P = [e1, e2, . . . , ek]. Then

A =

k∑
i=1

λieie
′
i = PΛP′

where PP′ = P′P = I and Λ is the diagonal matrix

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . . . .
0 0 · · · λk

 with λi > 0
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Thus

A−1 = PΛ−1P′ =
k∑
i=1

1

λi
eie
′
i

The square-root matrix, of a positive definite matrix A,

A1/2 =

k∑
i=1

√
λieie

′
i = PΛ1/2P′

• symmetric: A1/2′ = A1/2

• A1/2A1/2 = A

• (A1/2)−1 =
k∑
i=1

1√
λi

eie′i = PΛ−1/2P′

• A1/2A−1/2 = A−1/2A1/2 = I and A−1/2A−1/2 = A−1, where A−1/2 =
(A1/2)−1.
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Random Vectors and Matrices

A random vector is a vector whose elements are random variables.
Similarly a random matrix is a matrix whose elements are random variables.

• The expected value of a random matrix

E(X) =


E(X11) E(X12) · · · E(X1p)
E(X21) E(X22) · · · E(X2p)

... ... . . . ...
E(Xn1) E(Xn2) · · · E(Xnp)



• E(X + Y ) = E(X) + E(Y )

• E(AXB) = AE(X)B
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Example 2.11 (Computing expected values for discrete random variables)
Suppose p = 2 and n = 1, and consider the random vector X ′ = [X1, X2]. Let
the discrete random variable X1 have the following probability function

X1 -1 0 1
p1(X1) 0.3 0.3 0.4

Similarly, let the discrete random varibale X2 have the probability function

X2 0 1
p2(X2) 0.8 0.2

Calculate E(X).
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Mean Vectors and Covariance Matrices

SupposeX = [X1, X2, . . . , Xp] is a p×1 random vectors. Then each element
of X is a random variables with its own marginal probability distribution.

• The marginal mean µi = E(Xi), i = 1, 2, . . . , p.

• The marginal variance σ2
i = E(Xi − µi)2, i = 1, 2, . . . , p.

• The behavior of any pair of random variables, such as Xi and Xk, is described
by their joint probability function, and a measure of the linear association
between them is provided by the covariance

σik = E(Xi − µi)(Xk − µk)

• The means and covariances of p × 1 random vector X can be set out as
matrices named population variance-covariance (matrices).

µ = E(X), Σ = E(X − µ)(X − µ)′.
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• Statistical independent Xi and Xk if

P (Xi ≤ xi and Xk ≤ xk) = P (Xi ≤ xi)P (Xk ≤ xk)

or
fik(xi, xk) = fi(xi)fk(xk).

• Mutually statistically independent of the p continuous random
variables X1, X2, . . . , Xp if

f1,2,...,p(x1, x2, . . . , xp) = f1(x1)f2(x2) · · · fp(xp)

• linear independent of Xi, Xk if

Cov(Xi, Xk) = 0
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• Population correlation coefficient ρik

ρik =
σik√

σii
√
σkk

The correlation coefficient measures the amount of linear association between
the random variable Xi and Xk.

• The population correlation matrix ρ

30



Example 2.12 (Computing the covariance matrix) Find the covariance
matrix for the two random variables X1 andX2 introduced in Example 2.11
when their joint probability function p12(x1, x2) is represented by the entries in
the body of the following table:

x1\x2 0 1 p1(x1)
-1 0.24 0.06 0.3
0 0.16 0.14 0.3
1 0.4 0.00 0.4

p2(x2) 0.8 0.2 1

Example 2.13 (Computing the correlation matrix from the covariance
matrix) Suppose

Σ =

 4 1 2
1 9 −3
2 −3 25

 =

 σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33


Obtain the population correlation matrix ρ
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Partitioning the Covariance Matrix

• Let

X =



X1
...
Xq

. . .
Xq+1

. . .
Xp


=

 X(1)

· · ·
X(2)

 and then µ = EX =



µ1
...
µq
. . .
µq+1

. . .
µp


=

 µ(1)

· · ·
µ(2)



• Define

E(X − µ)(X − µ)′

= E

[
(X(1) − µ(1))(X(1) − µ(1))′ (X(1) − µ(1))(X(2) − µ(2))′

(X(2) − µ(2))(X(1) − µ(1))′ (X(2) − µ(2))(X(2) − µ(2))

]

=

[
Σ11 Σ12

Σ21 Σ22

]
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• It is sometimes convenient to use Cov(X(1),X(2)) note where

Cov(X(1),X(2)) = Σ12 = Σ′21

is a matrix containing all of the covariance between a component of X(1)

and a component of X(2).

33



The Mean Vector and Covariance Matrix for Linear
Combinations of Random Variables

• The linear combination c′X = c1X1 + · · ·+ cpXp has

mean = E(c′X) = c′µ

variance = Var(c′X) = c′Σc

where µ = E(X) and Σ = Cov(X).

• Let C be a matrix, then the linear combinations of Z = CX have

µZ = E(Z) = E(CX) = Cµx

ΣZ = Cov(Z) = Cov(CX) = CΣxC
′
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• Sample Mean
x̄′ = [x̄1, x̄2, . . . , x̄p]

• Sample Covariance Matrix

Sn =

 s11 · · · s1p
... . . . ...
s1p · · · spp



=


1
n

n∑
j=1

(xj1 − x̄1)2 · · · 1
n

n∑
j=1

(xj1 − x̄1)(xjp − x̄p)
... . . . ...

1
n

n∑
j=1

(xj1 − x̄1)(xjp − x̄p) · · · 1
n

n∑
j=1

(xjp − x̄p)2
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2.7 Matrix Inequalities and Maximization

• Cauchy-Schwarz Inequality

Let b and d be any two p× 1 vectors. Then

(b′d)2 ≤ (b′b)(d′d)

with equality if and only if b = cd or d = cb for some constant c.

• Extended Cauchy-Schwarz Inequality

Let b and d be any two p × 1 vectors, and B be a positive definite matrix.
Then

(b′d)2 ≤ (b′Bb)(d′B−1d)

with equality if and only if b = cB−1d or d = cBb for some constant c.
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• Maximization Lemma

Let Bp×p be positive definite and dp×1 be a given vector. Then, for arbitrary
nonzero vector x,

max
x 6=0

(x′d)2

x′Bx
= d′B−1d

with the maximum attained when x = cB−1d for any constant c 6= 0.

• Maximization of Quadratic Forms for Points on the Unit Sphere

Let B be a positive definite matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0
and associated normalized eigenvectors e1, e2, . . . , ep. Then

max
x6=0

x′Bx

x′x
= λ1 (attained when x = e1)

min
x6=0

x′Bx

x′x
= λp (attained when x = ep)

Moreover,

max
x⊥e1,...ek

x′Bx

x′x
= λk+1 (attained when x = ek+1, k = 1, 2, . . . , p− 1)

where the symbol ⊥ is read “perpendicular to.”
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