
5. Multivariate Methods by Projection

5.1 Principal Component Analysis

A principle component analysis is concerned with explaining the variance-
covariance structure of a set of variables through a few linear combinations of
these variables. It general objectives are

(1) data reduction
Although p components are required to reproduce the total system variability,
often much of this variability can be accounted for by a small number k of
the principle components.

(2) interpretation
An analysis of principle components often reveals relationships that were
not previously suspected and thereby allows interpretations that would not
ordinarily results.
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5.1.1 Population Principle Components

• Algebraically, principal components are particular linear combinations of the
p random variables X1, X2, . . . , Xp.

• Geometrically, these linear combination represent the selection of a
new coordinate system obtained by rotating the original system with
X1, X2, . . . , Xp as the coordinate axes. The new axes represents the
directions with maximum variability and provide a simpler and more
parsimonious description of the covariance structure.

• Principal components depend solely on the covariance matrix Σ (or the
correlation matrix ρ) of X1, X2, . . . , Xp. Their development does not require
a multivariate normal assumption. On the other hand, principal components
derived for multivariate normal populations have useful interpretations in
terms of the constant density ellipsoids.

2



let the random vector X ′ = [X1, X2, . . . , Xp] have the covariance matrix Σ
with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

Consider the linear combinations

Y1 = a′1X = a11X1 + a12X2 + · · ·+ a1pXp

Y2 = a′2X = a21X1 + a22X2 + · · ·+ a2pXp

...

Yp = a′pX = ap1X1 + ap2X2 + · · ·+ appXp

Then

Var(Yi) = a′iΣai i = 1, 2, . . . , p

Cov(Yi, Yk) = a′iΣak i, k = 1, 2, . . . , p
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Define

First principle component = linear combination a′1X that maximizes

Var(a′1X) subject to a′1a1 = 1

Second principle component = linear combination a′2X that maximizes

Var(a′2X) subject to a′2a2 = 1 and

Cov(a′1X, a′2X) = 0

At the ith step,

ith principle component = linear combination a′iX that maximizes

Var(a′iX) subject to a′iai = 1 and

Cov(a′iX, a′kX) = 0 for k < i
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Results 5.1 Let Σ be the covariance matrix associated with the random
vector X ′ = [X1, X2, . . . , Xp]. Let Σ have the eigenvalue-eigenvector pair
(λ1, e1), (λ2, e2), . . . , (λp, ep) where λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. Then the ith
principal component is given by

Yi = e′iX = ei1X1 + ei2X2 + · · ·+ eipXp, i = 1, 2, . . . , p

With these choices,

Var(Yi) = e′iΣei = λi, i = 1, 2, . . . , p

Cov(Yi, Yk) = e′iΣek = 0, i 6= k

If some λi are equal, the choices of corresponding coefficients vectors, ei, and
hence Yi are not unique.

Results 5.2 Let X ′ = [X1, X2, . . . , Xp] have covariance matrix Σ, with
eigenvalue-eigenvector pairs (λ1, e1), (λ2, e2), . . . , (λp, ep) where λ1 ≥ λ2 ≥
· · · ≥ λp ≥ 0. Let Y1 = e′1X, Y2 = e′2X, . . . , Yp = e′pX be the principal
components. Then

σ11 + σ22 + · · ·+ σpp =
p∑

i=1

Var(Xi) = λ1 + λ2 + · · ·+ λp =
p∑

i=1

Var(Yi)
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Results 5.3 If Y1 = e′1X, Y2 = e′2X, . . . , Yp = e′pX are the principal
components obtained from the covariance matrix Σ, then

ρYi,Xk
=
eik

√
λi√

σkk
, i, k = 1, 2, . . . , p

are the correlation coefficients between the components Yi and the variables
Xk. Here (λ1, e1), (λ2, e2), . . . , (λp, ep) are the eigenvalue-eigenvector pair for
Σ.

Example 5.1 Suppose the random variables X1, X2 and X3 have the covariance
matrix

Σ =

 1 −2 0
−2 5 0
0 0 2

 .
Calculating the population principal components
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Suppose X is distributed as Np(µ,Σ). We know that the density of X is
constant on the µ centered ellipsoids

(x− µ)′Σ−1(x− µ) = c2

which have axes ±
√
λiei, i = 1, 2, . . . , p, where the (λi, ei) are the eigenvalue-

eigenvector pairs of Σ. Assume µ = 0, the equation above can be rewritten
as

c2 = x′Σ−1x =
1
λ1

(e′x)2 +
1
λ2

(e′2x)
2 + · · ·+ 1

λp
(e′px)

2

=
1
λ1
y2
1 +

1
λ2
y2
2 + · · ·+ 1

λp
y2

p

where e′1x, e
′
2x, . . . , e

′
px are recognized as the principal components of x. The

equation above defines in a coordinate system with axes y1, y2, . . . , yp lying in
the direction e1, e2, . . . , ep, respectively.
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Principal Components Obtained from Standardized
Variables

Principal components may also be obtained from the standardized variables

Zi =
Xi − µi√

σii
, i = 1, 2, . . . , p

Or in matrix notation Z = (V1/2)−1(X − µ). Clearly E(Z) = 0 and Cov(Z) =
(V1/2)−1Σ(V1/2)−1 = ρ

Results 5.4 The ith principal component of the standardized variables Z′ =
[Z1, Z2, . . . , Zp] with Cov(Z) = ρ, is given by

Yi = e′iZ = ei(V1/2)−1(X − µ), i = 1, 2, . . . , p

Moveover, p∑
i=1

Var(Yi) =
p∑

i=1

Var(Zi) = p

and
ρYi,Zk

= eik

√
λi, i, k = 1, 2, . . . , p

In this case (λ1, e1), (λ2, e2), . . . , (λp, ep) are the eigenvalue-eigenvector pairs
for ρ, with λ1 ≥ λ2 ≥ · · ·λp ≥ 0. 9



Example 5.2 Consider the covariance matrix

Σ =
[

1 4
4 100

]
and ρ =

[
1 .4
.4 1

]
Obtain the principle components by the covariance matrix Σ and correlation
matrix ρ.

Principal Components for Covariance Matrices with Special Structures

1.

Σ =


σ11 0 · · · 0
0 σ22 · · · 0
... ... . . . ...
0 0 · · · σpp


2.

Σ =


σ2 ρσ2 · · · ρσ2

ρσ2 σ2 · · · ρσ2

... ... . . . ...
ρσ2 ρσ2 · · · σ2

 or ρ = Σ =


1 ρ · · · ρ
ρ 1 · · · ρ
... ... . . . ...
ρ ρ · · · 1
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Summarizing Sample Variation by Principle Components

Suppose the data x1, x2, . . . , xn represent n independent drawings from some
p-dimensional population withe mean vector µ and covariance matrix Σ. These
data yield the sample mean vector x̄, the sample covariance matrix S, and the
sample correlation matrix R.

If S = sik be p × p sample covariance matrix with eigenvalue-eigenvector
pairs (λ̂1, ê1), (λ̂2, ê2), . . . , (λ̂p, êp), the ith sample principal component is given
by

ŷi = ê′ix = êi1x1 + êi2x2 + · · ·+ êipxp, i = 1, 2, . . . , p

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0 and x is any observation on the variables
X1,X2, . . . ,Xp. Also

Sample variance(ŷk = λ̂k, k = 1, 2, . . . , p

Sample covariance(ŷi, ŷk) = 0, i 6= k

Total sample variance =
n∑

i=1

sii = λ̂1 + λ̂2 + · · ·+ λ̂p

rŷi,xk
=

êik

√
λ̂i√

skk
, i, k = 1, 2, . . . , p. 11



Example 5.3 (Summarizing sample variability with two sample principal
components) A census provided information, by tract, on five socioeconomic
variables for Madison, Wisconsin, area. The data from 61 tracts are list in Table
8.5. These data produced the following summary statistics

x̄′ = [4.47, 3.96, 71.42, 26.91, 1.64]
total professional employed government median

population degree age over 16 employment home value
(thousands) (percent) (percent) (percent) $100,000

and

S =


3.397 −1.102 4.306 −2.078 0.027
−1.102 9.673 −1.513 10.953 1.203
4.306 −1.513 55.626 −28.937 −0.044
−2.078 10.953 −28.937 89.067 0.957
0.027 1.203 −0.044 0.957 0.319


Can the sample variation be summarized by one or two principal components ?
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The number of Principal Components

There is always the question of how many components to retain. There is no
definitive answer to this question. Things to consider include

• the amount of total sample variance explained,

• the relative sizes of the eigenvalues (the variances of the sample components,)

• the subject-matter interpretation of the components.

• In addition, a component associated with an eigenvalue near zero and, hence
deemed unimportant, may indicate an unsuspected linear dependency in the
data.

A useful visual aid to determining an appropriate number of principal components
is a scree plot. With the eigenvalues ordered from largest to smallest, a scree
plot is a plot of λ̂i versus i—the magnitude of an eigenvalue versus its number.
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Example 5.4 (Summarizing sample variability with one sample principal
component) In a study of size and shape relationships for painted turtles,
Jolicoeur and Mosimann measured carapace length, width, and height. Their
data, reproduced in Table 6.9 suggest an analysis in term s of logarithms
(Jolicoeur generally suggests a logarithmic transformation in studies of size-and-
shape relationships). Perform a principal component analysis.
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Interpretation the Sample Principal Components

The sample principal components have serval interpretations

• Suppose the underlying distribution of X is nearlyNp(µ,Σ), Then the sample
principal components ŷi = ê′i(x − x̄) are realizations of population principal
components Yi = ei(X − µ), which have an Np(0,Λ) distribution. The
diagonal matrix Λ has entries λ1, λ2, . . . , λp and (λi, ei) are the eigenvalue-
eigenvector pairs of Σ.

• From the sample value xj, we can approximate µ by x̄ and Σ by S. If S is
positive definite, the contour consisting of all p× 1 vector x satisfying

(x− x̄)′S−1(x− x̄) = c2

estimates the constant density contour (x − µ)′Σ−1(x − µ) = c2 of the
underlying normal density.

• Even when the normal assumption is suspect and the scatter plot may depart
somewhat from an elliptical pattern, we can still extract eigenvalues from S
and obtain the sample principal components.
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Standardizing the Sample Principal Components

• Sample principal components are, in general, not invariant with respect to
changes in scale.

• Variables measured on different scales or on a common scale with widely
differing ranges are often standardized. For example, standardization is
accomplished by constructing

zj = D−1/2(xj − x̄) =
[
xj1 − x̄1√

s11
,
xj2 − x̄2√

s22
, . . . ,

xj1 − x̄p√
spp

]′
, j = 1, 2, . . . , n.
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If z1, z2, . . . , zn are standardized observations with covariance matrix R, the
ith sample principal component is

ŷi = ê′iz = êi1z1 + êi2z2 + · · ·+ êipzp, i = 1, 2, . . . , p

where (λ̂i, êi) is the ith eigenvalue-eigenvector pair of R with

Sample variance(ŷi) = λ̂i, i = 1, 2, . . . , p

Sample covariance(ŷi, ŷk) = 0, i 6= k

In addition,

Total(standardized) sample variance = tr(R) = p = λ̂1 + λ̂2 + · · ·+ λ̂p

and

rŷi,zk
= êik

√
λ̂i, i, k = 1, 2, . . . , p
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Example 5.5 (Sample principal components from standardized data) The
weekly rates return for five stocks (JP Morgen, Citibank, Wells Fargo, Royal
Dutch Shell, and ExxonMobil) list on the New York Stock Exchange were
determined for the period January 2004 through December 2005. The weekly
rates of return are defined as (current week closing price-previous week closing
price)/(previous week closing price), adjusted for stock splits and dividends,
The data are listed in Table 8.4. The observations in 103 successive weeks
appear to be independently distributed, but the rates of return across stocks are
correlated, because as one expects, stocks tend to move together in response
to general economic conditions. Standardizing this data set and find sample
principal components data set after standardized.
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Example 5.6 (Components from a correlation matrix with a special
structure) Geneticists are often concerned with the inheritance of characteristics
that can be measured several times during an animal’s lifetime. Body weight
(in grams) for n = 150 female mice were obtained immediately after the birth
of their first four litters. The sample mean vector and sample correlation matrix
were, respectively,

x̄′ = [39.88, 45.08, 48.11, 49.95]

and

R =


1.000 .7501 .6329 .6363
.7501 1.000 .6925 7386
.6329 .6925 1.000 .6625
.6363 .7386 .6625 1.000


Find sample principal components by R.
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5.2 Factor Analysis and Inference for Structured Covariance
Matrices

• The essential purpose of factor analysis is to describe, if possible, the
covariance relationships among many variables in terms of a few underlying,
but unobservable, random quantities called factors

• Factor analysis can be considered an extension of principal component
analysis. Both can be viewed as attempts to approximate the covariance
matrix Σ. However, the approximation based on the factor analysis model is
more elaborate.

• The primary question in factor analysis is whether the data are consistent
with a prescribed structure.
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5.2.1 The Orthogonal Factor Model

• The observable random vector X, with p components, has mean µ and
covariance matrix Σ.

• The factor model postulates that X is linearly dependent upon a few
unobservable random variables F1, F2, . . . , Fm, called common factors, and p
additional sources of variation ε1, ε2, . . . , εp, called errors, sometimes, specific
factors.

• In particular, the factor analysis model is

X1 − µ1 = `11F1 + `12F2 + · · ·+ `1mFm + ε1

X2 − µ2 = `21F1 + `22F2 + · · ·+ `2mFm + ε1
...

Xp − µp = `p1F1 + `p2F2 + · · ·+ `pmFm + εp

or in matrix notation
X − µ = LF + ε

The coefficient `ij is called the loading of the ith variable on the jth factor,
so the matrix L is the matrix of factor loadings. 26



• The unobservable random vectors F and ε satisfy the following conditions:

F and ε are independent
E(F) = 0,Cov(F) = I
E(ε) = 0,Cov(ε) = Ψ, where Ψ is diagonal matrix.

• Covariance structure for the Orthogonal Factor Model

1. Cov(X) = LL′ + Ψ or

Var(Xi) = `2i1 + · · ·+ `2im + ψi=̂h2
i + ψi

Cov(Xi, Xk) = `i1`k1 + · · ·+ `im`km

2. Cov(X,F) = L or
Cov(Xi, Fj) = `ij

Example 5.7 Consider the covariance matrix

Σ =


19 30 2 12
30 57 5 23
2 5 38 47
12 23 47 68


Verifying the relation Σ = LL′ + Ψ for two factors
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Unfortunately, for the factor analyst, most covariance matrices cannot be
factored as LL′ + Ψ, where the number of factors m is much less than p.

Example 5.8 Let p = 3 and m = 1, and suppose the random variables X1, X2

and X3 have the positive definite covariance matrix

Σ =

 1 .9 .7
.9 1 .4
.7 .4 1


Show Σ can not be factored by a factor analysis model with m = 1.

Factor loadings L are determined only up to an orthogonal matrix T. Thus,
the loadings

L∗ = LT and L

both give the same representation. The communalities, given by the diagonal
elements of L′L = (L∗)(L∗)′ are also unaffected by the choice of T.

X − µ = LF + ε = LTT′F + ε = L∗F∗ + ε

Σ = LL′ + Ψ = LTT′L′ + Ψ = (L∗)(L∗)′ + Ψ 28



Methods of Estimation

The Principal Component Solution of the Factor Model
The principal component analysis of the sample covariance

matrix S is specified in terms of its eigenvalue-eigenvector pairs
(λ̂1, ê1), (λ̂2, ê2), . . . , (λ̂p, êp), where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p. Let m < p be
the number of common factors. Then the matrix of estimate factor loading
{˜̀ij} is give by

L̃ =
[√

λ̂1ê1
...

√
λ̂2ê2

... · · · ...
√
λ̂mêm

]
The estimate specific variances are provided by the diagonal elements of the

matrix S− L̃L̃
′
, so

Ψ =


ψ̃1 0 · · · 0
0 ψ̃2 · · · 0
... ... . . . ...

0 0 · · · ψ̃p

 with ψ̃i = sii −
m∑

j=1

˜̀
ij

Communalities are estimated as

h̃2
i = ˜̀2

i1 + ˜̀2
i2 + · · ·+ ˜̀2

im

The principal component factor analysis of the sample correlation matrix is
obtained by starting with R in place of S.
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• For the principal component solution, the estimated loading for a given factor
do not changes as the number of factors is increased.

• The choice of m can be based on the estimated eigenvalues in much the
same manner as with principal components.

• Analytically, we have

Sum of squareed entries of (S− (L̃L̃
′
+ Ψ̃)) ≤ λ̂2

m+1 + · · ·+ λ̂2
p

• Ideally, the contributions of the first few factors to the sample variance of
the variables should be large. Proportion of total

sample variance
due to jth factor

 =


λ̂j

s11+s22+···+spp
for a factor analysis of S

λj

p for a factor analysis of R
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Example 5.9 In a consumer-preference study, a random sample of customers
were asked to rate several attributions of a new product. The response, on a
7-point semantic differential scale, were tabulated and the attribute correlation
matrix constructed. The correlation matrix is presented next:

do factor analysis for this consumer-preference data
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Example 5.10 Stock-price data consisting of n = 103 weekly rates of return on
p = 5 stocks were introduced in Example 5.5. Do factor analysis for this data.
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The Maximum Likelihood Method

Results 5.5 Let X1,X2, . . . ,Xn be a random sample from Np(µ,Σ), where
Σ = LL′ + Ψ is the covariance matrix for the m common factor model. The
maximum likelihood estimator L̂ and Ψ̂ and µ̂ = x̄ maximize the likelihood
function of Xj − µ = LFj + εj, j = 1, 2, . . . , n

L(µ,Σ) = (2π)−
np
2 |Σ|−n

2e
−1

2tr
"
Σ−1

 
nP

j=1
(xj−x̄)(xj−x̄)′+n(x̄−µ)(x̄−µ)′

!#

subject to L̂Ψ̂
−1

L̂ be diagonal.

The maximum likelihood estimates of the communalities are

ĥ2
i = ˆ̀2

i1 + ˆ̀2
i2 + · · ·+ ˆ̀2

im for i = 1, 2, . . . , p

so (
Proportion of total sample
variance due to jth factor

)
=

ˆ̀2
1j + ˆ̀2

2j + · · ·+ ˆ̀2
pj

s11 + s22 + · · ·+ spp 34



Although the likelihood in Results 5.5 is appropriate for S, not R, surprisingly,
this practice is equivalent to obtaining the maximum likelihood estimate L̂ and

Ψ̂ based on the sample covariance matrix S, setting L̂z = V̂
−1/2

Ψ̂V̂
−1/2

.

Here V̂
−1/2

is the diagonal matrix with reciprocal of the sample standard
deviation (computed with the divisor

√
n) on the main diagonal, and Z is the

standardized observation with sample mean 0 and sample standard deviation 1.

Example 5.11 Using the maximum likelihood method do factor analysis for the
stock-price data.
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Example 5.12 (Factor analysis of Olympic decathlon data) Linden originally
conducted a factor analytic study of Olympic decathlon results for all 160
complete starts from the end of World War II until the mid-seventies . Following
his approach we examine the n = 280 complete starts from 1960 through 2004.
The recorded values for each event were standardized and the signs of the timed
events changed so that large scores are good for all events. We, too, analyze
the correlation matrix, which based on all 280 cases, is
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Principal component
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Factor Rotation

If L̂ is the p ×m matrix of estimated factor loadings obtained by any method
(principal component,maximum likelihood,and so forth) then

L̂
∗

= LT,where TT′ = T′T = I

is a p ×m matrix of “rotated” loadings. Moreover, the estimated covariance
(or correlation) matrix remains unchanged, since

L̂L̂
′
+ Ψ̂ = L̂TT′L̂

′
+ Ψ̂ = L̂

∗
L̂
∗′

+ Ψ̂
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Example 5.13 (A first look at factor rotation) Lawley and Maxwell present
the sample correlation matrix of examination scores in p = 6 subject areas for
n = 220 male students. The correlation matrix is

and a maximum likelihood solution for m = 2 common factors yields the
estimates in Table 9.5
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Varimax(or normal varimax) criterion

Define ˜̀∗
ij = ˆ̀∗

ij/ĥi to be the rotated coefficients scaled by the square
root of the communalities . Then the (normal) varimax procedure selects the
orthogonal transformation T that makes

V =
1
p

m∑
i=1

 p∑
i=1

˜̀∗4
ij −

(
p∑

i=1

˜̀∗2
ij

)2


as large as possible.

Scaling the rotated coefficient ˆ̀∗
ij has the effect of giving variables with small

communalities relatively more weight in the determination of simple structure.
After the transformation T is determined, the loadings ˜̀∗

ij are multiplied by ĥi

so that the original communalities are preserved.
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Example 5.14 (Rotated Loading for the consumer-preference data)
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Example 5.15 ( Rotated loading for the stock-price data)
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Example 5.15 (Rotated loadings for the Olympic decathlon data)
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Factor Scores

• The estimate values of the common factors, called factor scores may also
required. These quantities are often used for diagnostic purposes, as well as
inputs to a subsequent analysis.

• Factor scores are not estimates of unknown parameters in the usual sense.
Rather, they are estimates of values for the unobserved random factor vectors
Fj, j = 1, 2, . . . , n. That is, factor scores

f̂j = estimate of the values fj attained by Fj (jth case)

• Normally the factor score approaches have two elements in common:

1. They treat the estimate factor loadings ˆ̀
ij and specific variance ψ̂i as if

they were true values.
2. They involve linear transformations of the original data, perhaps centered

or standardized. Typically, the estimated rotated loadings, rather than
the original estimated loadings, are used to compute factor scores. 48



Factor Scores Obtained by Weighted Least Squares from the Maximum
Likelihood Estimates

f̂j = (L̂
′
Ψ̂

−1
L̂)−1L̂

′
Ψ̂

−1
(xj − µ̂)

= ∆̂
−1

L̂
′
Ψ̂

−1
(xj − x̂), j = 1, 2, . . . , n

or, if the correlation matrix is factored

f̂j = (L̂
′
zΨ̂

−1

z L̂z)−1L̂
′
zΨ̂

−1

z zj

= ∆̂
−1

z L̂
′
zΨ̂

−1

z zj, j = 1, 2, . . . , n

where zj = D−1/2(xj − x̄) and ρ̂ = L̂zL̂
′
z + Ψ̂z.

• If rotated loadings L̂
∗

= L̂T are used in place of the original loadings, the

subsequent factor scores, f̂
∗
j , are related to f̂j by f̂

∗
j = T′̂fj, j = 1, 2, . . . , n.
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• If the factor loadings are estimated by the principal component method, it
is customary to generate factor scores using an unweighted (ordinary) least
squares procedure. Implicitly, this amount to assuming that the ψi are equal
or nearly equal. The factor scores are then

f̂j = (L̂
′
L̂)−1L̂

′
(xj − µ̂) or f̂j = (L̂

′
zL̂z)−1L̂

′
zzj

for standardized data.

Factor Scores Obtained by Regression

f̂j = L̂
′
S−1(xj − x̄), j = 1, 2, . . . , n

or, if a correlation matrix is factored

f̂j = L̂
′
zR

−1zj, j = 1, 2, . . . , n

where zj = D−1/2(xj − x̄) and ρ̂ = L̂zL̂
′
z + Ψ̂z.
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Example 5.16 (Computing factor scores) Compute factor scores by the least
squares and regression methods using the stock-price data discussed in 5.11.
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Perspectives and a Stragegy for Factor Analysis

At the present time, factor analysis still maintains the flavor of an art, and no
single strategy should yet be “ chiseled into stone”. We suggest and illustrate
one reasonable option:

1. Perform a principal component factor analysis. This method is
particularly appropriate for a first pass through the data. (It is not required
that R or S be nonsingular)

(a) Look for suspicious observations by plotting the factor scores. Also,
calculate standardized scores for each observation and squared distances.

(b) Try a varimax rotation.

2. Perform a maximum likelihood factor analysis, including a
varimax rotation.
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3. Compare the solution obtained from the two factor analysis.

(a) Do the loadings group in the same manner ?
(b) Plot factor scores obtained for principal components against scores from

the maximum likelihood analysis.

4. Repeat the first three steps for other numbers of common factors
m. Do extra factors necessarily contribute to the understanding and
interpretation of the data ?

5. For large data sets, split them in half and perform a factor
analysis on each part. Compare the two results with each other and
with that obtained from the complete data set to check the stability of the
solution.
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