Math4826 Lecture Note 4 Appendix

Heng Peng

March 18, 2020

P4 Strictly Stationary process, for any m,

$$
p\left(z_{t_{1}}, \ldots, z_{t_{m}}\right)=p\left(z_{t_{1}+k}, \ldots, z_{t_{m}+k}\right)
$$

Weakly Stationary process

$$
\mathrm{E} z_{t}=\mu, \operatorname{Cov}\left(z_{t}, z_{t+k}\right)=\gamma_{k}, k=0,1, \ldots
$$

- Example: white noise process $\left\{a_{t}, t=0, \pm 1, \pm 2, \ldots\right\}$ are a sequence of uncorrelated variable from fixed distribution with mean $\mathrm{E}\left(a_{t}\right)=0, \operatorname{Var}\left(a_{t}\right)=\sigma^{2}$ and $\operatorname{Cov}\left(a_{t}, a_{t-k}\right)=0$ for all $k \neq 0$.

P8.

$$
\begin{aligned}
\gamma_{0} & =\mathrm{E}\left(a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\cdots\right)^{2} \\
& =\mathrm{Ea}_{t}^{2}+\psi_{1}^{2} \mathrm{Ea}_{t-1}^{2}+\psi_{2}^{2} \mathrm{Ea}_{t-2}^{2}+\cdots \\
& =\sigma^{2} \sum_{j=0}^{\infty} \psi_{j}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{k} & =\mathrm{E}\left(z_{t}-\mu\right)\left(z_{t-k}-\mu\right) \\
& =\mathrm{E}\left(a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\cdots\right)\left(a_{t-k}+\psi_{1} a_{t-k-1}+\cdots\right) \\
& =1 \cdot \psi_{k} \mathrm{E} a_{t-k}^{2}+\psi_{1} \psi_{k+1} \mathrm{Ea}_{t-k-1}^{2}+\psi_{2} \psi_{k+2} \mathrm{Ea}_{t-k-2}^{2}+\cdots \\
& =\sigma^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+k}
\end{aligned}
$$

- Example $\psi_{1}=-\theta$ and $\psi_{j}=0, j \geq 2$, then $z_{t}-\mu=a_{t}-\theta a_{t-1}$, the first order moving average process.
- Example $\psi_{j}=\phi^{j}$, the first-order autoregressive process

$$
\begin{aligned}
z_{t}-\mu & =a_{t}+\phi a_{t-1}+\phi^{2} a_{t-2}+\cdots \\
& =a_{t}+\phi\left(a_{t-1}+\phi a_{t-2}+\phi^{2} a_{t-3}+\cdots\right) \\
& =\phi\left(z_{t-1}-\mu\right)+a_{t}
\end{aligned}
$$

P9. For $\operatorname{AR}(1)$, it is important that $|\phi|<1$ (Stationary Condition), since otherwise the ψ weight would not converge.

P11.

$$
1-\phi_{1} B-\phi_{2} B^{2}=\left(1-G_{1} B\right)\left(1-G_{2} B\right)=0,
$$

G_{1}^{-1} and G_{2}^{-1} are its roots. For the stationarity, it requires that the roots are such that $\left|G_{1}^{-1}\right|>1$ and $G_{2}^{-1} \mid>1$.

- Example: $\phi_{1}=0.8, \phi_{2}=-0.15$

The solution of

$$
\left(1-0.8 B+0.15 B^{2}\right)=(1-0.5 B)(1-0.3 B)=0
$$

is given by $G_{1}^{-1}=1 / 0.5=2$ and $G_{2}^{-1}=10 / 3$, which are both larger than 1 in absolute value. Hence the process is stationary.

- Example: $\phi_{1}=1.5, \phi_{2}=-0.5$

The solution of

$$
\left(1-1.5 B+0.5 B^{2}\right)=(1-B)(1-0.5 B)=0
$$

is given by $G_{1}^{-1}=1$ and $G_{2}^{-1}=2$, which has one root at 1 . Hence the process is not stationary.

- Example: $\phi_{1}=1, \phi_{2}=-0.5$

The solution of

$$
\left(1-B+0.5 B^{2}\right)=0
$$

are complex and given by $G_{1}^{-1}=1+i$ and $G_{2}^{-1}=1-i$, $\left|G_{1}^{-1}\right|=\left|G_{2}^{-1}\right|=\sqrt{1+1}=\sqrt{2}$ are both larger than 1 . Hence the process is stationary.

P14. For $k=1$

$$
\rho_{1}=\phi_{1} \rho_{0}+\phi_{2} \rho_{-1}=\phi_{1}+\phi_{2} \rho_{1}=\frac{p h i_{1}}{1-\phi_{2}}
$$

For $k=2$

$$
\rho_{2}=\phi_{1} \rho_{1}+\phi_{2} \rho_{0}=\frac{\phi_{1}^{2}}{1-\phi_{2}}+\phi_{2}
$$

- By $\gamma_{0}\left(1-\phi_{1} \rho_{1}-\phi_{2} \rho_{2}\right)=\sigma^{2}$, then

$$
\gamma_{0}=\frac{1-\phi_{2}}{1+\phi_{2}} \frac{\sigma^{2}}{\left(1-\phi_{2}\right)^{2}-\phi_{1}^{2}}
$$

P16. $\boldsymbol{\rho}=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{\rho}\right)^{T}, \boldsymbol{\phi}=\left(\phi_{1}, \phi_{2}, \ldots, \phi_{p}\right)^{T}$

- For the $\operatorname{AR}(1)$ model, the Yule-Walker equation is given by $\rho_{1}=\phi$.
- For the $\operatorname{AR}(2)$ model the Yule-Walker equation are

$$
\begin{aligned}
& \rho_{1}=\phi_{1}+\rho_{1} \phi_{2} \\
& \rho_{2}=\rho_{1} \phi_{1}+\phi_{2}
\end{aligned}
$$

which leads to

$$
\phi_{1}=\frac{\rho_{1}\left(1-\rho_{2}\right)}{1-\rho_{1}^{2}}, \phi_{2}=\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}}
$$

- $\phi(B) \rho_{k}=0, k=1,2, \ldots$, determines the behavior of the authorcorrelation function. It can be shown that its solution is

$$
\rho_{k}=A_{1} G_{1}^{k}+\cdots+A_{p} G_{p}^{k}, k=1,2, \ldots
$$

where $G_{i}^{-1}, i=1, \ldots, p$ are the distinct roots of $\phi(B)=\left(1-G_{1} B\right)\left(1-G_{2} B\right) \cdots\left(1-G_{p} B\right)$.

- The stationary condition imply that $\left|G_{i}^{-1}\right|>1, i=1, \ldots, p$. Hence the ACF is described by a mixture of damped exponential (for real roots) and damped sine waves(for complex roots).

P17. Alternative interpretation of Partial Autocorrelations
The partial correlation coefficient between two random variables X and Y, conditional on a third variable W, is the ordinary correlation coefficient calculated from the conditional distribution $p(x, y \mid w)$. It can be thought of as the correlation between $X-\mathrm{E}(X \mid W)$ and $Y-\mathrm{E}(Y \mid W)$, and the assumption of joint normality of (X, Y, W) is given by

$$
\begin{aligned}
\rho_{X Y \cdot W} & =\frac{\mathrm{E}(X-\mathrm{E}(X \mid W))(Y-\mathrm{E}(Y \mid W))}{\left\{\mathrm { E } \left(X-\mathrm{E}(X \mid W)^{2} \mathrm{E}\left(Y-\mathrm{E}(Y \mid W)^{2}\right\}^{\frac{1}{2}}\right.\right.} \\
& =\frac{\rho_{X Y}-\rho_{X W} \rho_{Y W}}{\left[\left(1-\rho_{X W}^{2}\right)\left(1-\rho_{Y W}^{2}\right]^{\frac{1}{2}}\right.}
\end{aligned}
$$

- In the context of a lag 2 partial autocorrelation, the variables are $X=z_{t}, Y=z_{t-2}, W=z_{t-1}$, and

$$
\rho_{X Y}=\rho_{2}, \rho_{X W}=\rho_{Y W}=\rho_{1} . \text { Hence }
$$

$$
\begin{aligned}
\rho_{22} & =\rho_{z_{t} z_{t-2} \cdot z_{t-1}}=\operatorname{Corr}\left(z_{t}-\mathrm{E}\left(z_{t} \mid z_{t-1}\right), z_{t-2}-\mathrm{E}\left(z_{t-2} \mid z_{t-1}\right)\right) \\
& =\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}}
\end{aligned}
$$

P23. Example: Second-Order Moving Average Process[MA(2)]

$$
z_{t}-\mu=a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2} \quad \text { or } \quad z_{t}-\mu=\left(1-\theta_{1} B-\theta_{2} B^{2}\right) a_{t}
$$

- Hence $\psi_{0}=1, \psi_{1}=-\theta_{1}, \psi_{2}=-\theta_{2}, \psi=0 ; j>2$. Then

$$
\begin{gathered}
\gamma_{0}=\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \sigma^{2}, \gamma_{1}=\left(-\theta_{1}+\theta_{1} \theta_{2}\right) \sigma^{2}, \gamma_{2}=-\theta_{2} \sigma^{2} \\
\gamma_{k}=0, \text { for } k>2
\end{gathered}
$$

- The autocorrelations are

$$
\rho_{1}=\frac{-\theta_{1}+\theta_{1} \theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}, \rho_{2}=\frac{-\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}, \rho_{k}=0, \text { for } k>2
$$

- If $\mathrm{MA}(2)$ process is in term of an infinite autoregressive rerpesentation,

$$
z_{t}-\mu=\pi_{1}\left(z_{t-1}-\mu\right)+\pi_{2}\left(z_{t-2}-\mu\right)+\cdots+a_{t}
$$

then the π weight can be obtained from

$$
\pi(B)=1-\pi_{1} B-\pi_{2} B^{2}-\cdots=\left(1-\theta_{1} B-\theta_{2} B^{2}\right)^{-1}
$$

and

$$
\left(1-\pi_{1} B-\pi_{2} B^{2}-\cdots\right)\left(1-\theta_{1} B-\theta_{2} B^{2}\right)=1
$$

and are given by

$$
\begin{gathered}
B^{1}:-\pi_{1}-\theta_{1}=0, \pi_{1}=-\theta_{1} \\
B^{2}:-\pi_{2}+\theta_{1} \pi_{1}-\theta_{2}=0, \pi_{2}=\theta_{1} \pi_{1}-\theta_{2}=-\theta_{1}^{2}-\theta_{2} \\
B^{j}:-\pi_{j}+\theta_{1} \pi_{j-1}+\theta_{2} \pi_{j-2}=0, \pi_{j}=\theta_{1} \pi_{j-1}+\theta_{2} \pi_{j-1}, j>2 .
\end{gathered}
$$

- MA(2) continuous. For invertibility, the π weight is required converged, which in turn implies conditions on the parmater θ_{1} and θ_{2}, the roots of
$\left(1-\theta_{1} B-\theta_{2} B^{2}=0=\left(1-H_{1} B\right)\left(1-H_{2} B\right)\right.$ lie outside the unit circle. Hence

$$
\theta_{1}+\theta_{2}<1, \theta_{2}-\theta_{1}<1,-1<\theta_{2}<1
$$

- Partial autocorrelation function for MA(1)

$$
\begin{gathered}
\phi_{11}=\rho_{1}=\frac{-\theta}{1+\theta^{2}}=\frac{-\theta\left(1-\theta^{2}\right)}{1-\theta^{4}} \\
\phi_{22}=\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}}=\frac{-\rho_{1}^{2}}{1-\rho_{1}^{2}}=\frac{-\theta^{2}}{1+\theta^{2}+\theta^{4}}=\frac{-\theta^{2}\left(1-\theta^{2}\right)}{1-\theta^{6}} \\
\phi_{33}=\frac{\left|\begin{array}{ccc}
1 & \rho_{1} & \rho_{1} \\
\rho_{1} & 1 & \rho_{2} \\
\rho_{2} & \rho_{1} & \rho_{3}
\end{array}\right|}{\left|\begin{array}{ccc}
1 & \rho_{1} & \rho_{2} \\
\rho_{1} & 1 & \rho_{1} \\
\rho_{2} & \rho_{1} & \rho_{1}
\end{array}\right|}=\frac{\left|\begin{array}{ccc}
1 & \rho_{1} & \rho_{1} \\
\rho_{1} & 1 & 0 \\
0 & \rho_{1} & 0
\end{array}\right|}{\left|\begin{array}{ccc}
1 & \rho_{1} & 0 \\
\rho_{1} & 1 & \rho_{1} \\
0 & \rho_{1} & \rho_{1}
\end{array}\right|}=\frac{\rho_{1}^{3}}{1-2 \rho_{1}^{2}}=\frac{-\theta^{3}\left(1-\theta^{2}\right)}{1-\theta^{8}}
\end{gathered}
$$

P26. ARMA $(1,1)$ Model, ψ weight

$$
z_{t}-\mu=a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\cdots=\frac{1-\theta B}{1-\phi B} a_{t}
$$

or

$$
(1-\phi B)\left(a_{t}+\psi_{1} a_{t-1}+\psi_{2} a_{t-2}+\cdots\right)=1-\theta B
$$

Hence

$$
\begin{gathered}
B^{1}: \psi_{1}-\phi=-\theta, \psi_{1}=\phi-\theta \\
B^{2}: \psi_{2}-\phi \psi_{1}=0, \psi_{2}=\phi \psi_{1}=(\phi-\psi) \phi \\
B^{j}: \psi_{j}-\phi \psi_{j-1}=0, \psi_{j}=\phi \psi_{j-1}=(\phi-\theta) \phi^{j-1}, j>0
\end{gathered}
$$

- π representation for $\operatorname{ARMA}(1,1)$

$$
\begin{gathered}
a_{t}=z_{t}-\mu-\pi_{1}\left(z_{t-1}-\mu\right)-\pi_{2}\left(z_{t-2}-\mu\right)-\cdots=\pi(B)\left(z_{t}-\mu\right)=\frac{1-\phi B}{1-\theta B}\left(z_{t}-\mu\right) \\
B^{1}:-\pi_{1}-\theta=-\phi, \pi_{1}=\phi-\theta \\
B^{2}:-\pi_{2}+\theta \pi_{1}=0, \pi_{2}=\theta \pi_{1}=(\phi-\theta) \theta \\
B^{j}:-\pi_{j}+\theta \pi_{j-1}, \pi_{j}=\theta \pi_{j-1}=(\phi-\theta) \theta^{j-1}
\end{gathered}
$$

- Autocorrelation function of $\operatorname{ARMA}(1,1)$, set $E z_{t}=\mu=0$

$$
\gamma_{k}=\phi \gamma_{k-1}+\mathrm{E}\left(a_{t} z_{t-k}\right)-\theta \mathrm{E}\left(a_{t-1} z_{t-k}\right)
$$

If $k>1, \mathrm{E}\left(a_{t} z_{t-k}\right)=\theta \mathrm{E}\left(a_{t-1} z_{t-k}\right)=0$, Therefore

$$
\gamma_{k}=\phi \gamma_{k-1}, \text { for } k>1
$$

$$
\mathrm{E}\left(a_{t} z_{t}\right)=\mathrm{E}\left[a_{t}\left(a_{t}+\psi_{1} z_{t-1}+\psi_{2} z_{t-2}+\cdots\right)\right]=\mathrm{Ea}_{t}^{2}=\sigma^{2}
$$

$\mathrm{E}\left(a_{t} z_{t-1}\right)=\mathrm{E}\left[a_{t-1}\left(a_{t}+\psi_{1} z_{t-1}+\psi_{2} z_{t-2}+\cdots\right)\right]=\mathrm{E} \psi_{1} \mathrm{a}_{t-1}^{2}=(\phi-\theta) \sigma^{2}$
Then

$$
\begin{gathered}
k=0: \gamma_{0}=\phi \gamma_{1}+\sigma^{2}-\theta(\phi-\theta) \sigma^{2} \\
k=1: \gamma_{1}=\phi \gamma_{0}-\theta \sigma^{2}
\end{gathered}
$$

Solve this equation system to get γ_{0} and γ_{1}. (check by yourself)

P49. $A R(1)$ process: Suppose we are given past observations z_{n}, z_{n-1}, \ldots and wish to predict z_{n+1}. For $\ell=1$

$$
\begin{aligned}
z_{n}(I) & =\mathrm{E}\left(z_{n+1} \mid z_{n}, z_{n-1}, \ldots\right) \\
& =\mathrm{E}\left\{\left[\mu+\phi\left(z_{n}-\mu\right)+a_{n+1}\right] \mid z_{n}, z_{n-1}, \ldots\right\} \\
& =\mu+\phi\left(z_{n}-\mu\right)
\end{aligned}
$$

Since $\mathrm{E}\left(z_{n} \mid z_{n}, z_{n-1}, \ldots\right)=z_{n}, \mathrm{E}\left(a_{n+1} \mid z_{n}, z_{n-1}, \ldots\right)=0$.
For $\ell=2$,

$$
\begin{aligned}
z_{n}(2) & =\mathrm{E}\left(z_{n+2} \mid z_{n}, z_{n-1}, \ldots\right) \\
& =\mathrm{E}\left\{\left[\mu+\phi\left(z_{n+1}-\mu\right)+a_{n+2}\right] \mid z_{n}, z_{n-1}, \ldots\right\} \\
& =\mu+\phi\left[z_{n}(1)-\mu\right]=\mu+\phi^{2}\left(z_{n}-\mu\right)
\end{aligned}
$$

The ℓ-step-ahead prediction can be written as

$$
\begin{aligned}
z_{n}(\ell) & =\mathrm{E}\left(z_{n+\ell} \mid z_{n}, z_{n-1}, \ldots\right) \\
& =\mathrm{E}\left\{\left[\mu+\phi\left(z_{n+\ell-1}-\mu\right)+a_{n+\ell}\right] \mid z_{n}, z_{n-1}, \ldots\right\} \\
& =\mu+\phi\left[z_{n}(\ell-1)-\mu\right]=\cdots=\mu+\phi^{\ell}\left(z_{n}-\mu\right)
\end{aligned}
$$

- $\mathrm{AR}(1)$ continuous. The forecast errors corresponding to the above forecasts are

$$
\begin{aligned}
e_{n}(1) & =z_{n+1}-z_{n}(1)=\mu+\phi\left(z_{n}-\mu\right)+a_{n+1}-\left[\mu+\phi\left(z_{n}-\mu\right)\right]=a_{n+1} \\
e_{n}(2) & =z_{n+2}-z_{n}(2) \\
& =\mu+\phi\left(z_{n+1}-\mu\right)+a_{n+2}-\left[\mu+\phi^{2}\left(z_{n}-\mu\right)\right] \\
& =a_{n+2}+\phi\left[\left(z_{n+1}-\mu\right)-\phi\left(z_{n}-\mu\right)\right]=a_{n+2}+\phi a_{n+1}
\end{aligned}
$$

Similarly, it can be shown that

$$
e_{n}(\ell)=a_{n+\ell}+\phi a_{n+\ell-1}+\cdots+\phi^{\ell-1} a_{n+1}
$$

and

$$
V\left[e_{n}(\ell)\right]=\sigma^{2}\left(1+\phi^{2}+\cdots+\phi^{2(\ell-1)}\right)=\sigma^{2} \frac{1-\phi^{2 \ell}}{1-\phi^{2}}
$$

- $\operatorname{AR}(1)$ continuous. Consider the yield series. It is shown that this series can be described by an $\operatorname{AR}(1)$ model with $\hat{\mu}=0.97, \hat{\phi}=0.85$ and $\hat{\sigma}^{2}=0.024$. Since the last observation is $z_{156}=0.49$, the forecasts are

$$
\begin{aligned}
& \hat{z}_{156}(1)=0.97+0.85(0.49-0.97)=0.56 \\
& \hat{z}_{156}(2)=0.97+0.85^{2}(0.49-0.97)=0.62 \\
& \hat{z}_{156}(3)=0.97+0.85^{3}(0.49-0.97)=0.68
\end{aligned}
$$

and their variance are

$$
\begin{gathered}
\operatorname{Var}\left[e_{156}(1)\right]=0.024 \\
\operatorname{Var}\left[e_{156}(2)\right]=0.024 \frac{1-.85^{4}}{1-.85^{2}}=0.041 \\
\operatorname{Var}\left[e_{156}(3)\right]=0.024 \frac{1-.85^{6}}{1-.85^{4}}=0.054
\end{gathered}
$$

- $\operatorname{AR}(2)$ process $z_{t}=\phi_{1} z_{t-1}+\phi_{2} z_{t-2}+a_{t}$ with $\mu=0$. The one-step ahead ($\ell=1$ forecast given the observations z_{n}, z_{n-1}, \ldots can be expressed as

$$
\begin{aligned}
z_{n}(1) & =\mathrm{E}\left(z_{n+1} \mid z_{n}, z_{n-1}, \ldots\right) \\
& =\mathrm{E}\left[\left(\phi_{1} z_{n}+\phi_{2} z_{n-1}+a_{n+1}\right) \mid z_{n}, z_{n-1}, \ldots\right] \\
& =\phi_{1} z_{n}+\phi_{2} z_{n-1}
\end{aligned}
$$

For $\ell=2$

$$
\begin{aligned}
z_{n}(2) & =\mathrm{E}\left(z_{n+2} \mid z_{n}, z_{n-1}, \ldots\right) \\
& =\mathrm{E}\left[\left(\phi_{1} z_{n+1}+\phi_{2} z_{n}+a_{n+2}\right) \mid z_{n}, z_{n-1}, \ldots\right] \\
& =\phi_{1} z_{n}(1)+\phi_{2} z_{n} .
\end{aligned}
$$

In general,

$$
z_{n}(\ell)=\phi_{1} z_{n}(\ell-1)+\phi_{2} z_{n}(\ell-2), \text { or }\left(1-\phi_{1} B-\phi_{2} B^{2}\right) z_{n}(\ell)=0, \ell>0
$$

- The forecast error and its weight can be calculated by substituting the ψ weight of the $\operatorname{AR}(2)$ model. It is easily to seen that the ψ weights are

$$
\psi_{1}=\phi_{1}, \psi_{2}=\phi_{1}^{2}+\phi_{2}, \psi_{j}=\phi_{1} \psi_{j-1}+\phi_{2} \psi_{j-2}, j \geq 2
$$

- $\operatorname{ARIMA}(0,1,1)$ process. Given the observations z_{n}, z_{n-1}, \ldots. the predictions from the model $z_{t}=z_{t-1}+a_{t}-\theta a_{t-1}$ can be obtained from the conditional expectation form:

$$
\begin{aligned}
z_{n}(1) & =\mathrm{E}\left(z_{n+1} \mid z_{n}, z_{n-1}, \ldots\right) \\
& =\mathrm{E}\left[\left(z_{n}+a_{n+1}-\theta a_{n}\right) \mid z_{n}, z_{n-1}, \ldots\right]=z_{n}-\theta a_{n} \\
& z_{n}(2)=\mathrm{E}\left(z_{n+2} \mid z_{n}, z_{n=1}, \ldots\right)=z_{n}-\theta a_{n}
\end{aligned}
$$

and in general

$$
z_{n}(\ell)=z_{n}(\ell-1), \text { or }(1-B) z_{n}(\ell)=0 .
$$

The ψ weight can be obtained from $\psi(B)=(1-\theta B) /(1-B)$ and it is given by $\psi_{j}=1-\theta$ for all $j>0$. Hence the forecast error is given by

$$
e_{n}(\ell)=a_{n+\ell}+(1-\theta)\left(a_{n+\ell-1}+\cdots+a_{n+1}\right)
$$

and its variance by

$$
V\left[e_{n}(\ell)\right]=\sigma^{2}\left[1+(\ell-1)(1-\theta)^{2}\right] .
$$

- ARIMA($0,1,1$) process continuous. Alternatively, the forecast can be expressed as a linear combination of the past observations. Write the model in its autoregressive representation

$$
z_{t}=\sum_{j=1}^{\infty} \pi_{j} z_{t-j}+a_{t}
$$

where $\pi_{j}=(1-\theta) \theta^{j-1}, j \geq 1$ are coefficients in
$\pi(B)=(1-B) /(1-\theta B)$. Hence
$z_{t}=(1-\theta)\left(z_{t-1}+\theta z_{t-2}+\theta^{2} z_{t-3}+\cdots\right)+a_{t}$. Taking the conditional expectation of z_{n+1} given z_{n}, z_{n-1}, \ldots, we find that

$$
z_{n}(1)=(1-\theta)\left(z_{n}+\theta z_{n-1}+\theta^{2} z_{n-2}+\cdots\right)
$$

This forecast is an exponentially weighted average of present and past observation and is the same as that obtained from single exponential smoothing with a smoothing constant $\alpha=1-\theta$.

- $\operatorname{ARIMA}(1,1,1)$ process: $(1-\phi B)(1-B) z_{t}=\theta_{0}+(1-\theta B) a_{t}$ or

$$
z_{t}=\theta_{0}+(1+\phi) z_{t-1}-\phi z_{t-2}+a_{t}-\theta a_{t-1}
$$

Taking conditional expectation, we can calculate the forecasting according to

$$
\begin{gathered}
z_{n}(1)=\mathrm{E}\left(z_{n+1} \mid z_{n}, z_{n-1}, \ldots\right)=\theta_{0}+(1+\phi) z_{n}-\phi z_{n-1}-\theta a_{n} \\
z_{n}(2)=\mathrm{E}\left(z_{n+2} \mid z_{n}, z_{n-1}, \ldots\right)=\theta_{0}+(1+\phi) z_{n}(1)-\phi z_{n}
\end{gathered}
$$

and so on
$z_{n}(\ell)=\mathrm{E}\left(z_{n+\ell} \mid z_{n}, z_{n-1}, \ldots\right)=\theta_{0}+(1+\phi) z_{n}(\ell-1)-\phi z_{n}(\ell-2)$
or For $\ell \geq 2$

$$
\left[\left(1-(1+\phi) B+\phi B^{2}\right] z_{n}(\ell)=(1-\phi B)(1-B) z_{n}(\ell)=\theta_{0}\right.
$$

- $\operatorname{ARIMA}(0,2,2)$ process: $(1-B)^{2} z_{t}=\left(1-\theta_{1} B-\theta_{2} B^{2}\right) a_{t}$ or

$$
z_{t}=2 z_{t-1}-z_{t-2}+a_{t}-\theta_{1} a_{t-1}-\theta_{2} a_{t-2}
$$

Given the observations z_{n}, z_{n-1}, \ldots, the forecasts are

$$
\begin{gathered}
z_{n}(1)=\mathrm{E}\left(z_{n+1} \mid z_{n}, z_{n-1}, \ldots\right)=2 z_{n}-z_{n-1}-\theta_{1} a_{n}-\theta_{2} a_{n-1} \\
z_{n}(2)=\mathrm{E}\left(z_{n+2} \mid z_{n}, z_{n-1}, \ldots\right)=2 z_{n}(1)-z_{n}-\theta_{2} a_{n} \\
z_{n}(3)=\mathrm{E}\left(z_{n+3} \mid z_{n}, z_{n-1}, \ldots\right)=2 z_{n}(2)-z_{n}(1)
\end{gathered}
$$

and

$$
z_{n}(\ell)=\mathrm{E}\left(z_{n+\ell} \mid z_{n}, z_{n-1}, \ldots\right)=2 z_{n}(\ell-1)-z_{n}(\ell-2), \ell \geq 3
$$

or

$$
\left(1-2 B+B^{2}\right) z_{n}(\ell)=(1-B)^{2} z_{n}(\ell)=0
$$

