
3. Regression & Exponential Smoothing

3.1 Forecasting a Single Time Series

Two main approaches are traditionally used to model a single time series
z1, z2, . . . , zn

1. Models the observation zt as a function of time as

zt = f(t,β) + εt

where f(t, β) is a function of time t and unknown coefficients β, and εt are
uncorrelated errors.
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∗ Examples:

– The constant mean model: zt = β + εt

– The linear trend model: zt = β0 + β1t + εt

– Trigonometric models for seasonal time series

zt = β0 + β1 sin
2π

12
t + β2 cos

2π

12
t + εt

2. A time Series modeling approach, the observation at time t is modeled as
a linear combination of previous observations

∗ Examples:

– The autoregressive model: zt =
∑

j≥1 πjzt−j + εt

– The autoregressive and moving average model:

zt =
p∑

j=1

πjzt−j +
q∑

j=1

θiεt−i + εt
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Discounted least squares/general exponential smoothing

n∑
t=1

wt[zt − f(t, β)]2

• Ordinary least squares: wt = 1.

• wt = wn−t, discount factor w determines how fast information from previous
observations is discounted.

• Single, double and triple exponential smoothing procedures

– The constant mean model
– The Linear trend model
– The quadratic model
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3.2 Constant Mean Model

zt = β + εt

• β: a constant mean level

• εt: a sequence of uncorrelated errors with constant variance σ2.

If β, σ are known, the minimum mean square error forecast of a future
observation at time n + l, zn+l = β + εn+l is given by

zn(l) = β

• E[zn+l − zn(l)] = 0, E[zn+1 − zn(l)]2 = E[ε2
t ] = σ2

• 100(1 − λ) percent prediction intervals for a future realization are given
by [β − µλ/2σ;β + µλ/2σ]

where µλ/2 is the 100(1 − λ/2) percentage point of standard normal
distribution.
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If β, σ are unknown, we use the least square estimate β̂ to replace β

β̂ = z̄ =
1
n

n∑
t=1

zt

The l-step-ahead forecast of zn+l from time origin n by

ẑn(l) = z̄, σ̂2 =
1

n− 1

n∑
t=1

(zt − z̄)2

• E[zn+l − ẑn(l)] = 0,Eσ̂2 = σ2, E[zn+1 − ẑn(l)]2 = σ2
(
1 + 1

n

)
• 100(1 − λ) percent prediction intervals for a future realization are given

by [
β − tλ/2(n− 1)σ̂

(
1 +

1
n

)1
2

;β + tλ/2(n− 1)σ̂
(

1 +
1
n

)1
2

]
where tλ/2(n− 1) is the 100(1−λ/2) percentage point of t distribution with
n− 1 degree of freedom.
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• Updating Forecasts

ẑn+1 =
1

n + 1
(z1 + z2 + · · ·+ zn + zn+1) =

1
n + 1

[zn+1 + nẑn(1)]

=
n

n + 1
ẑn(1) +

1
n + 1

zn+1

= ẑn(1) +
1

n + 1
(zn+1 − ẑn(1))

• Checking the adequacy of the model
Calculate the sample autocorrelation rk of the residuals zt − z̄

rk =

n∑
t=k+1

(zt − z̄)(zt−k − z̄)

n∑
t=1

(zt − z̄)2
, k = 1, 2, . . .

If
√

n|rk| > 2: something might have gone wrong.
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Example 3.1 Annual U.S. Lumber Production
Consider the annual U.S. lumber production from 1947 through 1976. The data
were obtained from U.S. Department of Commerce Survey of Current Business.
The 30 observations are listed in Table

Table 3.1: Annual Total U.S. Lumber Production (Millions of Broad Feet),
1947-1976 (Table reads from left to right)

35,404 36,762 32,901 38,902 37,515
37,462 36,742 36,356 37,858 38,629
32,901 33,385 32,926 32,926 32,019
33,178 34,171 35,697 35,697 35,710
34,449 36,124 34,548 34,548 36,693
38,044 38,658 32,087 32,087 37,153
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Figure 3.1: Annual U.S. lumber production from 1947 to 1976(in millions of
board feet)

1950 1955 1960 1965 1970 1975 1980
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

Year

Lu
m

be
r 

pr
od

uc
tio

n 
(M

M
bf

)

8



• The plot of the data in Figure 3.1.

• The sample mean and the sample standard deviation are given by

z̄ = 35, 625, σ̂ = { 1
29

∑
(zt − z̄)2}1

2 = 2037

• The sample auto correlations of the observations are list below

Lag k 1 2 3 4 5 6
Sample autocorrelation .20 -.05 .13 .14 .04 -.17

Comparing the sample autocorrelations with their standard error 1/
√

30 =
.18, we cannot find enough evidence to reject the assumption of uncorrelated
error terms.
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• The forecast from the constant mean model are the same for all forecast lead
times and are given by

ẑ1976(l) = z̄ = 35, 652

The standard error of these forecast is given by

σ̂
√

1 + 1/n = 2071

A 95 percent prediction interval is given by

[35, 652± (2.045)(2071)] or [31, 417, 39, 887]

• If new observation become available, the forecasts are easily updated. For
example if Lumber production in 1977 was 37,520 million board feet. Then
the revised forecasts are given by

ẑ1977(l) = ẑ1976(1) +
1

n + 1
[z1977 − ẑ1976(1)]

= 35, 652 +
1
31

[37, 520− 35, 652]

= 35, 712 10



3.3 Locally Constant Mean Model and Simple Exponential
Smoothing

• Reason: In many instances, the assumption of a time constant mean is
restrictive. It is more reasonable to allow for a mean that moves slowly over
time

• Method: Give more weight to the most recent observation and less to the
observations in the distant past

ẑn(l) = c
n−1∑
t=0

wtzn−t = c[zn + wzn−1 + · · ·+ wn−1z1]

w(|w| < 1): discount coefficient, c = (1 − w)/(1 − wn) is needed to
normalized sum of weights to 1.

• If n →∞ and w < 1, then wn → 0, then

ẑn(l) = (1− w)
∑
j≥0

wjzn−j
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• Smoothing constant: α = 1− w. Smoothing statistics

Sn = S[1]
n = (1− w)[zn + wzn−1 + w2zn−2 + · · ·]

= α[zn + (1− α)zn−1 + (1− α)2zn−2 + · · ·]

• Updating Forecasts: (As easy as the constant mean model)

Sn = (1− w)zn + wSn−1 = Sn−1 + (1− w)[zn − Sn−1]

ẑn(1) = (1− w)zn + wẑn−1(1) = ẑn−1(1) + (1− w)[zn − ẑn−1(1)]
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Actual Implementation of Simple Exp. Smoothing

• Initial value for S0

Sn = (1− w)[zn + wzn−1 + · · ·+ wn−1z1] + wnS0

1. S0 = z̄, (mean change slowly, α
.= 0);

2. S0 = z1, (local mean changes quickly α
.= 1);

3. Backforecast

S∗j = (1− w)zj + wS∗j+1, S∗n+1 = zn,

S0 = z0 = S∗1 = (1− w)z1 + wS∗2

• Choice of the Smoothing Constant: α = 1− w

et−1(1) = zt− ẑt−1(1) = zt−St−1, (one− step−ahead forecast error).

Then minimize
SSE(α) =

n∑
t=1

e2
t−1(1).
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• The smoothing constant that is obtained by simulation depends on the value
of S0

• Ideally, since the choice of α depend on S0, one should choose α and S0

jointly

• Examples

– If α = 0, one should choose S0 = z̄.
– If α = 1, one should choose S0 = z1

– If 0 < α < 1, one could choose S0 as the “backforecast” value:

S0 = α[z1 + (1− α)z2 + · · ·+ (1− α)n−2zn−1] + (1− α)n−1zn.
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Example: Quarterly Iowa Nonfarm Income
As an example, we consider the quarterly Iowa nonfarm income for 1948-1979.

• The data exhibit exponential growth.

• Instead of analyzing and forecasting the original series, we first model the
quarterly growth rates of nonfarm income.

zt =
It+1 − It

It
100 ≈ 100 log

It+1

It

• The constant mean model would be clearly inappropriate. Compared with
the standard error 1/

√
127 = .089, most autocorrelations are significantly

different from zero

Table 3.2: Sample Autocorrelations rk of Growth Rates of Iowa Nofarm Income (n=127)

Lag k 1 2 3 4 5 6
Sample autocorrelation rk .25 .32 .18 .35 .18 .22
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Iowa nonfarm income, first quarter 1948 to fourth quarter 1979
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Growth rates of Iowa nonfarm income, second quarter 1948 to fourth quarter 1979
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• Since the mean is slowly changing, simple exponential smoothing appears to
be an appropriate method.

• α = 0.11 and S0 = z̄ = 1.829.

• SSE(.11) =
n∑

t=1
e2

t−1(1) = (−1.329)2 + (.967)2 + · · ·+ (.458)2 + (−.342)2 =

118.19

• As a diagnostic check, we calculate the sample autocorrelations of the
one-step-ahead forecast errors

rk =

n−1∑
t=k

[et(1)− ē][et−k(1)− ē]

n−1∑
t=0

[et(1)− ē]2
, ē =

1
n

n−1∑
t=0

et(1).

• To assess the significance of the mean of the forecast errors, we compare it
with standard error s/n1/2(1/

√
127 = .089) , where

s2 =
1
n

n−1∑
t=0

[et(1)− ē]2
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3.4 Regression Models with Time as Independent Variable

zn+j =
m∑

i=1

βifi(j) + εn+j = f ′(j)β + εn+j

• f(j + 1) = Lf(j),L = (lij)m×m full rank. (Difference equations).

• Equivalent model:

zn+j =
m∑

i=1

β∗i fi(n + j) + εn+j = f ′(n + j)β∗ + εn+j;

f(n + j) = Lnf(j) ⇒ β = Lnβ∗.

• Examples: Constant Mean Model, Linear Trend Model, Quadratic Trend
Model, kth order Polynomial Trend Model, 12-point Sinusoidal Model
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• Estimation: β̂n minimizes
∑n

j=1[zj − f ′(j − n)β]2

y′ = (z1, z2, . . . , zn), X′ = (f(−n + 1), . . . , f(0))

X′X =
n−1∑
j=0

f(−j)f ′(−j)=̂Fn, X′y =
n−1∑
j=0

f(−j)zn−j=̂hn

β̂n = F−1
n hn.

• Prediction

ẑn(l) = f ′(l)β̂n,Var(en(l)) = σ2[1 + f ′(l)F−1
n f(l)],

σ̂2 =
1

n−m

n−1∑
j=0

(zn−j − f ′(−j)β̂n)2.

100(1− λ)% CI : ẑn(l)± tλ/2(n−m)σ̂[1 + f ′(l)F−1f(l)]
1
2.

24



• Updating Estimates and Forecasts:

β̂n+1 = F−1
n+1hn+1.

Fn+1 = Fn + f(−n)f ′(−n);

hn+1 =
n∑

j=0

f(−j)zn+1−j = f(0)zn+1 +
n−1∑
j=0

f(−j − 1)zn−j

= f(0)zn+1 +
n−1∑
j=0

L−1f(−j)zn−j = f(0)zn+1 + L−1hn

ẑn+1(l) = f ′(l)β̂n+1.
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3.5 Discounted Least Square and General Exponential
Smoothing

In discounted least squares or general exponential smoothing, the parameter
estimates are determined by minimizing

n−1∑
j=0

wj[zn−j − f ′(−j)β]2

The constant w(|w| < 1) is a discount factor the discount past observation
exponentially.
Define

W = diag(wn−1 wn−2 · · · w 1);

Fn=̂X′WX =
n−1∑
j=0

wjf(−j)f ′(−j)

hn=̂X′Wy =
n−1∑
j=0

wjf(−j)zn−j
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• Estimation and Forecasts

β̂n = F−1
n hn, ẑn(l) = f ′(l)β̂n.

• Updating Parameter Estimates and Forecasts

β̂n+1 = F−1
n+1hn+1, Fn+1 = Fn + f(−n)f ′(−n)wn;

hn+1 =
n∑

j=0

wjf(−j)zn+1−j = f(0)zn+1 + wL−1hn

If n →∞, then wnf(−n)f ′(−n) → 0, and

Fn+1 = Fn + f(−n)f ′(−n)wn → F as n →∞.

Hence

β̂n+1 = F−1f(0)zn+1 + [L′ − F−1f(0)f ′(0)L′]β̂n

= L′β̂n + F−1f(0)[zn+1 − ẑn(1)].

ẑn+1(l) = f ′(l)β̂n+1.
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3.5 Locally Constant Linear Trend and Double Exp.
Smoothing

• Locally Constant Linear Trend Model

zn+j = β0 + β1j + εn+j

• Definition
f(j) = [1 j]′,L =

[
1 0
1 1

]
.

F =
∑

wjf(−j)f ′(−j) =
[ ∑

wj −
∑

jwj

−
∑

jwj
∑

j2wj

]
=

[
1

1−w
−w

(1−w)2

−w
(1−w)2

w(1+w)
(1−w)2

]

• Discount least squares that minimizing
n−1∑
j=1

wj[zn−j − f ′(−j)β]2, thus

β̂n = F−1hn =

[
1− w2 (1− w)2

(1− w)2 (1−w)3

w

] [ ∑
wjzn−j

−
∑

jwjzn−j

]
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Thus

β̂0,n = (1− w2)
∑

wjzn−j − (1− w)2
∑

jwjzn−j

β̂1,n = (1− w)2
∑

wjzn−j −
(1− w)3

w

∑
jwjzn−j

In terms of smoothing

S[1]
n = (1− w)zn + wS

[1]
n−1 = (1− w)

∑
wjzn−j,

S[2]
n = (1− w)S[1]

n + wS
[2]
n−1 = (1− w)2

∑
(j + 1)wjzn−j,

S[k]
n = (1− w)S[k−1]

n + wS
[k]
n−1.

(S[0]
n = (no smoothing) = zn)

Then

β̂0,n = 2S[1]
n − S[2]

n ,

β̂1,n =
1− w

w
(S[1]

n − S[2]
n ).

ẑn(l) = β̂0,n + β̂1,n · l = (2 +
1− w

w
l)S[1]

n − (1 +
1− w

w
l)S[2]

n . 29



• Updating:

β̂0,n+1 = β̂0,n + β̂1,n + (1− w2)[zn+1 − ẑn(1)],

β̂1,n+1 = β̂1,n + (1− w)2[zn+1 − ẑn(1)];

Or in another combination form:

β̂0,n+1 = (1− w2)zn+1 + w2(β̂0,n + β̂1,n),

β̂1,n+1 =
1− w

1 + w
(β̂0,n+1 − β̂0,n) +

2w

1 + w
β̂1,n.

zn+1 − ẑn(1) =
1

1− w2
(β̂0,n+1 − β̂0,n − β̂1,n).
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• Implementation

– Initial Values for S
[1]
0 and S

[2]
0

S
[1]
0 = β̂0,0 −

w

1− w
β̂1,0,

S
[2]
1 = β̂0,0 −

2w

1− w
β̂1,0;

where the (β̂0,0, β̂1,0) are usually obtained by considering a subset of the
data fitted by the standard model

zt = β0 + β1t + εt.

– Choice of the Smoothing Constant α = 1− w The smoothing constant α
is chosen to minimize the SSE:

SSE(α) =
∑

(zt − ẑt−1)2

=
∑ [

zt −
(

2 +
α

1− α

)
S

[1]
t−1 +

(
1 +

α

1− α

)
S

[2]
t−1

]2

.
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Example: Weekly Thermostat Sales
As an example for double exponential smoothing, we analyze a sequence of
52 weekly sales observations. The data are listed in Table and plotted in
Figure. The data indicates an upward trend in the thermostat sales. This trend,
however, does not appear to be constant but seems to change over time. A
constant linear trend model would therefore not be appropriate.

Case Study II: University of Iowa Student Enrollments
As another example, we consider the annual student enrollment (fall and spring
semester combined) at the University of Iowa. Observations for last 29 years
(1951/1952 through 1979/1980) are summarized in Table. A plot of the
observations is given in Figure.
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3.6 Regression and Exponential Smoothing Methods to
Forecast Seasonal Time Series

• Seasonal Series: Series that contain seasonal components are quite
common, especially in economics, business, and the nature sciences.

• Much of seasonality can be explained on the basis of physical reasons. The
earth’s rotation around the sun, for example, introduces a yearly seasonal
pattern into may of the meteorological variables.

• The seasonal pattern in certain variables, such as the one in meteorological
variables, is usually quite stable and deterministic and repeats itself year
after year. The seasonal pattern in business and economic series, however, is
frequently stochastic and changes with time.

• Apart from a seasonal component, we observe in many series an additional
trend component.
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The traditional approach to modeling seasonal data is to decompose the
series into three components: a trend Tt, a seasonal component St and an
irregular (or error) component εt

• The additive decomposition approach

zt = Tt + St + εt

• The multiplicative decomposition approach

zt = Tt × St × εt

or
log zt = T ∗t + S∗t + ε∗t

• The other multiplicative model

zt = Tt × St + εt
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3.6.1 Globally Constant Seasonal Models

Consider the additive decomposition model zt = Tt + St + εt

• Traditionally the trend component Tt is modeled by low-order polynomials
of time t:

Tt = β0 +
k∑

i=1

βi
ti

i!

• The seasonal component St can be described by seasonal indicators

St =
s∑

i=1

δiINDti

where INDti = 1 if t corresponds to the seasonal period i, and 0 otherwise,
or by trigonometric functions

St =
m∑

i=1

Ai sin(
2πi

s
t + φi).

where Ai and φi are amplitude and the phase shift of the sine function with
frequency fi = 2πi/s.
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Modeling the Additive Seasonality with Seasonal Indicators

zt = β0 +
k∑

i=1

βi
ti

i!
+

s∑
i=1

δiINDti + εt.

Since it uses s + 1 parameters ( β0 and s seasonal indicators) to model s
seasonal intercepts, restrictions have to be imposed before the parameters can
be estimated. Several equivalent parameterizations are possible

• Omit the intercept: β0 = 0.

• Restrict
∑s

i=1 δi = 0.

• Set one of the δ’s equal to zero; for example δs = 0.

Mathematically these modified models are equivalent, but for convenience we
usually choose (3).
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Now we have the standard regression model:

zt = β0 +
k∑

i=1

βi
ti

i!
+

s−1∑
i=1

δiINDti + εt.

β′ = (β0, β1, . . . , βk, δ1, . . . , δs−1);

Hence
β̂ = (XX′)−1X′y, y′ = (z1, z2, . . . , zn);

X is an n× (k + s)matrix with tth row given by

f ′(t) =
(

1, t,
t2

2
, · · · , tk

k!
, INDt1, · · · , INDt,s−1

)
The minimum mean square error forecast of zn+l can be calculated from

ẑn(l) = f ′(n + l)β̂

100(1− α)% prediction interval

ẑn(l)± tλ/2(n− k − s)σ̂[1 + f ′(n + l)(XX′)−1f(n + l)]
1
2,

where
σ̂2 =

1
n− k − s

n∑
t=1

(zt − f ′(t)β̂)2.
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Change of Time Origin in the Seasonal Indicator Model
As we mentioned in previous sections, it might be easier to update the estimates/
prediction if we use the last observational time n as the time origin. In this case

zn+j = β0 +
k∑

i=1

βi
ji

i!
+

s−1∑
i=1

δiINDji + εn+j.

f ′(j) =
(

1, j,
j2

2
, · · · , jk

k!
, INDj1, · · · , INDj,s−1

)
β̂n = F−1

n hn

Fn =
n−1∑
j=0

f(−j)f ′(−j), ,hn =
n−1∑
j=0

f(−j)zn−j.

Hence the prediction:
ẑn(l) = f ′(l)β̂

100(1− α)% prediction interval

ẑn(l)± tλ/2(n− k − s)σ̂[1 + f ′(l)F−1
n f(l)]

1
2,

47



It can be shown that the forecast or fitting functions follow the difference
equation f(j) = Lf(j − 1), where L is a (k + s)× (k + s) transition matrix

L =
[

L11 0
L21 L22

]
As an illustration, let us consider a model with quadratic trend and seasonal
period s = 4

zn+j = β0 + β1 + β2
j2

2
+

3∑
i=1

δiINDji + εn+j

Then the transition matrix L and the initial vector f(0) are given by

L11 =

 1 0 0
1 1 0

1/2 1 1

 L21 =

 1 0 0
0 0 0
0 0 0

 L22 =

 −1 −1 −1
1 0 0
0 1 0


Successive application of the difference equation f(j) = Lf(j − 1) leads to
f(j) = (1, j, j2/2, INDj1, INDj2, INDj3)′. 48



Modeling the Seasonality with Trigonometric Functions

zt = Tt + St + εt = β0 +
k∑

i=1

βi
ti

i!
+

m∑
i=1

Ai sin
(

2πi

s
t + φi

)
+ εt,

where the number of harmonics m should not goes beyond s/2, i.e. half the
seasonality. Monthly, quarterly data; s/2 harmonics are usually not necessary

This is illustrated in Figure, where we plot

E(zt) =
2∑

i=1

Ai sin
(

2πi

12
t + φi

)

for A1 = 1, φ1 = 0, A2 = −0.70, φ2 = .6944π.
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Change of Time Origin in the Seasonal Trigonometric Model

Examples:

• 12-point sinusoidal model (k = 0, s = 12,m = 1)

zn+j = β0 + β11 sin
2πj

12
+ β21 cos

2πj

12
+ εn+j

In this case:

L =

 1 0 0
0

√
3/2 1/2

0 −1/2
√

3/2

 , f(0) =

 1
0
1


• Linear trend model with two superimposed harmonics (k = 1, s = 12,m = 2):

zn+j = β0+β1j+β11 sin
2πj

12
+β21 cos

2πj

12
+β12 sin

4πj

12
+β22 cos

4πj

12
+εn+j
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3.6.2 Locally Constant Seasonal Models

zn+j = f ′(j)β + εn+j

• Target: Minimizing

S(β, n) =
n−1∑
j=0

wj[zn−j − f ′(−j)β]2

• updating:

β̂n+1 = L′β̂n + F−1f(0)[zn+1 − ẑn(1)], (F =
∑
j≥0

wjf ′(−j)f(−j))

• A collection of infinite sums needed to cacluate F for seasonal models is
given in the following Table.
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• It is usually suggested that the least squares estimate of β in the regression
model zt = f ′(t)β + εt be taken as initial vector β̂0.

• To update the estimates, a smoothing constant must be determined.

– As Brown (1962) suggest that the value of w should lie between (.70)1/g

and (.95)1/g

– If sufficient historical data are available, one can estimate w = 1 − α by
simulation and choose the smoothing constant that minimizes the sum of
the squared one-step-ahead forecast errors

SSE(α) =
n∑

t=1

[zt − ẑt−1(1)]2

• After estimating the smoothing constant α, one should always check the
adequacy of the model. The sample autocorrelation function of the one-
step-ahead forecast errors should be calculated . Significant autocorrelations
indicate that the particular forecast model is not appropriate.
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Locally Constant Seasonal Models Using Seasonal Indicators

zn+j = β0 + β1j +
3∑

i=1

δiINDji + εn+j = f ′(j)β

where f(j) = [1 j INDj1 INDj2 INDj3]′, f(0) = [1 0 0 0 0]′. Then

L =


1 0 0 0 0
1 1 0 0 0
1 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0


Hence the updating weights in

β̂n+1 = L′β̂n + F−1f(0)[zn+1 − ẑn(1)]

can be calculated from f(0) and the symmetric matrix

55



F =



1
1−w

−w
(1−w)2

w3

1−w4
w2

1−w4
w

1−w4

w(1+w)
(1−w)3

−w3(3+w4)
(1−w4)2

−w2(2+2w4)
(1−w4)2

−w(1+3w4)
(1−w4)2

w3

1−w4 0 0

symmetric w2

1−w4 0
w

1−w4



Implications of α → 1
In this situation F →singular as w → 0. But we have that

lim
w→0

F−1f = f∗ =
(

1,
1
s
,−1

s
,−2

s
, · · · ,−s− 1

s

)′
;

β̂n+1 = L′β̂n + f∗[zn+1 − ẑn(1)];

ẑn(1) = zn + zn+1−s − zn−s = zn+1−s + (zn − zn−s)

ẑn(l) = ẑn(l − 1) + ẑn(l − s)− ẑn(l − s− 1)
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Example: Car Sales
Consider the monthly car sales in Quebec from January 1960 through December
1967 (n = 96 observations). The remaining 12 observations (1968) are used as
a holdcut period to evaluate the forecast performance. An initial inspection of
the series in Figure shows the data may be described by an additive model with
a linear trend (k = 1) and a yearly seasonal pattern; the trend and the seasonal
components appear fairly constant.

zt = β0 + β1t +
11∑

i=1

δiINDti + εt.
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Figure: Monthly car sales in Quebec, Canada; January 1960 to December 1968
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Example: New Plant and Equipment Expenditures
Consider quarterly new plant and equipment expenditures for the first quarter
of 1964 through the fourth quarter of 1974 (n = 44). The time series plot in
Figure indicate s that the size of the seasonal swings increases with the level
of the series; hence a logarithmic transformation must considered. The next
Figure shows that this transformation has stabilized the variance.

zt = ln yt = β0 + β1 +
3∑

i=1

δiINDti + εt
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Figure: Quarterly new plant and equipment expenditure in U.S. industries (in billions 
of dollars), first quarter 1 to fourth quarter 1976
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frist quarter 1964 to fourth quarter 1976
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