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Abstract

The condition number of a matrix is commonly used for investigating the stability of
solutions to linear algebraic systems. Recent meshless techniques for solving partial
differential equations have been known to give rise to ill-conditioned matrices, yet
are still able to produce results that are close to machine accuracy. In this work,
we consider the method of fundamental solutions (MFS), which is known to solve,
with extremely high accuracy, certain partial differential equations, namely those
for which a fundamental solution is known. To investigate the applicability of the
MFS, either when the boundary is not analytic or when the boundary data is
not harmonic, we examine the relationship between its accuracy and the effective
condition number.

Three numerical examples are presented in which various boundary value prob-
lems for the Laplace equation are solved. We show that the effective condition
number, which estimates system stability with the right-hand side vector taken into
account, is roughly inversely proportional to the maximum error in the numerical
approximation. Unlike the proven theories in literature, we focus on cases when the
boundary and the data are not analytic. The effective condition number numerically
provides an estimate of the quality of the MFS solution without any knowledge of
the exact solution and allows the user to decide whether the MFS is, in fact, an
appropriate method for a given problem, or what is the appropriate formulation of
the given problem.
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1 Introduction

The method of fundamental solutions (MFS) introduced by Kupradze and
Aleksidze [23] has become a popular meshless method for solving various par-
tial differential equations (PDEs) of practical importance; for example, Poisson
equations [13], nonlinear Poisson problems [2], nonlinear thermal explosions
[5], diffusion-convection equations [26], acoustic scattering [21], elastic waves
[22] and inverse problems [15,31]. See [10,11,14] for comprehensive reviews
of applications of the MFS. The method falls in the class of methods called
boundary methods. Like the boundary element method (BEM), it is appli-
cable when a fundamental solution of the differential equation in question
is known, and it shares the same advantages as the BEM over domain dis-
cretization methods. Moreover, it has certain advantages over the BEM. In
the MFS, the user simply provides the location of the boundary of the do-
main of the problem. There is no need to create a mesh over the entire region
or its boundary. Since meshing can quickly turn into a time consuming task
depending on the complexity of the region, this aspect of the MFS can save
considerable computational time. Moreover, since the MFS is a boundary-
type meshless method, it is also computationally much cheaper than other
domain-type meshless methods; see [24] for an overview. More importantly,
the accuracy of some MFS approximations can approach the order of machine
epsilon. This last benefit may seem somewhat paradoxical since the linear
systems arising in this method are ill-conditioned. Our interest, on the other
hand, is to investigate when such high order accuracy is likely to occur.

A brief outline of the remainder of this paper is as follows. In Section 2, we
provide a short overview of the formulation and implementation of the MFS
for the solution of the Laplace equation. Some MFS convergence theories will
also be reviewed in Section 3. In Section 4, we discuss the conditioning of a
matrix and formally introduce the condition number and effective condition
number. We examine the use of the effective condition number κeff(A, b) as an
estimator of the MFS accuracy, and observe a relationship between the effec-
tive condition number and the accuracy of the MFS solution. From the results
of various numerical experiments, it appears that the accuracy is inversely
proportional to the effective condition number κeff , that is,

κeff(A, b) = O
(
εmax

−1
)

where εmax = sup
P∈Ω

|uN(P )− u(P )|. (1)

Here, εmax is a measure of the maximum error of the numerical solution over
the region of interest. Section 5 contains three numerical examples which ex-
hibit the relationship (1). Finally, in Section 6, we summarize our results and
form a conclusion, as well as suggest new paths of future research.
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2 Formulations

For experimental purposes, we examine the solution of the Laplace equation

4u ≡ ∂2u

∂x2
+

∂2u

∂y2
= 0 in Ω ⊂ R2, (2)

where Ω is either the unit disk © or the square ¤ = [−1, 1]2. The boundary
of Ω, ∂Ω, is divided into two boundary segments, Γ0 and Γ1, such that ∂Ω =
Γ0 ∪Γ1 and Γ0 ∩Γ1 = ∅. The boundary conditions that we consider are either
of the Dirichlet-type or the mixed-type. Specifically, the Dirichlet boundary
conditions are given by the function g0, and the Neumann boundary conditions
are given by the function g1 such that

u = g0 on Γ0,
∂u

∂n
= g1 on Γ1. (3)

For problems with Dirichlet boundary conditions only, we simply set Γ1 = ∅.
The solution to (2) is therefore of the form of u(· ; g0, g1, Ω).

By a fundamental solution of the Laplace equation we mean a function K(P, Q)
such that

∆K(P,Q) = −δ(P,Q), P,Q ∈ Rn, n = 2, 3,

where δ(P,Q) (
∫

δ dR2 = 1 if P = Q or otherwise 0) denotes the Dirac delta
function. It is well known that

K(P, Q) = − 1

2π
log ‖P −Q‖,

which is defined everywhere except when P = Q, where it is singular. Thus Q
is called a singularity, or source point. In the MFS, the solution of the PDE is
represented by a linear combination of fundamental solutions, so that, in the
case of the Laplace equation in R2, we set

uN(P ) = a0 +
N∑

j=1

aj log ‖P −Qj‖ for P ∈ Ω, (4)

where ‖ · ‖ is the Euclidean norm in R2. In the present work, a0 will be set to
zero.

The source points {Qj}N
j=1 ⊂ ∂Ω̃ are preassigned on the boundary of a ficti-

tious domain and located outside the domain of the problem. Consequently,
uN satisfies the Laplace equation in Ω, which implies that the MFS is a Tre-
fftz method. The unknown coefficients {aj}N

j=1 in (4) are determined so that
uN collocates the boundary conditions at certain specified points. Specifically,

3



we let {Pk}N
k=1 be N = N0 + N1 collocation points on ∂Ω ordered in such a

way that the first N0 points are on Γ0 and are associated with the Dirich-
let boundary conditions in (3), while the remaining N − N0 are on Γ1 and
are associated with the Neumann boundary conditions. Then the coefficients
{aj}N

j=1 are chosen to exactly satisfy

uN(Pk)=g0(Pk), Pk ∈ Γ0, 1 ≤k≤ N0,
∂

∂n
uN(Pk)=g1(Pk), Pk ∈ Γ1, N0 + 1 ≤k≤ N.

Using (4), we obtain an N ×N system of linear equations,

N∑

j=1

aj log ‖Pk −Qj‖=g0(Pk), 1 ≤k≤ N0,

N∑

j=1

aj
∂

∂n
log ‖Pk −Qj‖=g1(Pk), N0 + 1 ≤k≤ N,

that can be solved using various methods. In all of the numerical experiments
reported in this paper, we employ the MATLAB ’s backslash function for con-
venience.

3 Convergence Theories of the MFS

Assume that Ω and the fictitious domain Ω̃ are concentric circles of radius r
and R, respectively. We may also assume that the circles are centered at the
origin,

Ω = {x : ‖x‖2 < r}, Ω̃ = {x : ‖x‖2 < R}.
For Laplace equations with Dirichlet boundary condition, that is, Γ1 = ∅ in
(3), let the collocation points {Pk}N

k=1 and source points {Qj}N
j=1 be uniformly

distributed on ∂Ω and ∂Ω̃, respectively. In [17,19] it is shown that if u is
harmonic in the entire plane, then

εmax = O
((

r

R

)N
)

.

This result is generalized in [20] to the case that the harmonic extension of u
exists only in a larger but bounded disk. If we only assume g0 to be analytic,
then εmax = O(τN) for some τ < 1. In [18], the MFS exponential convergence
theory is generalized to regions in the plane whose boundaries are analytic
Jordan curves.

The overview above gives us the motivation of the presented work, but it is
not our aim to study the convergence theories of the MFS here. We end this
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short section with the following remark: there is no convergence theory for
the MFS applied to non-harmonic Dirichlet boundary ∂Ω with non-harmonic
boundary data g0.

4 The Conditioning of Matrix Systems

The condition number and the concept of conditioning were introduced by
Turing [30]. The condition number of a nonsingular square matrix A is defined
by κ = κ(A) = ‖A‖‖A−1‖. In the case where the matrix 2-norm is used, the
condition number can be expressed as κ(A) = σ1/σn, where σ1 and σn are
the largest and smallest singular values of A, respectively. Note that κ ≥ 1.
The matrix A is said to be well-conditioned if κ ≈ 1, and ill-conditioned if
κ>>1. Given some small perturbation, ∆b, of the right-hand side vector b, the
condition number estimates the stability of the solution. Specifically, if Ax = b
and A(x + ∆x) = b + ∆b, then

‖∆x‖
‖x‖ ≤ κ

‖∆b‖
‖b‖ . (5)

One result of this is that one can expect to lose log10 κ decimal digits when
solving the system in floating point arithmetic [29].

In [7,17], it is shown that the 2-norm (original) condition number κ of the
MFS matrix grows exponentially with N ,

κ = O
(

log RN/2
(

R

r

)N/2
)

. (6)

Although the problem of ill-conditioning of the MFS is widely reported in the
literature, the accuracy of the numerical solution is rarely affected [6] when
u is harmonic on the entire plane. All numerical examples in this paper are
dealing with the MFS matrix system with condition number κ(A) > 1018.

In many applications, the boundary may not be analytic. Furthermore, if
boundary data are only analytic but not harmonic, then we do not know how
far the harmonic extension of u may extend. In some cases, the boundary
data may contain noise. Clearly, we can no longer rely solely on the condition
number to predict the accuracy of the computed solution of all practical ill-
conditioned MFS systems. Most importantly, the accuracy of the MFS has an
obvious dependence on the right-hand vector.

Since the condition number does not involve the right-hand side vector b, any
examination of the stability of the system only considers the worst case sce-
nario no matter the choice of b. In many applications, b is problem-dependent
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but fixed. In this case, we are interested in the stability of the system with
this specific problem-dependent b, and are not concerned with the worst case
scenario. For these reasons, as a tool to estimate of the accuracy of the MFS,
we consider the effective condition number κeff = κeff(A, b), which is defined
in the following way.

Consider a full-rank matrix A ∈ RM×N , M ≥ N , with singular values σ1 ≥
. . . ≥ σN > 0. and the SVD decomposition A = UΣV ∗ where U ∈ RM×M

and V ∈ RN×N contains the singular vectors, Σ = Diag(σ1, . . . , σN) ∈ RM×N .
Denotes U = [u1, . . . , uM ] and V = [v1, . . . , vN ], respectively, by their columns.
Consider a perturbed matrix system A(x + ∆x) = b + ∆b. We can write

b =
M∑

i=1

βiui, ∆b =
M∑

i=1

∆βiui

and let β = (b1, . . . , bN)T = U∗b and ∆β = (∆b1, . . . , ∆bN)T = U∗∆b. The
least-squares solution can be expressed in terms of the pesudoinverse of A,
namely

x = A†b := V Σ†UT b, ∆x = A†∆b.

Suppose p ≤ N is the largest integer such that σp > 0. Then

Σ† = Diag(σ−1
1 , . . . , σ−1

p , 0, . . . , 0︸ ︷︷ ︸
N−p

) ∈ RN×M .

Since U is orthogonal, we have

‖x‖ =

√√√√ N∑

i=1

(
βi

σi

)2

, ‖∆x‖ =

√√√√ N∑

i=1

(
∆βi

σi

)2

≤ ‖∆b‖
σN

.

Putting these to the inequality (5) results in a new bound with κ replaced by
the effective condition number for Ax = b given by

κeff(A, b) = ‖b‖
/

σN

√√√√
(

β1

σ1

)2

+ . . . +

(
βN

σN

)2

.

In case of M = N , the pseudoinverses will simply become the standard matrix
inverses; all claims remain valid.

The effective condition number was introduced and studied in Chan and
Foulser [4]. Subsequently, it was applied to boundary element methods in
Christiansen and Hansen [8] and Christiansen and Saranen [9].

The effective condition number determines the conditioning of a linear system
with coefficient matrix A and a fixed vector b. Like the condition number, if
the effective condition number is small, then a small perturbation ∆b of the
vector b will result in a small change in x. If the effective condition number is
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large, a small perturbation ∆b made to the fixed b will result in large changes
in x. Note that κeff(A, b) ≤ κ(A) for all choices of b, and equality is achieved
when b = u1 is the first left singular vector or any vector in that direction.

Other kinds of effective condition numbers are given in Banoczi et al. [3],
where they are applied to Gaussian elimination and the QR factorization.
More recent references for the effective condition number can be found in
[16,25].

In the next section, under different settings, to some of which the MFS con-
vergence theories do not applied, we present some numerical evidence to show
that the effective condition number κeff is a good indicator of the accuracy of
the MFS. What we want to observe is that whenever the MFS results in high
accuracy, the κeff will be large (e.g. same magnitude as the inverse of machine
epsilon). At the same time, when the MFS results in poor accuracy, the κeff

will be moderate in size too.

5 Numerical Experiments

Our goal is to demonstrate the strong linkage between the effective condition
number κeff and the accuracy εmax of the MFS in order to support our con-
jecture (1). As a preliminary study, (i) we will only consider square matrix
systems. For the ease of reproducing our results, we keep the set up of the
MFS straightforward. We are not claiming that the overdetermined formula-
tion is of less importance: if noise in data is detected (say, by small κeff in
Example 5.1), it is very natural to solve the system with the least-squares
fitting. The trivial way to obtain the N ×N MFS matrix systems is to impose
equal numbers of collocation points and source points, as in Section 3. Hence,
(ii) we do not append any constant in the numerical expansion (4). Because
of that, the source points will not be placed on the unit circle to avoid the
origin being null.

In the following three examples, several parameters known to affect the ac-
curacy of MFS approximations are varied. In each example, the relationship
between the accuracy of the approximation and the effective condition num-
ber is examined. In the first example, Section 5.1, noise is added to the
boundary data. The presence of noise causes small changes in b while keep-
ing the matrix A unchanged. Section 5.2 further examines the relationship
for problems with harmonic and non-harmonic boundary data on both an-
alytic boundary Ω = © = {x : ‖x‖2 < 1} and non-analytic boundary
Ω = ¤ = {x : ‖x‖∞ < 1}. Finally, in Section 5.3, compatible and incompatible
mixed boundary conditions on the boundary of the square ¤ are considered.
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The positioning of the points on the boundary and the source points outside
the region is a much discussed topic. For all the examples in this paper, it is
sufficient to use 160 boundary data points equally spaced along the boundary
of the region. An equal number of source points is used. Each corresponds
to a boundary collocation point and is located a distance R along the out-
ward normal to the boundary at that boundary point; the fictitious domain,
containing the region of interest, is given by

Ω̃ = {x ∈ R \ Ω : inf
y∈Ω

‖x− y‖ < R}. (7)

By the maximum principle, if u is a continuous real-valued harmonic function
defined in a bounded region Ω, then u attains its maximum and minimum
values on the boundary ∂Ω; see [1]. Thus the maximum error will always
occur on the boundary since uN(x)−u(x; g0, g1, Ω) is harmonic. We determine
the accuracy of the solution by finding the maximum absolute error on the
boundary ∂Ω re-defined by

εmax = max
x∈Xtest

|uN(x)− u(x; g0, g1, Ω)| , (8)

where Xtest ⊂ ∂Ω is a set of 640 boundary test points.

5.1 Noise Tolerance

In this example, the Laplace equation is solved in the unit disk © subject to
the Dirichlet boundary condition prescribed by the harmonic function

f0(x, y) = ex cos y.

Additive noise, generated by Matlab c© ’s RAND function, is then systematically
added to the boundary data. The matrix A is solely determined by the po-
sitioning of the boundary collocation points and the source points, while the
right-hand side vector is determined by the boundary data g0 = f0 and the
imposed noise level. Thus, the noise will only affect the right-hand side vector
b but not the MFS matrix. The condition number of the system will remain
constant 2.35 × 1019 while the effective condition number and accuracy will
change as noise is added.

It is well known that the MFS is very susceptible to noisy boundary data.
For the noise free case, we expect the MFS to produce results extremely close
to machine accuracy since u is harmonic in R2. As the percentage of noise
added to the vector b is increased, we see in Table 1 that the effective condi-
tion number decreases and maximum absolute error increases. We observed a
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Table 1
f0(x, y) = ex cos y on circular boundary with source distance R = 2.0

Noise Percent κeff εmax

0.000% 2.84× 1015 2.36× 10−14

0.005% 1.45× 106 6.06× 10−4

0.050% 8.34× 104 1.38× 10−2

0.100% 3.27× 104 5.34× 10−2

0.500% 3.59× 103 1.14× 10−1

1.000% 2.32× 103 1.16× 10−1

sharp increase in error and an equally sharp decrease in the effective condition
number as a tiny amount of noise is added.

Going from noise-free to noisy data, the effective condition number drops from
2.84×1015 with no noise to 1.45×106 with just 0.005% noise suggesting again
that the numerical solution is very sensitive to perturbation to b. Hence, when
only 0.005% of noise is added in, the MFS accuracy drops by 10 orders of
magnitude. The estimated perturbation by κeff , from (5), is

‖∆x‖∞ ≤ 0.005%κeff‖x‖∞ = 0.005%(2.84× 1015)(2.718) = 3.86× 1011.

The uncertainty principle of Schaback [28] to radial basis function interpola-
tion problems seems to hold here too. What we see here is that: for the MFS,
there is a conflict between theoretically achievable accuracy and numerical sta-
bility measured by the effective condition numbers.

Even though all runs in Table 1 have exactly the same condition number, com-
pletely different error behaviors are observed in cases with higher noise levels.
The resulting effective condition numbers and maximum errors are very simi-
lar for test cases with 0.500% and 1.000% noise; that suggests those systems
are not too sensitive to the added noise

The data in Table 1 strongly support the relation (1). As more noise is added,
the relationship becomes weaker, but by this point the effective condition
number is small enough (κeff ≈ 104) to indicate that the MFS solution will
not be of machine epsilon accuracy. This example is a good starting point to
show the relationship between the accuracy of the MFS and effective condi-
tion number because only the right-hand vector b is altered. All else stays4
constant, including the ill-conditioned matrix A.
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5.2 Boundary Shapes

In this example, we examine the effect of changing the source distance R in (7)
with different boundary data on different domains. The Laplace equation with
the Dirichlet boundary condition on both © and ¤ is tested. Two Dirichlet
boundary conditions are considered, a constant (harmonic) function,

c0(x, y) = 1, (x, y) ∈ ∂Ω,

and a non-harmonic polynomial,

q0(x, y) = x2y3, (x, y) ∈ ∂Ω.

A caution of setting up MFS numerical examples is brought up by Schaback
[27]: one will always obtain excellent results independent of the boundary shape
when the boundary conditions generated by an exact harmonic solution (e.g.,
g0 = u|Γ0 and ∇u = 0 in R2). Poor results are achieved only when the bound-
ary data are generated from a non-harmonic function so that u does not have
a harmonic extension in R2.

When the boundary data are generated from the harmonic function c0, by the
theories in Section 3, on both domains, we expect to see the MFS achieving
high accuracy. In Figure 1, it is clear that the MFS solutions u(· ; c0,−,©)
and u(· ; c0,−,¤) almost always achieve the best results no matter the source
distance or boundary shape. The harmonic boundary data from c0, which in
the majority of situations allow the MFS to achieve high accuracy on both
boundary shapes, also produce the highest effective condition number (κeff ≈
1016); see Figure 2 and Table 2.

For the non-harmonic polynomial q0, note in Figure 2, the effective condition
numbers for q0 on © are much higher than that on ¤ for all tested R. These
results agree well (inversely) with the behavior of the corresponding MFS ac-
curacy; see Table 3 for details. Unlike the case of harmonic data, the accuracy
associated with q0 does depend on R. Since the solutions to non-harmonic
boundary function on © are much more likely to have a harmonic exten-
sion beyond the domain [12], the accuracy of the MFS solution u(· ; q0,−,©)
should converge exponentially in theory and is numerically much better than
u(· ; q0,−, ¤). But the accuracy of u(· ; q0,−,©) decreases as the source dis-
tance increases; with analytic boundary and analytic data, this seems to con-
tradict the theories in Section 3 that the accuracy should increase with larger
R. All condition numbers in this example are reported to be around 1021 by
Matlab c© ’s COND function but they are not trustworthy. Using (6), we are sure
that the condition number increases with R which is the main reason of the
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2 3 4 5 6 7 8 9 10
Source Distance R

 

Non−harmonic data on square
Non−harmonic data on circle
Harmonic data on square
Harmonic data on circle

Fig. 1. Accuracy of MFS approximations for different boundary data on square and
circle.

2 3 4 5 6 7 8 9 10
Source Distance R

 

Non−harmonic data on square
Non−harmonic data on circle
Harmonic data on square
Harmonic data on circle

Fig. 2. Effective condition numbers of MFS linear systems for different boundary
data on square and circle.

drop in accuracy. Previous literatures also show that this theory does not nec-
essarily hold in practical computations. Drop in accuracy when R increases
is also observed in [6]. The important observation here is that the κeff in fact
decreases with R to reflect such losses in accuracy.

5.3 Mixed Boundary Conditions

Our final example examines the Laplace equation with compatible and incom-
patible mixed boundary conditions on the square domain ¤. For the incom-
patible case, the imposed Dirichlet and Neumann conditions are inconsistent.
Here, Γ1, a connected subset of ∂Ω with length |Γ1| = 2, begins from cer-
tain angles θ; see Figure 3 for a demonstration. We let Γ1 rotate around the
boundary with different starting θ to generate different test problems. We use
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Square Circle

Source radius R εmax κeff εmax κeff

1 3.3185e-013 2.6169e+016 9.2149e-015 9.4692e+016

2 2.3537e-014 2.0330e+016 1.6653e-015 7.1766e+016

3 1.6653e-015 2.5508e+016 1.4433e-015 7.2547e+016

4 1.5543e-015 1.0190e+016 1.5543e-015 8.9926e+016

5 2.8866e-015 2.0981e+016 2.1316e-014 1.5503e+016

6 1.3323e-015 1.1144e+017 4.4409e-015 3.1772e+016

7 2.2204e-015 2.4001e+016 1.7764e-015 6.8918e+016

8 2.4425e-015 1.7688e+017 3.3307e-015 1.7927e+016

9 1.7764e-015 2.7224e+016 1.5543e-015 1.7349e+016

10 1.8874e-015 2.1567e+016 1.4433e-015 4.7970e+016
Table 2
Errors and effective condition numbers as functions of R for Harmonic data on
square and circle

Square Circle

Source radius R εmax κeff εmax κeff

1 6.5586e-004 1.3358e+008 4.9336e-015 6.8663e+015

2 4.5747e-003 4.3713e+005 6.2280e-014 5.9494e+014

3 3.9648e-003 2.7303e+004 4.7556e-013 5.6837e+013

4 1.4041e-002 3.7725e+004 2.1221e-012 3.9095e+013

5 5.4202e-003 3.0807e+004 1.5775e-010 2.1678e+013

6 1.9512e-002 1.1286e+004 1.9574e-010 1.3202e+012

7 1.0813e-001 4.6614e+003 1.3021e-009 2.0046e+012

8 4.7500e-002 3.5699e+003 2.3262e-010 8.6361e+011

9 5.4887e-002 3.3896e+003 4.5293e-011 6.9648e+011

10 2.2810e-002 4.0727e+003 1.6498e-010 2.4736e+012
Table 3
Errors and effective condition numbers as functions of R for non-harmonic data on
square and circle

the harmonic functions c0 = 1 and f0 = ex cos y as g0 in (2) to generate the
Dirichlet boundary conditions, while the Neumann boundary conditions on Γ1

are set to zero, that is, g1 = 0 in (3).

Since the numbers of source points and collocation points are equal, we have
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θ

Γ
1

Γ
2

Fig. 3. Schematic setup for problem 5.3

an exactly determined system and the numerical approximation exactly sat-
isfies the collocation conditions. This can lead to higher accuracy than an
overdetermined system that uses a best fitting for approximation. However,
this method is not without its own challenges. An exactly determined system
can lead to the estimation greatly over shooting or under shooting the ac-
tual boundary values in between the data points. This phenomenon is known
as the Gibbs effect. For this example, the maximum absolute error along the
boundary can no longer be measured since we no longer have a complete set of
Dirichlet boundary values for (8). The maximum norm, ‖·‖∞, of the numerical
solution is used as a measure here.

The maximum norm of the solution is used to detect the magnitude of the
Gibbs effect in the solution and thus give an indicator as to whether or not
the solution may be accurate. However, it is important to note that the max-
imum norm does not indicate the maximum absolute error of a solution. This
means that two solutions may have the similar maximum norm but much dif-
ferent maximum absolute error. It should also be noted by the reader that the
maximum norm only indicates that the solution may be accurate and not the
maximum error–we use the effective condition number to detect bad solutions
in this example.

Figure 4 shows the expected small norm for the constant case in c0. The exact
solution u(· ; 1, 0,¤) is the constant-1 function. Since the function c0 = 1
is harmonic everywhere, we expect to see very good accuracy and thus its
maximum norm will stay at 1. Figure 5 shows the effective condition number.
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The Shift on the x-axis of the plot indicates the starting angle θ for Γ1. Since
the solution to c0 is harmonic, the consistently good results are accompanied
by the consistently high effective condition numbers (κeff ≈ 1016).

In the case of f0, we do not except any good result from our exactly determined
approach, since

∂f0

∂n
6= 0 for all (x, y) ∈ ∂¤, (9)

the boundary data are not compatible for all θ. As seen in Figure 4, the MFS
solutions have very large norm of certain θ values indicating the presence of the
Gibbs effect. Good results are still possible, but only if a harmonic extension
of u exists beyond ∂Ω for some particular θ-positions of Γ1.

To justify the relation (1), note that the norms of solutions behave with respect
to the effective condition number and reach relative minima at π/4, 3π/4,
5π/4, and 7π/4. This leads us to believe that there is a harmonic extension
for these problem settings. It is important for the reader to note that, although
the maximum norm can be used as an indicator for good accuracy, it cannot
show exactly how accurate the solution is. It is for this reason that the vast
differences between the effective condition numbers of the two functions are
not as pronounced in Figure 4.

The results when using f0 are very interesting. The effective condition num-
ber starts off relatively small, but then increases and has a relative maximum
around π/4. It then decreases to close to its original value and has another rel-
ative maximum π/2 radians later. The pattern, small κeff associated with large
‖uN‖∞ (e.g. Gibbs), repeats periodically. From a geometric perspective, the
effective condition number achieves a relative maximum whenever Γ1 is posi-
tioned totally on one side of the square boundary. Combining the numerical
intuition and observed κeff values, we may guess that u has a harmonic exten-
sion beyond ¤ when the incompatible boundary conditions are connected at
the singularities of the ∂Ω.

Before ending this section, we emphasize again that square systems are used
here because they are trivial to set up and easy to reproduce. The effective
condition numbers are used as an indicator for data quality but not for solv-
ing the problem. In this example, when a small effective condition number is
observed and the Gibbs effect is present, the user should impose extra collo-
cation points and conditions in order to extend the existing square system to
an overdetermined one.
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Fig. 4. Norm of the MFS solution for compatible and incompatible boundary data
on square.
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Fig. 5. Effective condition numbers of MFS resultant systems for compatible and
incompatible boundary data on square.

6 Conclusion

In summary, we have presented numerical evidence that there is a strong re-
lationship between the effective condition number of a linear system and the
accuracy of results when using the method of fundamental solutions, namely
high MFS accuracy must accompany a large “effective” condition number. In
order to obtain machine accuracy, from the presented numerical results, the
effective condition number of the MFS systems should stay around 1016. In
the future, other elliptic operators along with the overdetermined formula-
tion should be examined to ensure the validity of this uncertainty principle.
This not only includes additional systems generated by the MFS, but also
ill-conditioned systems arising in other methods that still achieve good re-
sults for specific right-hand side vectors. In addition, there is much theoretical
investigation that needs done in this area of numerical analysis.
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While further investigation is needed, some applications can already be envi-
sioned. One can use the effective condition number to determine if the MFS
is a feasible method for solving the partial differential equation in hand. The
attraction of the MFS is the high accuracy that it is able to obtain. However,
as shown in the presented numerical examples, the high accuracy of the MFS
cannot be guaranteed under all situations. The effective condition number of
the linear system generated by the MFS can help determine whether or not
the MFS is a practicable method, or if overdetermination, regularization, etc.
are needed in the formulation.
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