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Abstract

Over the last decade, there has been a considerable amount of new numer-
ical methods being developed for solving the Cauchy problems of elliptic
operators. In this paper, with some new classes of numerical experiments,
we re-verify the conclusions in the review article [EABE,31(4):373-385,2007]
concerning the effectiveness of solving Cauchy problems with the method of
fundamental solutions.
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1. Introduction

Cauchy problems of elliptic operators are typically ill-posed problems
whose solutions do not continuously depend on the input Cauchy data. How-
ever, these ill-posed problems play important roles in many science and en-
gineering models such as steady-state inverse heat conduction [10], electro-
cardiology [6], nondestructive testing [11], and so on. For the sake of numer-
ical computations, a small perturbation or error in the input may lead to an
enormous error in the numerical solution.
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The Cauchy problem we consider is in the form of

L u = 0, in Ω ⊂ Rd,

∂
(k)
ν u = gk, on Γ, k ∈ {0, 1},

(1)

where L is a differential operator of elliptic type, Ω is a bounded simply
connected domain in Rd, Γ ( ∂Ω is the Cauchy boundary, and ∂

(k)
ν is the

k-th order normal-derivative. The goal here is to determine a distribution
function u ∈ C2(Ω)∩C1(Ω) that satisfies (1) with the provided Cauchy data
gk, k ∈ {0, 1}.

2. Redundancy in Cauchy data

For convenience, researchers usually pick exact solutions that satisfy the
governing equation Lu = 0 in the whole space Rd in order to generate the
Cauchy data gk, k ∈ {0, 1}. This Cauchy data is then used to verify different
numerical methods for solving (1). In some situations, this approach may
yield overdetermined test problems—the key message we want to deliver in
this paper. Although it is not our aim to come up with a general mathemati-
cal theory about the redundancy in Cauchy data, below is a specific situation
in which the Neumann boundary data is not necessary to guarantee unique
solution in the Cauchy problem.

Consider a Cauchy problem of the Laplace operator in two-dimensions
for simplicity. Suppose the exact Cauchy solution u∗ of (1) is harmonic
everywhere in R2. For simplicity, let us consider Ω being the unit circle and
the Cauchy boundary Γ being the upper half. Since u∗ is harmonic and
therefore analytic, the Dirichlet data g0(θ), θ ∈ I := [0, π], is real analytic.
Now further assume that the Taylor expansion of u∗ at the origin has a radius
of convergence R > 1. Then the two (1D real) analytic functions, u∗|r=1(θ)
and g0(θ), agree on I; by the unique continuation of analytic functions, they
also agree on [−π/2, 3π/2]. Having Dirichlet boundary condition on the
whole boundary ∂Ω yields the Dirichlet (forward) problem and (1) has unique
solution without the Neumann boundary condition.

Note that in the above situation, having a unique solution does not imply
the solution process is stable. The Cauchy problem is still ill-posed and is
highly sensitive to any noise in the Cauchy data. We observe that the test
problems in some literatures, i.e.

In [5]: u∗ = y3 − 3yx2,
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In [9]: u∗ = xy,

In [16]: u∗ = exp(0.5x) sin(0.5y) and u∗ = x+ y,

In [17]: u∗ = x3 − 3xy2 + exp(2y) sin(2x)− exp(x) cos(y),

In [19]: u∗ = 10y − 9, and others in [1, 2, 3, 4, 13, 14, 15],

the tested Cauchy problems with globally harmonic solutions may also have
numerically redundant Cauchy data.

Numerically, we can sometime solve the Cauchy problem (1) with only

one boundary condition on Γ. Figure 1 and 2 show some numerical recon-
structions when we apply the MFS directly (without regularization) to solve
(1) with Dirichlet data only. We show only a subset of the collocation points
in order to keep the figures easily readable. Figures 1(a)-1(b) are the recon-
structed solutions in a unit circle and square respectively using Dirichlet data
g0 = exp(x) cos(y) = u∗|Γ (with △g0 = 0). It can be seen that the numerical
solutions closely agrees with the corresponding exact solutions; our argument
above (on the unit circle) cannot explain why the latter works on the square
domain. While g0 = cos(x) exp(y) (also with △g0 = 0) on half circle is suffi-
cient to solve (1), Figure 2(b) is a typical sign suggesting that the Neumann
data is essential for this Cauchy problem on the square domain.

To ensure the conclusions drawn for any numerical method are completed,
they should not be all depends on test problems with redundant data. To
determine if a test problem may have “numerical” redundancy in data, one
can solve the Cauchy problem with noise-free Dirichlet data only as a patch

test for data redundancy. We aim to identify test problems that cannot be
solved without the Neumann data, as seen in Figure 2(b). The rest of this
paper is devoted to some test problems that will not suffer from trouble of
redundant Cauchy data.

3. Suggested test 1: singularity in Rd \ Ω

The easiest and most convenient way is to construct numerical experi-
ments using a function which satisfies the government equation everywhere
with singularity in Rd \ Ω. Under this setup and with the right geometry,
the Cauchy problem can sometimes be solved with one Dirichlet data only.
However, the singularity-to-domain distance has a strong influence on the
stability and the patch test will fail (i.e. Neumann data becomes essential)
if we take the singularity close enough to ∂Ω.
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Figure 1: Patch test: g0 = exp(x) cos(y) for data redundancy—Cauchy problems (1) with
only one Dirichlet data; — (exact solutions ), • (collocation points), and � (numerical
solutions).
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Figure 2: Patch test: g0 = cos(x) exp(y) for data redundancy—Cauchy problems (1) with
only one Dirichlet data; — (exact solutions ), • (collocation points), and � (numerical
solutions).
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For example, we can take the exact solution of (1) as u∗ = log((x− a)2 +
(y−b)2) with singularity at (a, b) 6∈ Ω and use it to generate the Cauchy data
g0 and g1. In Table 1, we show the accuracies of the MFS approximations with
various regularization techniques for (a, b) = (2, 0) and (10, 0). Neumann
boundary data is necessary for the former; whereas the latter passes the
(noise-free) patch test that can be solved without the Neumann data. For
the regularization techniques that work (TR or DSVD combined with either
LC or GCV as recommended in [17]), they all yield better accuracy1 in the
latter case when the singularity is far away. An appropriate experiment of
this type should not have a far-away singularity.

(a, b) = (2, 0)
Method TR-LC DSVD-LC TSVD-LC TR-GCV
ǫ∞ 0.2851 0.2389 25.1520 0.1122
Method DSVD-GCV TSVD-GCV TR-DP DSVD-DP
ǫ∞ 0.1002 41.6994 25.4118 11.8107

(a, b) = (10, 0)
Method TR-LC DSVD-LC TSVD-LC TR-GCV
ǫ∞ 0.0258 0.0424 66.9753 0.0085
Method DSVD-GCV TSVD-GCV TR-DP DSVD-DP
ǫ∞ 0.0073 85.3867 74.3751 73.8780

Table 1: Exact solution with singularity. The maximum errors with various regularization
methods under 1% noise.

4. Suggested test 2: u|∂Ω → g1

A more practical situation is to pick some nonharmonic function (i.e.
does not satisfy government equation everywhere) to generate the Cauchy
data g0 in closed form. If we take g0 as the Dirichlet boundary condition of
the whole boundary ∂Ω, we have a direct problem of the elliptic type. Since
the data-generating function is nonharmonic, the comments in [8, 18] suggest
that we should not expect the MFS approximation to be of machine-epsilon
accuracy. Optimizing the MFS for direct problems is out of the scope of

1Maximums norms of log((x − a)2 + (y − b)2) are 2.3026 and 4.8040 for (a, b) = (2, 0)
and (10, 0), respectively.
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this paper; we refer readers to the original articles for details. The rule of
thumb is that as long as g0 is smooth on the boundary, the MFS should be
able to do its job correctly and provide us the solution of the direct problem
with relatively high accuracy. For the Laplace operator, we can always verify
the accuracy with the maximum principle. Once we have an approximate
solution in hand, we can numerically evaluate its normal derivative on the
Cauchy boundary Γ. It is easily doable if we employ the MFS to solve the
direct problem; all we have to do is to differentiate the basis functions (that
is the fundamental solutions).

We take g0 = x2y3 = u∗|∂Ω in this demonstration. First, we solve the
Laplace equation with Dirichlet boundary condition u|∂Ω = g0 to obtain a
numerical approximation un with ǫ∞ is 7.6258e-012. Then, we determine the
other Cauchy data by g1 = uν |Γ. All Cauchy data needed for the inverse
problem (1) are now available. One important note to mention before we
start solving the inverse problem is that the distribution of source points
for the direct and inverse parts here should be different in order to avoid
the inverse crime. That is, (nearly) the same theoretical ingredients are
employed to synthesize as well as to invert data in an inverse problem. This
act has been qualified as trivial and therefore should be avoided [7]. All
MFS approaches in [17] are tested with 1% noise. We report the maximum
error ǫ∞ on boundary and the relative root mean square errors ǫ2 over the
domain in Table 2. We observe that TR-LC and TR-GCV work better than
other combinations. The other two techniques, DSVD-LC and DSVD-GCV,
recommended in [17], are both working reasonably well here.

Method TR-LC DSVD-LC TSVD-LC TR-GCV
ǫ∞ 0.0015 0.0417 3.7341 0.0015
ǫ2 0.0044 0.1270 6.1102 0.0044
Method DSVD-GCV TSVD-GCV TR-DP DSVD-DP
ǫ∞ 0.0043 0.0018 0.0105 0.0659
ǫ2 0.0107 0.0083 0.0288 0.2016

Table 2: Generate g1 from direct problem—relative root mean square errors under different
regularization methods with 1% noise level
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5. Suggested test 3: g1, u|∂Ω\Γ → g0

In some applications, it is necessary to specify the flux g1 on the Cauchy
boundary. For example, the formulation in [12] requires g1 = 0. In such cases,
we first consider a direct problem with the mixed boundary conditions: g1|Γ =
0 as required and assign some arbitrary values to u on ∂Ω \ Γ. For direct
problems of this type, the solution usually contains boundary singularities.

We take the top boundary of Ω = (−1, 1)2 as the Cauchy boundary
Γ. To construct a numerical test, we solve the direct problem with u = x
on Γ and ∂νu = 0 for the remaining. We apply the FEM to solve the
direct problem and use its solution value to define the Cauchy data g0 at Γ.
All four recommended regularization techniques in [17] are tested. Figure
3 shows approximations obtained by the MFS with different regularization
techniques under 1% noise. All four solutions yields relative errors at around
5%. Although GCV seems to work better than LC in Figure 3, it is too
preliminary to jump to this conclusion—it is not the interest of this work to
perform extensive comparisons.

Solutions having singularities right at the boundary-singularities is ac-
tually not a very bad thing. If the solution has a singularity in which the
boundary is smooth, even for direct problems, one must be careful when the
MFS is applied—it is common to observe the Gibbs phenomenon near the
point where the type of boundary condition changes [18].

In the last example, let Ω be the unit circle. We assign x2y3 to the missing
upper-half boundary ∂Ω \ Γ and use zero Neumann boundary condition g1 =
0 on lower-half Γ to set up the direct problem. Going through all steps as
described above, we obtain our test problem for the Cauchy problem (1).
Unfortunately, none of the regularization techniques works well with the
MFS approach—even if the data is noise-free (but still contains the numerical
error from the FEM). This is exactly the type of experiments for testing the
effectiveness of any forthcoming numerical methods.

6. Conclusion

In this short article, we pointed out that there exist some test exam-
ples whose Neumann boundary data are redundant and may not be suitable
for evaluating (i.e. accuracy and robustness of) a numerical method. We
provide an argument to show that, in some cases, the Dirichlet boundary
condition on part of a circular domain can be extended to the whole. Hence,

7



−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

 

xy
 

N
um

er
ic

al
 s

ol
ut

io
n

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(a) TR-LC
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(b) TR-GCV
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(c) DSVD-LC
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(d) DSVD-GCV

Figure 3: Generate g0 from direct problem—numerical solution yields from different reg-
ularization methods with 1% noise level.
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the Neumann boundary data in the Cauchy problems is theoretically redun-
dant. The key message to emphasize is to avoid drawing conclusion solely
based on some overdetermined test problems. We suggest that a good set
numerical examples should cover a wide varieties instead of examples with
numerically redundancy only. A few different approaches for constructing
numerical experiments are suggested.

In [17], it is suggested that using TR or DSVD with parameters selected
by GCV or LC works well with the MFS in solving Cauchy problems of elliptic
types. With the additional experiments in this paper, we have numerical
evidences to support their conclusion. However, we also have examples, in
which the Cauchy solution contains boundary singularities, such that all the
MFS-related approaches in [17] fail.

Appendix

Acronyms and abbreviations

TR: Tikhonov Regularization

DSVD: Damped Singular Value Decomposition

TSVD: Truncated Singular Value Decomposition

LC: L-curve Criterion

GCV: Generalized Cross-Validation

DP: Discrepancy Principle

FEM: Finite Element Method

MFS: Method of Fundamental Solution

Setup Details

All domains are generated by a polar function r such that Ω = {(r, θ) :
r < r(θ), 0 ≤ θ < 2π}. Consider the polar function r fixed thereafter. For
some user-defined source distance ds, we evenly place ns source points on
the fictitious boundary {(r, θ) : r = r(θ) + ds, 0 ≤ θ < 2π}. The Cauchy
boundary is specified by an interval θΓ = [θ0, θ1] such that Γ = {(r, θ) :
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r = r(θ), θ0 ≤ θ ≤ θ1}. Both Dirichlet and Neumann Cauchy data is,
respectively collocated at mD and mN at evenly placed points on Γ. The
number of evaluation points is always N = 1000 for finding numerical errors.
Readers are referred to [17] for the details of MFS formulation and other
regularization techniques.

Figure 1(a) and 2(a): L = △, r(θ) = 1, ns = 51, ds = 10, θΓ = [0, π],
mD = 51, mN = 0.

Figure 1(b) and 2(b): L = △, r(θ) = 1/max(| sin(θ)|, | cos(θ)|), ns = 51,
ds = 10, θΓ = [0, π], mD = 51, mN = 0.

Section 3: L = △, r(θ) = 1, ns = 102, ds = 10, θΓ = [π, 2π], mD = 51,
mN = 51.

Section 4 Direct: L = △, r(θ) = 1, ns = 100, ds = 5, θΓ = [0, 2π],
mD = 100, mN = 0.

Section 4 Inverse: L = △, r(θ) = 1, ns = 102, ds = 10, θΓ = [π, 2π],
mD = 51, mN = 51.

Section 5 Square: L = △, r(θ) = 1/max(| sin(θ)|, | cos(θ)|), ns = 84, ds =
10, θΓ = [3π/4, 9π/4], mD = 42, mN = 42.

Section 5 Circle: L = △, r(θ) = 1, ns = 108, ds = 10, θΓ = [π, 2π],
mD = 54, mN = 54.
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