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Abstract. Detecting corrosion by electrical field can be modeled by a Cauchy problem
of Laplace equation in annulus domain under the assumption that the thickness of the
pipe is relatively small compared with the radius of the pipe. The interior surface of the
pipe is inaccessible and the nondestructive detection is solely based on measurements
from the outer layer. The Cauchy problem for an elliptic equation is a typical ill-posed
problem whose solution does not depend continuously on the boundary data. In this
work, we assume that the measurements are available on the whole outer boundary on
an annulus domain. By imposing reasonable assumptions, the theoretical goal here is
to derive the stabilities of the Cauchy solutions and an energy regularization method.
Relationship between the proposed energy regularization method and the Tikhonov
regularization with Morozov principle is also given. A novel numerical algorithm is
proposed and numerical examples are given.
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1 Introduction

To provide a safe and reliable mode of energy transport and improve general awareness
of the benefits of the pipeline industry, corrosion prevention, preventing outside damage
are the high priority tasks. Nevertheless, the recent promotion of high-pressure pipelines
by different Australian Pipeline Industry Association makes the problems of corrosion de-
tection equally significant. According to the Association of Oil pipe Lines (AOPL), the most
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recent Crack Detection Tools includes ultrasonic crack detection, magnetic flux leakage,
and elastic wave tool. ‘Some of these technologies are fairly new and still developing,’ quoted
from the AOPL’s Pipeline Industry Facts. The wide variety of defects in pipelines can
be classified into three major groups: defects due to corrosion, defects generated by me-
chanical damage, and cracks created by stresses in the pipe wall. Defects of these three
groups are mathematically different; each requires specific techniques and models.

If we focus on defects due to corrosion, the inverse problem considered is to nonde-
structively determine information about the corrosion that occurs on the interior surface
of the pipeline. The only accessible data are the electrostatic measurements on the exte-
rior surface of the pipeline. We assume that the thickness of the pipeline is comparatively
small with respect to its diameter. This includes the crude oil pipeline: for example, the
2005 El Sharara-Mellitah Onshore Pipeline project of the AGIP Oil Company engaged a
400 km of pipelines of 762 mm overall diameter with 11.30 mm thickness.

Inglese [1] modeled the problem of determining quantitative information about cor-
rosion by Laplace’s equation

△u=0, x∈Ω (1.1)

with unknown (interior) boundary conditions. As the thickness of the coating goes to
zero, Buttazzo and Kohn [2] observed the arising of mixed boundary conditions. Based
on the Faraday’s law, corrosion or mass loss is proportional to the normal current flux.
The main focuses of this paper are the stability and the numerical algorithm for this
inverse problem. Surface with corrosion is usually rough on which a thin coating effect
applies. Let Γout and Γin be the outer and inner boundary of the annulus domain Ω,
respectively. After linearization, one gets

uν(x)+γ(x)u(x)=0, x∈Γin, (1.2)

where uν is the outer normal derivative of u on the boundary. Using the potential model
introduced by Ingless and Santosa [3], defects due to corrosion can be described by mixed
boundary conditions. In (1.2), γ(x) is the coefficient of energy exchange and γ(x)≥ 0
indicates corrosion damage. The inverse problem here is to find γ(x) given knowledge
of

u(x)= f (x) and uν(x)= g(x), x∈Γout. (1.3)

Derived from (1.1) and (1.2), the conservation of charge forces
∫

Γout

g−
∫

Γin

γu=0, (1.4)

indicates that the flux through Γout is not zero. Protter and Weinberger [4] showed that,
without loss of generality, choosing f ≥ 0 ensure u> 0 in Ω if both γ and f have posi-
tive Lebesgue measure. The exchange coefficient could be computed by first solving the
Cauchy problem for Laplace’s equation (1.1) and (1.3), and secondly by (1.2) to obtain

γ(x)=−uν

u

∣

∣

∣

Γin

. (1.5)
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The Cauchy problem for an elliptic equation is a typical ill-posed problem whose so-
lution does not depend continuously on the boundary data. That is, a small error in the
specified data may result in an enormous error in the numerical solution. The Cauchy
problem for the Laplace equation also arises from many branches of science and engi-
neering such as non-destructive testing [5], steady-state inverse heat conduction [6], and
electro-cardiology [7]. Numerical methods for solving the Cauchy problem for Laplace’s
equation were widely studied; for example, Han et al. [8, 9], Falk and Monk [10], Ang,
Nghia and Tam [11], Berntsson and Eldén [12], Reinhardt et al. [13], Cheng, Hon, and
et al. [14], Hon, Wei and et al. [15, 16], Takeuchi and Yamamoto [17], Leitão [18], Wei,
Qin and Shi [19], and etc. Methods specified for corrosion problem include the thin plate
approximation by Inglese [1] on plate geometry and the boundary element method by
Yang, Choulli and Cheng [20] on pipe.

2 Stability and regularization in Hs+ 1
2 (Ω)

We consider the following Cauchy problem of Laplace equation:






∆u=0, x∈Ω,
u|Γout= f ,

∂ru|Γout=g,
(2.1)

where Ω∈R
2 is a bounded domain with boundary Γin∪Γout such that

Γin ={x : |x|=Ri} and Γout={x : |x|=Ro}, 0<Ri <Ro.

Here, Ri and Ro are the inner and outer radius, respectively.
For the given f and g on Γout, problem (2.1) is an improperly posed problem; namely,

the solution of (2.1) is not continuously dependent on the Cauchy data f and g.
In practical applications, the given Cauchy data usually contains certain noise. In-

stead of the exact data f and g, we only have

fε = f +noise, and gε = g+noise.

The exact assumptions imposed on the “noise” will be specified in the next section.
In this paper, we study the continuous dependence of the solution of (2.1) on the

Cauchy data provided that the solution of (2.1) satisfying certain restrictions.

2.1 Notations: norms and functionals

The solution of the Cauchy problem, if it exists, is expressed,

u(r,θ) = a0+b0 log
r

Ro
+

∞

∑
k=1

[

(akrk coskθ+bkrk sinkθ) (2.2)

+(ckr−k coskθ+dkr−k sinkθ)
]

,
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where r∈ [Ri,Ro] and θ=[0,2π). It is straightforward to show that

a0 =
1

2πRo

∫

Γo

udσ. (2.3)

Let s be a real number. We define the following |||·|||–norm for a 2π periodic function,

in the form of h(θ)=α0+
∞

∑
k=1

(

αkcoskθ+βk sinkθ
)

, as

|||h(θ)|||2s :=α2
0+

∞

∑
k=1

k2s+1(α2
k+β2

k).

Let r be fixed such that Ri≤ r≤Ro. Consider any closed circular path in Ω

Γr ={x : |x|= r}.

For the solution in the form of (2.2), we introduce the following notations:

‖∂θu‖2
s−1,Γr

:=
1

r

∣

∣

∣

∣

∣

∣∂θu|r(θ)
∣

∣

∣

∣

∣

∣

2

s−1
(2.4)

=
∞

∑
k=1

k2s+1
[

(akrk− 1
2 +ckr−k− 1

2 )2+(bkrk− 1
2 +dkr−k− 1

2 )2
]

,

and

‖∂ru‖2
s−1,Γr

:= r
∣

∣

∣

∣

∣

∣∂ru|r(θ)
∣

∣

∣

∣

∣

∣

2

s−1
(2.5)

=
b2

0

r
+

∞

∑
k=1

k2s+1
[

(akrk− 1
2 −ckr−k− 1

2 )2+(bkrk− 1
2 −dkr−k− 1

2 )2
]

.

For the sake of simpler notations, we also define a semi-norm by

|u|2s,Γr
:=

1

r

(

a2
o+

∣

∣

∣

∣

∣

∣∂θu|r(θ)
∣

∣

∣

∣

∣

∣

2

s−1

)

=
a2

0

r
+‖∂θu‖2

s−1,Γr
. (2.6)

We now define a functional Js for the u in (2.2) as

Js(r)(u) =
a2

0

r
+‖∂ru‖2

s−1,Γr
+‖∂θu‖2

s−1,Γr
(2.7)

= |u|2s,Γr
+‖∂θu‖2

s−1,Γr
.

Substituting (2.4) and (2.5) into (2.7), we arrive at

Js(r)(u)=
a2

0+b2
0

r
+2

∞

∑
k=1

k2s+1
[

(a2
k+b2

k)r
2k−1+(c2

k+d2
k)r

−2k−1
]

. (2.8)
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Proposition 1. The semi-norm |u|2s,Γr
for all Cauchy solutions (2.1) becomes a norm when

r=Ro; namely,

|u|2s,ΓRo
=

1

Ro
|||u(Ro,θ)|||2s .

Let ‖u‖s+ 1
2 ,Ω be an equivalent norm to that in Hs+ 1

2 (Ω) defined by

‖u‖2
s+ 1

2 ,Ω
:=

∫ Ro

Ri

Js(r)(u)dr. (2.9)

Furthermore, for s= 1
2 , a direct computation yields that

‖u‖2
1,Ω :=

∫ Ro

Ri

J 1
2
(r)(u)dr=

(Ro−Ri)

Ro
a2

0+
∫

Ω
∇u·∇udx.

For the solution in the form of (2.2), we know that

(

∫ Ro

Ri

J 1
2
(r)(u)dr

)
1
2

is an equivalent

norm of u in H1(Ω).
Throughout this paper, we use J(r) to abbreviate Js(r)(u) when no confusion arises.

2.2 Three-line inequality

A three-line inequality was derived in [8] to analysis the Cauchy on rectangular domains
that have two insulated vertical boundaries, Γ0 and Γ1 are respectively the top and bot-
tom boundaries. In this section, we will derive an analogue for our problem on annulus
domains. For any r1 and r2 with Ri ≤ r1 < r2 ≤Ro, let

√
r1r2 be the geometric mean of r1

and r2. Then, we have

J(
√

r1r2)=
a2

0+b2
0√

r1r2
+2

∞

∑
k=1

k2s
[

(a2
k+b2

k)r
k− 1

2
1 r

k− 1
2

2 +(c2
k+d2

k)r
−k− 1

2
1 r

−k− 1
2

2

]

.

By the Cauchy–Schwarz inequality, we have

J(
√

r1r2)≤ J(r1)
1
2 J(r2)

1
2 . (2.10)

Consider any r∈ [Ri,Ro]. We define

γ(r)=
logr−logRi

logRo−logRi
, (2.11)

and write r=R
1−γ(r)
i R

γ(r)
o . It is easy to show that 0≤γ(r)≤1 for all r∈ [Ri,Ro]. Hence, we

can express γ(r) as

γ(r)=
∞

∑
k=1

ℓk

2k
, (2.12)
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where ℓk ∈{0,1} for all k. We define a convergent sequence based on (2.12),

γj(r)=
j

∑
k=1

ℓk

2k
→γ(r) as j→∞. (2.13)

Immediately, we have

R
1−γj(r)

i R
γj(r)
o →R

1−γ(r)
i R

γ(r)
o = r as j→∞. (2.14)

Using the estimate given in (2.10), we also have

J(R
1−γj(r)

i R
γj(r)
o )≤ J(Ri)

1−γj(r) J(Ro)
γj(r).

Letting j→∞, and by (2.13) and (2.14), we obtain a three-line inequality

J(r)≤ J(Ri)
1−γ(r)J(Ro)

γ(r) for Ri≤ r≤Ro, (2.15)

with γ(r) given in (2.11).

2.3 Continuous dependency on Cauchy data

Suppose the solution u of problem (2.1) satisfies the following assumption

J(Ri)= |u|2s,ΓRi
+‖∂ru‖2

s−1,ΓRi
≤M<∞, (2.16)

where M is a positive constant. Moreover, we assume that there is another positive con-
stant ε<MRi/Ro such that

J(Ro)= |u|2s,ΓRo
+‖∂ru‖2

s−1,ΓRo
≤ ε, (2.17)

Using the three-line inequality (2.15) and under the assumptions (2.16) and (2.17), we
obtain a bound

‖u‖2
s+ 1

2 ,Ω
≤

∫ Ro

Ri

J(Ri)
1−γ(r)J(Ro)

γ(r)dr≤M
∫ Ro

Ri

( ε

M

)γ(r)
dr. (2.18)

Using (2.11), the integrand of (2.18) can be expressed as

( ε

M

)γ(r)
=
( ε

M

)log(r/Ri)
/

log(Ro/Ri)
=λlog(r/Ri)=

(

r

Ri

)logλ

,

with λ :=
( ε

M

)1
/

log(Ro/Ri)
. By the imposed condition ε<MRi/Ro, we have

−logλ=
log(M/ε)

log(Ro/Ri)
>1.
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Therefore, the integral in (2.18) can be bounded by

∫ Ro

Ri

( ε

M

)γ(r)
dr =

∫ Ro

Ri

(

r

Ri

)logλ

dr=Ri

∫ Ro/Ri

1
(ξ)logλ dξ

= Ri
(Ro/Ri)

1+logλ−1

1+logλ
=

Ri−Ro (Ri/Ro)
−logλ

−logλ−1

≤ Ri

−logλ−1
.

Therefore, (2.18) implies that the Cauchy problem (2.1) depends continuously on the
Cauchy data. We conclude the stability result in the following lemma.

Lemma 2. Suppose that the solution u of the Cauchy problem (2.1) satisfies the restriction
(2.16) for a constant 0<M<∞ and (2.17) for a constant ε<MRi/Ro, then ‖u‖2

s+ 1
2 ,Ω

defined

as (2.9) depends continuously on the Cauchy data f and g on Γout, namely

‖u‖2
s+ 1

2 ,Ω
≤MRi log

Ro

Ri

(

log
Ri

Ro

M

ε

)−1

,

where C0 is a positive constant depending on Ri and Ro.

Proof. We have shown that

‖u‖2
s+ 1

2 ,Ω
≤ MRi

−logλ−1
=

MRi
(

log(M/ε)
log(Ro/Ri)

)

−1
.

An important feature of the proven bound is that all terms on the right hand side can be
explicitly evaluated. �

2.4 Energy regularization

The energy regularization method is recently applied for image deblurring [21]. In our

case, using Lemma 2, the Cauchy problem is well-posed in a subspace of Hs+ 1
2 (Ω). In

particular, the subspace is given by

Uε :=
{

u∈Hs+ 1
2 (Ω) :△u=0 in Ω, and |u− fε|2s,ΓRo

+‖∂θu−gε‖2
s−1,ΓRo

≤ ε
}

.

Now we define our regularized solution through a minimization

uε :=arg min
w∈Uε

J(Ri)(w). (2.19)
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Theorem 3. Suppose that the solution u∗ of the Cauchy problem (2.1) satisfies the as-
sumption

J(Ri)(u
∗)≤M<∞,

then the regularized solution defined by (2.19) converges to the exact solution as the noise
level ε→0,

‖uε−u∗‖2
s+ 1

2 ,Ω≤MRi log
Ro

Ri

(

log
Ri

Ro

M

ε

)−1

. (2.20)

Proof. Note that J(Ri)(uε−u∗)≤2J(Ri)(u
∗)≤2M and that

J(Ro)(uε−u∗) = |uε− f |2s,ΓRo
+‖∂ruε−g‖2

s−1,ΓRo

≤|uε− fε|2s,ΓRo
+‖∂ruε−gε‖2

s−1,ΓRo

+| fε− f |2s,ΓRo
+‖gε−g‖2

s−1,ΓRo
≤2ε.

Thus, applying Lemma 2 to uε−u∗ proves the theorem. �

2.5 Relation with the Tikhonov regularization with Morozov principle

This section studies the relationship between our regularization method and the Tikhonov
regularization with Morozov discrepancy principle. For Tikhonov regularization, we
refer to Baumeister [22], Engl, Hanke and Neubauer [23], Groetsch [24, 25], Hofmann
[26, 27], Vasin [28] and references therein.

We make a natural assumption on the Cauchy data and the noise level, that is we
assume that

| fε|2s,ΓRo
+‖gε‖2

s−1,ΓRo
> ε.

It is easy to see that the assumption guarantees that the existence of nontrivial solution uε

for (2.19). Moreover, it is easy to see that the above assumption grantees that the solution
uε attains the minimum on

|uε− fε|2s,ΓRo
+‖∂ruε−gε‖2

s−1,ΓRo
= ε.

Let α be a positive number and uε
α be the minimization solution of the following

Tikhonov functional

uε
α :=arg min

∆u=0

(

|u− fε|2s,ΓRo
+‖∂ru−gε‖2

s−1,ΓRo
+αJ(Ri)(u)

)

. (2.21)

It is well known that there exists α(ε)>0 for the Mirozov principle such that

|uε
α(ε)− fε|2s,ΓRo

+
∥

∥

∥
∂ruε

α(ε)−gε

∥

∥

∥

2

s−1,ΓRo

= ε
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The definition of uε
α(ε) yields

|uε
α(ε)− fε|2s,ΓRo

+‖∂ruε
α(ε)−gε‖2

s−1,ΓRo
+α(ε)J(Ri)(u

ε
α(ε))

≤|uε− fε|2s,ΓRo
+‖∂ruε−gε‖2

s−1,ΓRo
+α(ε)J(Ri)(u

ε),

and hence J(Ri)(u
ε
α(ε))≤ J(Ri)(u

ε). On the other hand, J(Ri)(u
ε
α(ε))≥ J(Ri)(u

ε) by the min-

imization property of uε. We have J(Ri)(u
ε
α(ε))= J(Ri)(u

ε). In other words, the solutions

obtained by the energy regularization and by the Tikhonov regularization with Morozov
principle will have the same energy on the inner boundary. Note that the convex func-
tional J takes the unique minimum over the constraints, and thus J(Ri)(u

ε
α(ε))= J(Ri)(u

ε)

means uε
α(ε)=uε.

The representation (2.2) of the solution of the Cauchy problem eliminates the condi-
tion ∆u=0 from the constraints of both the minimization problem (2.19) and (2.21), and
the problems become the minimization problems on the coefficients {a0,b0,ak,bk,ck,dk}∞

k=1.
However, the problem (2.19) still has the constraint on the Cauchy data,

|uε− fε|2s,ΓRo
+‖∂ruε−gε‖2

s−1,ΓRo
≤ ε.

On the other hand there is no constraint in the problem (2.21), which makes the numer-
ical computation easier. Finding the regularization parameter α satisfying the Morozov
principle seems to require us to solve the problem (2.21) with a wide range of α, however,
effective methods are available to find the parameter with less computation. We refer to
Ito and Kunisch [29], Kunisch and Zou [30], Xie and Zou [31].

Once we obtain the coefficients {a0,b0,ak,bk,ck,dk}∞
k=1, the regularized solution is rep-

resented as (2.2). However, the error in the coefficients are amplified by the factor rk

and/or r−k, and the numerical solution will have large oscillation. One can introduce
the cut off frequency Nc and define a solution with the coefficients with k≤ Nc. The er-
ror estimate between exact solution and such a solution can be found in Berntsson and
Eldén [12]. Yet, in the next section, we present a different approach based on the method
of fundamental solution.

3 Numerical approach

3.1 Implementation with MFS

We assume that we have the Cauchy data of the form

f N
ε (θ) =

N

∑
k=0

c( f N
ε )kcoskθ+

N

∑
k=1

s( f N
ε )ksinkθ, (3.1)

gN
ε (θ) =

N

∑
k=0

c(gN
ε )kcoskθ+

N

∑
k=1

s(gN
ε )ksinkθ, (3.2)
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with |u− fε|2s,ΓRo
+‖∂ru−gε‖2

s−1,ΓRo
≤ε, where u is an exact solution we give for a numerical

test, and {c( f )k}N
k=0 and {s( f )k}N

k=1 are the Fourier coefficients of a function f .
We present a numerical procedure for solving a Cauchy problem using the method of

fundamental solution (MFS). In literature, the fundamental solutions and Green’s func-
tions appear to be some attractive alternatives for solving direct [32,33] and inverse prob-
lems [16, 17, 34–37].

Denote Φ(x,ξ) to be the fundamental solution of the Laplacian operator. When the
source points ξ are located outside the domain Ω̄, the fundamental solution satisfies the
Laplace equation in domain Ω. The basic idea of the MFS is to approximate the solution
in term of a series of fundamental solutions. By construction, any numerical solution
automatically satisfies the differential equation.

Let Ξ:={ξi}m
i=1 be a set of source points in R

2\Ω̄. We represent the numerical solution
by the linear sum of fundamental solution with singularity outside of our domain

uN =
m

∑
j=1

λjΦ(·−ξ j).

We determine {λj}m
j=1 by applying our regularization method, which requires to evaluate

the norms |uN− f N
ε |2s,ΓRo

+‖∂ruN−gN
ε ‖2

s−1,ΓRo
and the energy

J(Ri)(u
N)= |uN |2s,ΓRi

+
∥

∥

∥
∂ruN

∥

∥

∥

2

s−1,ΓRi

.

We expand the trace of Φ(·−ξ j) and its normal derivative ∂rΦ(·−ξ j) on ΓRo in Fourier
series

Φ(·−ξ j)|ΓRo
(θ) =

N f

∑
k=0

A
j
kcoskθ+

N f

∑
k=1

B
j
ksinkθ,

and

∂rΦ(·−ξ j)|ΓRo
(θ) =

N f

∑
k=0

C
j
kcoskθ+

N f

∑
k=1

D
j
ksinkθ,

for j=1... ,m. Here N f is sufficiently large number. Then

m

∑
j=1

λjΦ(·−ξ j) =
N f

∑
k=0

( m

∑
j=1

A
j
kλj

)

coskθ+
N f

∑
k=1

( m

∑
j=1

B
j
kλj

)

sinkθ,

and

m

∑
j=1

λj∂rΦ(·−ξ j) =
N f

∑
k=0

( m

∑
j=1

C
j
kλj

)

coskθ+
N f

∑
k=1

( m

∑
j=1

D
j
kλj

)

sinkθ.



11

Thus, |uN− f N
ε |2s,ΓRo

+‖∂ruN−gN
ε ‖2

s−1,ΓRo
is written as

‖Gλ−y‖2
Rm :=

N f

∑
k=0

k2s
( m

∑
j=1

A
j
kλj−c( f N

ε )k

)2
+

N f

∑
k=1

k2s
( m

∑
j=1

B
j
kλj−s( f N

ε )k

)2

+R2
o

N f

∑
k=0

k2(s−1)
( m

∑
j=1

C
j
kλj−c(gN

ε )k

)2
+R2

o

N f

∑
k=1

k2(s−1)
( m

∑
j=1

D
j
kλj−s(gN

ε )k

)2
,

with suitably defined G and y. Since in general N f is a sufficiently large number (N ≪
N f ), we extend, for instance, the vector {c( f N

ε )}N
k=0 to the vector with N f components by

appending 0 to {c( f N
ε )}N

k=0. Similarly, the energy is written as

J(uN)=‖Fλ‖2
Rm ,

where F is constructed by using the Fourier coefficients of Φ(·−ξ j)|ΓRi
(θ) and ∂rΦ(·−

ξ j)|ΓRi
(θ). These allow us to solve (2.19) numerically.

3.2 Numerical Examples

In this section, we verify the numerical accuracy of the proposed method for the Cauchy
problem (2.1). We choose the following function as a test example:

Example 1 u(r,θ)=3+rcosθ−r−2cos2θ.

We use u to denote an exact solution instead of using u∗. The radii of the annulus are
fixed Ri = 0.8 and Ro = 1 for both cases. For MFS, we distribute one hundred source
points on a circle {x : |x|=0.55} and another one hundred source points on a bigger cir-
cle {x : |x|= 1.5}. Firstly, we verify the numerical accuracy of the method by observing
the error estimate (2.20) against numerical solutions for a fixed s. For a given ε> 0, the
Cauchy data { fε(θ),gε(θ)} is generated as

fε(θ)=u(Ro,θ)+
N

∑
k=0

ǫ
f
k coskθ, and gε(θ)=∂ru(Ro,θ)+

N

∑
k=0

ǫ
g
k coskθ,

so that

ε= |u− fε |2s,ΓRo
+‖∂ru−gε‖2

s−1,ΓRo
,

where {ǫ
f
k ,ǫ

g
k} are random numbers. We solve the minimization problem (2.19) to com-

pute ‖u−uN‖2
s+ 1

2 ,Ω
. Table 1 shows that the asymptotic behavior of the numerical error for

s= 0.5. The authors observe similar tends for all s∈ (−1,1); e.g., the numerical solution
converges to the exact solution as ε→0.
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Error\N 25 26 27 28 29 210

Abs. 1.0736e-1 8.1313e-2 4.3439e-2 2.5039e-2 1.3907e-2 8.6993e-3

Rel. 2.1067e-2 1.5956e-2 8.5238e-3 4.9133e-3 2.7289e-3 1.7070e-3

Table 1: Behavior of the numerical error with increasing numbers of Cauchy data.

Suppose two Cauchy data { f 1
ε (θ),g

1
ε (θ)} and { f 2

ε (θ),g
2
ε (θ)} have the same error level

|u− f 1
ε |2s1,ΓRo

+‖∂ru−g1
ε‖2

s1−1,ΓRo

= |u− f 2
ε |2s2,ΓRo

+‖∂ru−g2
ε‖2

s2−1,ΓRo
,

for regularization orders s1 < s2. Although the noise level ε are equal in both cases, the
overall shapes of these Cauchy data are different. The Cauchy data for smaller s1 contains
rougher noise, whereas the Cauchy data for larger s2 contains smoother noise and is
closer to the exact Cauchy data. Hence it is maneless to compare the two numerical
solutions obtained with these Cauchy data with identical noise level ε. However, it seems
interesting to compare numerical solutions obtained with different regularization order
s in (2.19) with a given Cauchy data. Therefore, instead of showing the behavior of the
error against noise level ε, we investigate the effect of the regularization order s to the
numerical solution for a given Cauchy data with the same relative noise level.

3.2.1 The effect of choosing s for a given Cauchy data

This section studies the effect of the regularization order s to the numerical solution with
a given Cauchy data.

Our Cauchy data are generated as follows: We fix 28 points θk=πk2−7 for k=0,.. .,(28−
1) on ΓRo and sample u at these points. Then the discrete noisy Dirichlet data fnoise∈R

28

is generated by adding random numbers to the exact data u={u(Ro,θk)}28−1
k=0 ,

fnoise(k)=u(Ro,θk)+σ·rand(k)

(

max
θ∈[0,2π]

u(Ro,θ)− min
θ∈[0,2π]

u(Ro,θ)

)

,

where rand(k)∈ [−1,1] is random number and σ is the prescribed the relative noise level
(independent of regularization order s). We take the Discrete Fourier transform of fnoise

to obtain fε(θ) of the form (3.1). The Nuemann data gε(θ) in (3.2) is given in the same
way. We get the noise level ε depending on σ and s by

ε(σ,s) := |u− fε |2s,ΓRo
+‖∂ru−gε‖2

s−1,ΓRo
(3.3)

for each Cauchy data. In practical situation, since the exact solution is unknown, the
noise level ε(σ,s) cannot be obtained in this way, and it is what we must estimate in some
way. Our propose here is to verify the performance of the proposed regularization. The
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exact value of ε given by (3.3) is used in the computation. If it is not the case, we have to
estimate ε. If (the estimated) ε is too large, our minimization problem, roughly speaking,
becomes an unconstrained minimization problem. That is, we ignore the Cauchy data
(correspond to α being too big in the Tikhonov regularization). Whereas, if ε is chosen
to small, the constraint is almost the same as u= f , ∂ru= g, which means we solve the
Cauchy problem without regularization (correspond to α≃ 0). If a priori knowledge on
exact noise level is assumed to be known; in this case, we can clearly see the effect of the
regularization order s to the numerical solution.

It is obvious that ε(σ) ↓0 as σ ↓0. We obtain the numerical solution by solving (2.19)
with using the noise level ε(σ,s) for Uε. Henceforth, we denote the numerical solution
by us

σ(r,θ) to indicate the relative noise level in the Cauchy data σ and the regularization
order s of the Sobolev space where the numerical solution lies.

For the numerical error estimations, we compute the relative error of us
σ(r,θ) over the

whole domain Ω:

E(σ,s) :=
‖u−us

σ‖2
s+ 1

2 ,Ω

‖u‖2
s+ 1

2 ,Ω

.

Figure 1 shows the graph of E(σ,s) for (σ,s) ∈ (0,10%]×[−1,1]. One can see that the
relative error E monotonically decreases as σ↓0 and for any fixed s as indicated in (2.20).
The author observed that, for relative noise level σ=0 (i.e., the noise free case), E(0,s) is
about machine accuracy ≃10−16 independent of s. Hence, data for E(0,s) is not included
in the Figure 1. Moreover, we observe that E(σ,−1)< E(σ,s) for all tested σ and s, but
this does not necessarily indicate that the numerical solution of the case s=−1 is most
accurate among others (since E depends on s).

For the comparison of the effect of s to the numerical solutions, we plot three nu-
merical solutions on the inner boundary us

σ(Ri,θ)= u−1
5%(Ri,θ), u0.5

5%(Ri,θ), u1
5%(Ri,θ) and

the exact solution u(Ri,θ) in Figure 2. We authors observe that the results of s = 0 and
s=−1 are more or less alike; hence, the regularization order s=0 is omitted in the com-
ing presentation. The numerical solution u−1

5%(Ri,θ) looks more accurate than u0.5
5%(Ri,θ).

However the normal derivative ∂ru−1
5%(Ri,θ) contains higher oscillation than ∂ru0.5

5%(Ri,θ)
as one can see in Figure 3. On the other hand, in contrast to the case s=−1, the numeri-
cal solution u1

5%(Ri,θ) and its normal derivative ∂ru1
5%(Ri,θ) is flat. The authors observed

that regardless of the relative noise level σ, the numerical solution u−1
σ (Ri,θ) looked more

“aggressive” and u1
σ(Ri,θ) more “conservative”. Therefore, we should consider a strat-

egy to pick the regularization order s according to given Cauchy data in order to get an
accurate numerical solution. We leave this to a future work.

Example 2 u(r,θ)=5−log((rcosθ−0.6)2+(rsinθ)2).

Note that, in this example, the Fourier expansion of u is an infinite series. This makes
Example 2 more difficult to solve accurately than Example 1. The graph of the result-
ing relative error E(σ,s) shows the same trend as that of Example 1 (see Figure 1) and is
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Figure 1: E(σ,s) of Example 1: Relative error in the numerical solutions in Hs+ 1
2 (Ω).

omitted.
We plot three numerical solutions on the inner boundary u−1

5%(Ri,θ), u0.5
5%(Ri,θ), u1

5%(Ri,θ)
and the exact solution u(Ri,θ) in Figure 4 and their normal derivative in Figure 5. As one
have seen in Example 1, the numerical solution for s=−1 is more aggressive and s=1 is
more conservative.

From Figure 4 and Figure 5, it may appear that using regularization order s = 1 re-
sults less superior approximations of u(Ri,·) and ∂ru(Ri,·) than the other two choices.
Before ending our discussion, we shift our focus to the important physical quantity—the
coefficient of energy exchange γ. Approximation to γ can be immediately obtained via:

γs
σ(θ) :=−∂rus

σ(Ri,θ)

us
σ(Ri,θ)

.

For s∈{−1,0.5,1}, the numerical reconstructions of the energy exchanges are shown in
Figure 6(a) and in Figure 6(c), respectively, for the noise free and noisy Cauchy data with
relative noise level σ ∈ {0%,1%,5%,10%}. For the noise free case (e.g. σ = 0 in Figure
6(a)), all tested s result in perfect reconstructions of the coefficient γ. However, when the
Cauchy data is contaminated by noise, Figure 6(b) to Figure 6(d) show that the seem-
ingly bad choice s = 1 gives the best approximation to γ in terms of the overall shape.
Reconstructed γ1

σ is less oscillatory, even under 10% of relative noise, than the others
(smaller) s and is still able to capture the “peak” around θ = 0. To better demonstrate



15

0 1 2 3 4 5 6
0

1

2

3

4

5

6

θ

N
um

er
ic

al
 s

ol
ut

io
ns

 

 
u
s=−1
s=0.5
s=1

Figure 2: Example 1: The exact solution u(Ri,θ) and numerical solutions,
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Figure 3: Example 1: The exact solution ∂ru(Ri,θ) and the normal derivative
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5%(Ri,θ).
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Figure 4: Example 2: The exact solution u(Ri,θ) and numerical solutions,
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the effect of s, Figure 7 and Figure 8 demonstrate the numerical solutions and their r-
derivatives using regularization order s∈{−1,1}, respectively, under relative noise levels
σ={0%,5%,10%}. Plots for s=0.5 are similar to that of s=−1 and are omitted. Moreover,
we remark that the Cauchy data for the same σ are identical in both figures. One can see
that the numerical solutions of s=1 appears to be more oscillatory near the outer bound-
ary; on the inner boundary, the r-derivatives in Figure 8 are comparatively smoother than
those in Figure 7.
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(a) with noise free Cauchy data.
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(b) with 1% noise.
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(c) with 5% noise.
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Figure 6: Example 2: Numerical reconstruction of the coefficient of energy exchange γs
0%(θ), s∈{−1,0.5,1}.

4 Conclusion

We prove a three-line inequality for the Cauchy problem of Laplace equation in annu-
lus domain. By this inequality, we show that the Cauchy solution depends continuously
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on the Cauchy data posed on the outer boundary if we assume that the solution trace
on the inner boundary are bounded. These results naturally lead us to an energy regu-
larization method; the regularized solution can be sought within a (Cauchy dependent)
subspace of Hs+1/2(Ω). Convergence analysis for the energy regularization method is
relatively simple. Later, we build a connection between our method and the commonly
used Tikhonov regularization. It is shown what the energy regularization is in fact equiv-
alent to a Tikhonov regularization.

A numerical procedure based on the method of fundamental solution is proposed.
Instead of strong form collocation, we couple the energy regularization on the Fourier
space. For noise free data, numerical results show machine accuracy on the reconstruc-
tions of Dirichlet and Neumann inner boundary data for all tested regularization order
s. For contaminated Cauchy data, small regularization order (e.g. s=−1) is better if the
Dirichlet and Neumann boundary data are desired. On the order hand, when one is in-
terested in the coefficient of energy exchange, large regularization order (e.g. s= 1) is a
better choice. We tested up to 10% of relative noise, the overall shape of the coefficient of
energy exchange can still be well approximated.

A question to be answered is the strategy of pick the “noise level” that is used to
define the subspace in which lies the numerical solution. We leave this to our future
research.
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Figure 7: Example 2: Numerical solutions and their r-derivatives using regularization order s=−1 under different
relative noise levels σ.
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Figure 8: Example 2: Numerical solutions and their r-derivatives using regularization order s=1 under different
relative noise levels σ.


