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Abstract. In the theoretical part of this paper, we introduce a simplified proof technique for
error bounds and convergence of a variation of E. Kansa’s well-known unsymmetric meshless collo-
cation method. For a numerical implementation of the convergent variation, a previously proposed
greedy technique is coupled with linear optimization. This algorithm allows a fully adaptive on-
the-fly data-dependent meshless selection of test and trial spaces. The new method satisfies the
assumptions of the background theory, and numerical experiments demonstrate its stability.
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1. Introduction. A general framework for solving PDE problems in strong or
weak form by kernel–based meshless methods was outlined in [13]. It writes the PDE
problem as uncountably many simultaneous scalar equations

λ(u) = fλ ∈ R, for all λ ∈ Λ. (1.1)

We call Λ the test set, because applying all functionals λ from Λ to a function u tests
whether the function u solves the given problem. If several differential or boundary
operators are involved, we simply put everything into a single set Λ of functionals of
various types.

Testing can be done in strong and weak form. For testing in strong form, the set
Λ consists of infinitely many linear real–valued functionals λ that usually take the
form of point evaluations of functions or their derivatives at points inside a domain
or on some boundary or interface layer.

Testing in weak form uses functionals

λv,a(u) := a(u, v)

which evaluate bilinear forms a(., .) after inserting a test function v. These bilinear
forms may contain derivatives, and they always require an integration.

No matter how testing is done, we call (1.1) a generalized interpolation problem,
and we assume it to be solvable by a function u∗ that generates the data via fλ :=
λ(u∗) for all λ ∈ Λ.

To make generalized interpolation problems numerically accessible, we have to dis-
cretize them. Discretization on the trial side is done by choosing a finite-dimensional
trial space U of functions which can approximate the exact solution u∗ well. It will be
the space of functions from which the numerical solution u will be constructed, and
we assume it to be spanned by a basis {u1, . . . , um} as

u :=

m
∑

j=1

αjuj ∈ U := span{u1, . . . , um}. (1.2)
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Discretization on the test side just consists in replacing the infinite set Λ by some
finite unstructured subset Λn := {λ1, . . . , λn}. The space spanned by these functionals
can be called the test space.

Then, the discretized problem reads as

λi(u) =

m
∑

j=1

αjλi(uj) = fλi
= λi(u

∗), 1 ≤ i ≤ n, (1.3)

when written as an unsymmetric system of linear equations for a function u of the
trial space U . In most cases, the system will have n ≥ m, but it is always a hard
problem to study the matrix with entries λi(uj), e.g. to assert that it has rank m.

Weak formulations use functionals of the form λi(u) := ai(u, vi) with certain
bilinear forms ai and test functions v1, . . . , vn such that the discretized problem takes
the familiar form

λi(u) = ai(u, vi) =
m

∑

j=1

αjai(uj , vi) = fλi
= λi(u

∗), 1 ≤ i ≤ n,

of meshless Petrov–Galerkin schemes [1]. If trial functions uj and test functions
vi coincide, and if there is only a single bilinear form involved, this reduces to the
well-known Galerkin method. It has a strong built–in connection of test functionals
to trial functions and yields a linear system with a positive semidefinite symmetric
Gramian matrix. This makes it easy to handle, and it forms the core of the Finite
Element Method and some of its generalizations. However, for unsymnmetric weak
Petrov-Galerkin schemes, the theoretical and numerical analysis is rather hard [15].

To make problems in strong formulation symmetric, the connection between test
functionals and trial functions must be established differently. To get a truly meshless
technique and to allow very general problems, the connection is made via a symmetric
positive definite kernel Φ : R

d × R
d → R if the underlying problem is posed for

functions of d variables on a domain Ω ⊂ R
d. It takes the discretized set Λm of test

functionals and defines the trial functions in (1.2) as uj := λy
j Φ(·, y) for 1 ≤ j ≤ m

where the superscript of λ indicates the variable of Φ on which the functional operates.
Then the collocation matrix (1.3) is symmetric with entries λi(uj) = λx

i λy
j Φ(x, y) for

1 ≤ i, j ≤ n. This symmetric collocation technique dates back to [17] and has a solid
mathematical basis ([3, 4]). Like in the standard (non–Petrov) Galerkin scheme,
the trial and test functions or functionals are closely related in order to maintain
symmetry.

But this paper will deal with unsymmetric meshless collocation. Following an
early idea of Kansa [7, 8] used by many authors afterwards (see an overview in [5]),
one takes a set Xm := {x1, . . . , xm} ⊂ R

d of m scattered points and uses a kernel Φ
to define the trial space U spanned by the trial functions

uj = Φ(·, xj) = λy
δxj

Φ(·, y), 1 ≤ j ≤ m (1.4)

associated to simple point evaluation functionals λδxj
. Often, but not necessarily, the

points xj are irregularly placed within Ω. Since they determine the trial functions in
(1.4), we can call them trial centers. The resulting unsymmetric collocation matrix
has the entries

λi(uj) = λy
i Φ(y, xj), 1 ≤ i ≤ n, 1 ≤ j ≤ m
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and can be singular in exceptional cases [6]. Consequently, there are very limited
mathematical results on this technique, though it gives very good results in plenty of
applications in science and engineering.

To overcome these solvability problems, one has to modify the setting. To get
solvability and error bounds, there should at least be a unique solution to the modified
discretized system that converges to the true solution if the discretization is refined.
The first question requires that if n ≫ m test functionals are fixed and are linearly
independent, the system has rank m, if the trial functions are chosen properly. This
was proven in [11], while the earlier paper [13] contained an asymptotic analysis for
sufficiently many test functionals and trial functions. By a rather complicated and
abstract machinery, a fairly general theory leading to error bounds and convergence
results for the unsymmetric meshless collocation method was finally provided in [14].

This paper is independent of the theory in [14] and will prove a much more
elementary convergence result for a variation of meshless unsymmetric collocation.
Furthermore, since [14] does not focus on numerical techniques, we show how certain
algorithms allow to satisfy the requirements needed for convergence, both in the con-
text of this paper and [14]. In particular, we combine an adaptive greedy method
with linear programming, and some numerical examples show that our new adaptive
on-the-fly algorithm works stably in spite of large condition numbers.

2. Well-Posed Problems. We now go back to the infinite problem (1.1) and
proceed to define a variation of the unsymmetric collocation technique that will have
a convergence proof. To this end, we have to fix the mathematical background.

The problem (1.1) is posed in a Hilbert space U via a test set Λ ⊂ U∗ of continuous
linear functionals on U . The functionals can clearly be normalized to satisfy ‖λ‖U∗ = 1
for all λ ∈ Λ. The specific solution to our problem is called u∗ from now on. This
way, we assume solvability within the Hilbert space U , even if the space U is smaller
than the “existence space”, i.e. the space in which minimal assumptions guarantee
existence of a solution by mathematical analysis. For instance, a Poisson problem
on a domain Ω ⊂ R

d can be stated in Sobolev “existence” space W 1
2 (Ω) in weak

formulation, but we can also take a Hilbert space U of at least twice differentiable
functions and pose the Poisson problem there in strong form, using the data from a
smooth function u∗ ∈ U . Note that standard regularity theory [10] allows this, if the
data and the domain are smooth. The above general framework allows both settings,
if applied in weak form, since the given data always are of the form λ(u∗), λ ∈ Λ for
a specific function u∗ ∈ U . But here we want to stick to problems posed in strong
form, and we assume sufficient additional regularity.

Furthermore, we need that the problem is well–posed, and this is expressed by
the requirement that

‖u‖Λ := sup
λ∈Λ

|λ(u)| (2.1)

is a norm on U . This definition will always provide a seminorm without further
assumptions, but we get a norm if we can prove unique solvability by additional
analytic arguments like a maximum principle. Note that this norm will be weaker
than the norm in U because of

‖u‖Λ ≤ ‖u‖U for all u ∈ U (2.2)

following from

|λ(u)| ≤ ‖λ‖U∗‖u‖U = ‖u‖U for all u ∈ U , λ ∈ Λ
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and normalization of the test functionals. The well–posedness of the problem is often
alternatively expressed in the form

‖u‖A ≤ CA‖u‖Λ ≤ CA‖u‖U for all u ∈ U , (2.3)

where UA with norm ‖.‖A is a data–independent function space like U , but with a
weaker norm. This also means that U is continuously imbedded in UA. The upshot
here is that the space UA and its norm should not be dependent on the test set Λ
anymore. We call (2.3) the basic analytic a–priori inequality for well-posedness of the
problem in the space UA. The condition (2.3) looks rather abstract, but it can be
explained by

Example 2.1. Let a Poisson problem in 2D be given in strong form as

∆u = f in Ω
u = ϕ on ∂Ω

with f continuous in Ω and g continuous on ∂Ω. Furthermore, let Ω be a bounded
domain in R

2. The domain should allow the standard maximum principle and admit
the standard a–priori inequality

‖u‖W 2(Ω) ≤ CA‖∆u‖L2(Ω)

for all u in W 2
0 (Ω) (see [10, p. 66, (6.8)]). Since we are in 2D, there is a Sobolev

embedding inequality

‖u‖∞,Ω ≤ CS‖u‖W 2(Ω)

for all u ∈ W 2(Ω). We pose a strong problem by taking the test set Λ to consist of all
functionals

u 7→ (∆u)(x), x ∈ Ω
u 7→ u(y), y ∈ ∂Ω.

We consider the space U = C2(Ω) of functions on Ω. For all functions u ∈ U we
define

‖u‖Λ := max(‖∆u‖∞,Ω, ‖u‖∞,∂Ω)
‖u‖U := 2 · max

|α|≤2
‖Dαu‖∞,Ω

to get ‖u‖Λ ≤ ‖u‖U . Let there be a W 2(Ω)–regular true solution u∗, and assume that
we have an approximate solution v ∈ U = C2(Ω) with

∆v ≈ f in Ω
v ≈ ϕ on ∂Ω

such that ∆v is still continuous in Ω and v is continuous on ∂Ω. Let w be the solution
of

∆w = 0 in Ω
w = v − ϕ on ∂Ω.

Then, by the maximum principle, we have

‖w‖∞,Ω ≤ ‖w‖∞,∂Ω = ‖v − ϕ‖∞,∂Ω,
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and we get the error bound

‖u∗ − v‖∞,Ω ≤ ‖u∗ − v + w‖∞,Ω + ‖w‖∞,Ω ≤ ‖u∗ − v + w‖∞,Ω + ‖v − ϕ‖∞,∂Ω.

The function u∗− v +w has vanishing boundary values and thus lies in W 2
0 (Ω). With

the Sobolev embedding inequality we then get

‖u∗ − v + w‖∞,Ω ≤ CS‖u∗ − v + w‖W 2(Ω)

≤ CSCA‖∆(u∗ − v + w)‖L2(Ω)

= CSCA‖∆(u∗ − v)‖L2(Ω)

= CSCA‖f − ∆v‖L2(Ω)

≤ CSCA

√

vol(Ω)‖f − ∆v‖∞,Ω

and finally

‖u∗ − v‖∞,Ω ≤ ‖v − ϕ‖∞,∂Ω + CSCA

√

vol(Ω)‖f − ∆v‖∞,Ω

≤
(

1 + CSCA

√

vol(Ω)
)

max(‖v − ϕ‖∞,∂Ω, ‖f − ∆v‖∞,Ω)

=
(

1 + CSCA

√

vol(Ω)
)

‖v − u∗‖Λ.

Under the above assumptions, there is a constant C, independent of u∗ ∈ W 2(Ω) and
v ∈ C2(Ω), such that

‖v − u∗‖∞,Ω ≤ C‖v − u∗‖Λ

holds. This altogether proves (2.3) for UA = C(Ω) with norm ‖.‖A = ‖.‖∞. �

Note that our assumption of well-posedness replaces standard assumptions like uni-
form ellipticity of the underlying differential operator. Thus we can handle much
more general situations.

3. Approximation in Trial Spaces. Now let Uǫ be a subspace of U such that
for all u ∈ U there is some approximation vu,ǫ ∈ Uǫ with

‖u − vu,ǫ‖Λ ≤ ǫ‖u‖U for all u ∈ U (3.1)

with a small number ǫ > 0. This is satisfied for subspaces that come from a sequence
of subspaces getting dense in U , e.g. for Kansa–type trial spaces with sufficiently
dense trial centers. One will, however, need a little more regularity in U than the
regularity to define ‖u‖Λ to get such a bound. Let us explain how to derive (3.1) in
special cases. Details and proof techniques are in the recent book [16].

Example 3.1. Take a smooth positive definite radial basis function φ and define
a translation-invariant kernel Φ on R

d via

Φ(x − y) := φ(‖x − y‖2), x, y ∈ R
d.

Its smoothness is measured via Fourier transforms and a positive real number β sat-
isfying

Φ̂(ω) ≤ C(1 + ‖ω‖2)
−d−β for all ω ∈ R

d.

Then there is a unique “native” Hilbert space U isomorphic to W (d+β)/2(Rd) in which
Φ is a reproducing kernel. Now take a large set X of scattered centers in a bounded
domain Ω ⊂ R

d such that the fill distance or mesh norm

h := sup
y∈Ω

min
x∈X

‖x − y‖2
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is small. For each u ∈ U consider the standard interpolant su,X based on translates
Φ(· − xj) with respect to the data in X. Then there is a pointwise error bound

|(Dαu)(x) − (Dαsu,X)(x)| ≤ Cαhβ/2−|α|‖u‖U for all u ∈ U , x ∈ Ω, 0 ≤ |α| < β/2.

where C is a constant depending only on U and the domain, but not on X, x, h, α, and
u. We apply this for all functionals λ ∈ Λ if they are in strong form, i.e. evaluations of
operators acting on u and evaluated at a point, like µ(u) := Dα

xu := (Dαu)(x). Then
it is clear that (3.1) holds, provided that regularity of the solution and smoothness of
the kernel are good enough to guarantee β/2 − |α| > 0 for all occurring derivative
orders |α| in the strong functionals of the test set Λ. Again, our assumptions are
much more general than in standard theories, because we just require a reasonably
good approximation of the true solution by the trial space, no matter how it is defined.

4. Convergence. Now we describe the basic convergence argument, but we start
in a rather abstract setting and do not even specify whether we apply weak or strong
testing or how we do the numerical calculations. Using the subspace Uǫ ⊂ U provided
by the previous section, we would like to construct a function vǫ ∈ Uǫ that solves

vǫ = arg min
v∈Uǫ

‖v − u∗‖Λ = arg min
v∈Uǫ

sup
λ∈Λ

|λ(v) − λ(u∗)| (4.1)

over all v ∈ Uǫ. We do not know whether the minimum is attained and how to
calculate it, but we know that there is a function v∗ǫ ∈ Uǫ with

‖v∗ǫ − u∗‖Λ ≤ 2‖vu∗,ǫ − u∗‖Λ ≤ 2ǫ‖u∗‖U (4.2)

which is sufficient for our purpose. Though almost trivial, we state
Theorem 4.1. Let U be a normed linear space with norm ‖.‖U , dual space U∗

and dual unit sphere U∗
1 := {λ ∈ U∗ : ‖λ‖U∗ = 1}. Let a test set Λ ⊂ U∗

1 be given
such that ‖.‖Λ is defined on U with (2.1) and (2.2). Assume further that the general
interpolation problem (1.1) is well-posed, i.e. that ‖.‖Λ is a norm. Let {Uǫ}ǫ be a
scale of subspaces of U for ǫ → 0 such that for all u ∈ U there is a vu,ǫ ∈ Uǫ with
(3.1). For all ǫ → 0, take a function v∗ǫ satisfying (4.2). Then the error bound (4.2)
holds and there is convergence ‖v∗ǫ − u∗‖Λ → 0. If well-posedness holds via (2.3) for
a space UA, then convergence and error bound can both be rewritten in terms of ‖.‖A.
The same results hold for solutions vǫ of (4.1). �

Note that convergence rates of the approximation in Uǫ spaces carry over to conver-
gence rates of the approximate solutions v∗ǫ , precisely as in the FEM case. In other
words, the rate of convergence of the approximate solutions is exactly the one of the
best approximation in Uǫ with respect to the norm ‖.‖Λ to functions in U . Details
can be worked out along the lines of the above examples.

5. Abstract Greedy Adaptive Algorithm. Now we want to set Theorem 4.1
to work. For ǫ fixed, we want to show how (4.2) can be solved. The space Uǫ will be a
standard finite–dimensional Kansa trial space along the lines of Section 3. Following
the previous section, we have to solve the semi–infinite linear optimization problem
PΛ defined by

Minimize η s.t.
λ(v) − λ(u∗) ≤ η for all λ ∈ Λ

−λ(v) + λ(u∗) ≤ η for all λ ∈ Λ
v ∈ Uǫ,
η ∈ R.

(5.1)
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to obtain the solution vǫ in (4.1) or at least a suboptimal function v∗ǫ satisfying (4.2).
But we want to discretize the test side of this optimization problem, replacing Λ
above by a finite subset Λn := {λ1, . . . , λn} to get a standard finite-dimensional linear
optimization problem PΛn

.

To this end, we define the following abstract greedy adaptive algorithm:

• For n := 0 define v0 := 0 and Λ0 := ∅.
• 1. If ‖vn − u∗‖Λ = 0 holds, stop.

2. Else take λn+1 ∈ Λ with

2

3
‖vn − u∗‖Λ ≤ |λn+1(vn − u∗)| ≤ ‖vn − u∗‖Λ (5.2)

and set Λn+1 = Λn ∪ {λn+1}.
3. Solve the finite-dimensional linear optimization problem PΛn+1

by a
function vn+1 ∈ Uǫ.

4. Set n ⇐ n + 1 and repeat.

We now show how close this algorithm comes to solving (4.1) or (5.1) with the optimal
value

η∗ = min
v∈Uǫ

‖v − u∗‖Λ = min
v∈Uǫ

sup
λ∈Λ

|λ(v) − λ(u∗)|.

Theorem 5.1. If the algorithm is finite, then u∗ ∈ Uǫ holds and the true solution
of the problem is reached in a finite number of steps. Otherwise

η∗ ≤ ‖vn − u∗‖Λ ≤ 2‖vn − u∗‖Λn
=: 2ηn ≤ 2η∗

holds for infinitely many n. After a finite number of steps, the sufficient criterion

‖vn − u∗‖Λ ≤ 2ηn (5.3)

for vn being a solution of (4.2) is satisfied.

Proof. The first statement is trivial. If the algorithm generates an infinite sequence
with ‖vn − u∗‖Λ > 0, we renormalize and get convergence of a subsequence to

vn − u∗

‖vn − u∗‖Λ
→ w ∈ Uǫ

with ‖w‖Λ = 1, because Uǫ and u∗ span a finite-dimensional space. By our selection
rule,

‖vn − u∗‖Λ ≥ ‖vn − u∗‖Λn+1
≥ |λn+1(vn − u∗)| ≥

2

3
‖vn − u∗‖Λ

and

‖w‖Λn+1
≥

∥

∥

∥

vn−u∗

‖vn−u∗‖Λ

∥

∥

∥

Λn+1

−
∥

∥

∥w − vn−u∗

‖vn−u∗‖Λ

∥

∥

∥

Λn+1

≥ 2
3 −

∥

∥

∥
w − vn−u∗

‖vn−u∗‖Λ

∥

∥

∥

Λ
≥ 1

2
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for sufficiently large n from our subsequence. Similarly,

ηn

‖vn − u∗‖Λ
=

‖vn − u∗‖Λn

‖vn − u∗‖Λ

≥ ‖w‖Λn
−

∥

∥

∥

∥

w −
vn − u∗

‖vn − u∗‖Λ

∥

∥

∥

∥

Λn

≥ ‖w‖Λn
−

∥

∥

∥

∥

w −
vn − u∗

‖vn − u∗‖Λ

∥

∥

∥

∥

Λ

implies that we have

ηn

‖vn − u∗‖Λ
≥

1

2

and

1

2
‖vn − u∗‖Λ ≤ ηn ≤ ‖vn − u∗‖Λ

for infinitely many sufficiently large n from our subsequence. Since

0 ≤ η1 ≤ . . . ≤ ηn ≤ lim
j→∞

ηj =: η̃ ≤ η∗ := inf
v∈Uǫ

‖v − u∗‖Λ < ∞

we can conclude that

η∗ ≤ ‖vn − u∗‖Λ ≤ 2ηn ≤ 2η̃ ≤ 2η∗

holds for sufficiently large n of a subsequence. If (5.3) holds, the above inequality is
satisfied. Then we have (4.2) due to

‖vn − u∗‖Λ ≤ 2η∗ ≤ 2‖vu∗,ǫ − u∗‖Λ ≤ 2ǫ‖u∗‖U .

�

Note that the criterion (5.3) is rather close to being numerically available.

Theorem 5.1 shows that the selection of useful finite subsets Λn can be done by an
adaptive greedy method, taking sequences of finite linear programs and checking their
solutions on the remaining test functionals, taking in those functionals where large
errors occur. The next sections will address the implementation of the above abstract
algorithm.

6. Linear Optimization. With the theoretical background of the previous sec-
tion, we now proceed towards the implementation of a greedy adaptive on-the-fly
variant of a linear optimization algorithm, but we have to postpone adaptivity to the
next section. Assume that we have a selection Λn := {λ1, . . . , λn} of test functionals
and a selection Um := span {u1, . . . , um} of a space of trial functions, such that the
linear optimization problem, i.e., the discretized version of (5.1), reads as

Minimize η s.t.
m

∑

k=1

αkλj(uk) − λj(u
∗) ≤ η, 1 ≤ j ≤ n,

−
m

∑

k=1

αkλj(uk) + λj(u
∗) ≤ η, 1 ≤ j ≤ n,

αk ∈ R, 1 ≤ k ≤ m,
η ∈ R.
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This is a linear discrete Chebyshev approximation problem of the form

Minimize η s.t.
Ax − b ≤ η · 1

−Ax + b ≤ η · 1

written out componentwise with a matrix A ∈ R
n×m, m ≤ n and vectors b ∈ R

n, 1 ∈
R

n. We explicitly reformulate the standard reduction to a dual problem in canonical
form [2] because we want to add adaptivity later. First, we rewrite the constraints as

(

A −1

−A −1

)

·

(

x
η

)

≤

(

b
−b

)

and the objective function as

−η = (0,−1) ·

(

x
η

)

to be maximized. The standard dual of such a problem is

Minimize (uT , vT ) ·

(

b
−b

)

s.t.
(

AT −AT

−1T −1T

)

·

(

u
v

)

=

(

0

−1

)

u, v ≥ 0

or, equivalently

Minimize bT (u − v) s.t.
AT (u − v) = 0
1T (u + v) = 1

u, v ≥ 0.

(6.1)

Since the original problem is solvable, the weak and strong duality theorems hold.
In addition, the complementary slackness conditions at the optimal primal and dual
solutions, denoted by x∗, η∗, u∗, v∗ will be satisfied. They are

u∗
j · (Ax∗ − b − η∗ · 1)j = 0

v∗j · (−Ax∗ + b − η∗ · 1)j = 0

while the factors are nonnegative. The upshot is that there are active indices j which
can be grouped into two sets

j ∈ J+ if u∗
j > 0 and (Ax∗ − b)j = η

j ∈ J− if v∗j > 0 and (Ax∗ − b)j = −η.

If η > 0, these index sets are disjoint. This implies that the index sets are related to
the signs of the nonzero components of w∗, if there are no degenerations.

We work with the revised simplex method based on (6.1). This means that (except
for the startup phase, which is postponed here) we always keep the inverse C of a
(m + 2) × (m + 2) matrix

C−1 = B :=





AT
s 0

1T 0
bT
s −1
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with a sign vector s ∈ {−1, +1}m+1 such that B contains a nonsingular selection of
m + 1 columns of

B :=





AT −AT 0
1T 1T 1
bT −bT −1





with the appropriate signs. In addition, one must store the numbers of the selected
columns of B, or, equivalently, the numbers of the selected test functionals. We call
the selection of m + 1 signs and functionals occurring in B the dual basis. The
current dual vertex is a vector ws ∈ R

m+1 such that

AT
s ws = 0

1T ws = 1.
(6.2)

This means that




AT
s 0

1T 0
bT
s −1



 ·

(

ws

bT
s ws

)

=





0
1
0



 and

(

ws

bT
s ws

)

= C ·





0
1
0





hold. Thus the dual vertex and the value of the dual objective function can be read
off the penultimate column of the matrix C. The corresponding primal vertex is
described by

(

As 1 bs

0 0 −1

)

·





xs

−η
−1



 =

(

0
1

)

or





xs

−η
−1



 = CT ·

(

0
1

)

(6.3)

and can be read off the last column of CT which is the last row of C.
The revised simplex method based on (6.1) already is an on–the–fly technique,

provided that new columns of the constraint matrix are successively added, while the
rows are fixed [2]. For the original problem, this means that new test functionals are
introduced, while the trial space is fixed. So there are no problems when adding new
test functionals to a solver running as a revised simplex method for the dual problem
(6.1). We shall explain this in detail in the following section. The actual calculation
matrix C (i.e. the inverse of a square part B of the full data matrix B) will be of
constant size for a fixed trial space.

For completeness and later use, let us describe the on–the–fly recipe. In theory,
the standard full simplex tableau is the matrix C · B which is of the form

(

S+ S− ws

zT
+ zT

− bT
s ws

)

due to the factorization





AT
s 0

1T 0
bT
s −1



 ·

(

S+ S− ws

zT
+ zT

− bT
s ws

)

=





AT −AT 0
1T 1T 1
bT −bT 0



 . (6.4)

Note that this tableau is never stored. The crucial row for the simplex method is the
final one, containing the vectors

zT
+ = bsS+ − bT , zT

− = bsS− + bT .
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It is representable as eT
n+2CB, but we know that eT

n+2C contains the primal data
(xT

s ,−η,−1). This means that

(zT
+, zT

−, bT
s ws) = (xT

s ,−η,−1) ·





AT −AT 0
1T 1T 1
bT −bT 0





holds, i.e.

Axs − b − η1 = z+

−Axs + b − η1 = z−
−η = bT

s ws.
(6.5)

The tableau is optimal iff all components of the z vectors are nonpositive. This means
‖Axs − b‖∞ ≤ η, as expected.

7. Adaptive Linear Optimization. We now know that we have to look for a
test functional λ ∈ Λ with a large positive value of

|λ(Um)T · xs − fλ| − η

with (λ(u1), . . . , λ(um)) =: λ(Um)T . This can be done without storing any matrix
data, and the search for a good test functional can be made on an extremely large set of
test functionals. Going for the largest possible value can be called a “greedy” strategy.
This is the common choice in linear optimization, and it has been used favourably [11]
also in meshless adaptive PDE solvers based on unsymmetric collocation. But note
that (5.2) is satisfied if we only make sure that our new functional λ has the property

|λ(Um)T · xs − fλ| ≥
2

3
sup
µ∈Λ

|µ(Um)T · xs − fµ|,

i.e. it suffices to find a reasonably good suboptimal functional to make our error
bounds and convergence results valid.

Once we have such a functional, we generate the corresponding column of B,
multiply it by C and get the corresponding column of the full tableau. We have to
make sure that the coresponding entry of z− or z+ is positive. In view of (6.5) we go
for the left–hand part of B, if

λ(Um)T · xs − fλ − η

is positive. This sign information must be stored together with the identification
or index for λ. Up to here, we have found the column of the pivot for the next
step of the simplex algorithm. The pivot row is now generated in the standard way,
comparing entries of the pivot column to the final column of the tableau, which is
the penultimate column of C. Such a pivot row must exist, because otherwise our
discrete linear optimization would be unsolvable. This determines a Gauss–Jordan
transformation, which is carried out on C and not on the tableau. In fact, since the
standard Gauss–Jordan transformation can be written as multiplication of the tableau
from the left by an (m + 2) × (m + 2) matrix J , we can use (6.4) to see that we only
need to multiply C−1 with J−1 from the right. This means that we can update C by
forming J · C. This finishes the step of the revised simplex method.

The above algorithm runs on a fixed trial space and can handle extremely large
amounts of test functionals. It does not need to arrive at a full minimum, in particular
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if the current value of η = −bT
s ws is too large to be tolerated for the given problem.

Note that for any intermediate situation we have the inequality

η ≤ inf
u∈Um

sup
λ∈Λ

|λ(u) − fλ|. (7.1)

This follows from the weak duality theorem in linear optimization. In fact, if u is any
function from the trial space with coefficient vector x ∈ R

m in the basis u1, . . . , um,
we have (Asx − bs)

T ws = −bT
s ws = η and find

η ≤ ‖ws‖1‖Asx − bs‖∞ = ‖Asx − bs‖∞ ≤ sup
λ∈Λ

|λ(u) − fλ|

because Asx − bs is a signed collection of values λ(u) − fλ with those functionals λ
which constitute the actual rows of As.

In (7.1) one would finally get equality if the revised simplex algorithm is carried
out indefinitely with Um fixed. But if η is at some stage already rather large to be
tolerated, it does not make sense to work all the way towards a full optimization with
respect to all test functionals, because η will increase all the time. It is more advisable
to enlarge the trial space to make smaller values of η possible at all. This is to be
investigated in the next section.

8. Adaptivity of Trial Spaces. We focus now on a situation where there are
no new test functionals to be introduced while the error level η is still too large. This
calls for an enlargement of the trial space. Adding a new trial function means adding a
column to A, and at this point we do not assume anything about that choice. One can
use radial basis functions of any shape or scale, finite elements, or singular functions
to cope with boundary singularities. However, adding a column to A means adding
a row to AT , and consequently the actual vertex solution of the dual problem (6.1)
cannot be used any more. A complete restart should be avoided. We thus look for
an on–the–fly technique that makes use of the current optimal vertex of (6.1) while
adding a new row to AT , and which continues effectively.

We first comment on the selection of a new row aT of AT . The current dual vector
ws has the property Asws = 0, and aT would be useless if aT ws = 0. This quantity
has the form

aT ws =

n
∑

j=1

wjsjλj(u)

if a comes out of a new trial function u, and where λj and sj are the functionals
and signs of the current dual basis. In this way, one can ask for an “optimal” new
trial function u that maximizes this quantity under some normalization of u, e.g.
‖u‖Λ := supλ∈Λ |λ(u)| = 1. In the following, we only assume aT ws 6= 0 and denote
our new trial function by um+1.

At this point, one could restart the whole process, using the above test functionals
first before introducing others. This would mean a new startup of the whole algorithm.

To avoid a restart, we have to produce a new enlarged version of the square
matrices B and C. But then we also need an additional column. This means that we
have to add another test functional, too. But since we already have a good mechanism
for finding good test functionals, we add the zero functional as a dummy that will be
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eliminated in the next simplex step. The enlarged B matrix will be

B′ :=









AT
s 0 0

aT 0 0
1T 1 0
bT
s 0 −1









which is nonsingular because aT ws 6= 0 and AT
s ws = 0 ensures that aT is not a linear

combination of the rows of AT
s . The inverse C of B has the form

(

Cs ws 0
bT
s Cs bT

s ws −1

)

with

AsCs = I
1T Cs = 0T .

Then the inverse of B′ is




C′
s α · ws 0 0

zT −α 1 0
bT
s C′

s α · bT
s ws 0 −1





with

α =
1

aT ws
zT = −αaT Cs

C′
s = Cs + wsz

T .

This is an easy O(m2) recipe to upgrade C.
Inspection of the new matrix C′ via (6.3) shows that the new value of η will

be zero and that the old primal coefficients are the same, the new coefficient being
αbT

s ws. If u and u′ are the old and new primal solutions written as trial functions,
then

λ(u′) = λ(u) + αbT
s wsλ(um+1)

can be used as a simplified technique for evaluating new test functionals on the new
solution, if the λ(u) were stored.

Looking at the system (6.2) and using Cramer’s rule, we see that

| detB′| =

∣

∣

∣

∣

det

(

AT
s

aT

)∣

∣

∣

∣

=

∣

∣

∣

∣

det

(

AT
s

1T

)∣

∣

∣

∣

· |aT ws| = | detB| · |aT ws|.

This gives a hint to stabilize the full process. One can keep track of the determinant
of B and select a (or, equivalently, the new trial function) such that | detB′| is as close
to 1 as possible. This strategy was quite successful in the adaptive greedy method of
[11].

We also suggest the method of [11] for startup. It will make a selection of n test
functionals λ1, . . . , λn and n trial functions u1, . . . , un to provide exact generalized
interpolation for a function u from the trial space. The inverse C̃ of the n×n matrix
Ã = (λj(uk)) will be available when the algorithm of [11] stops.
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We then find another functional λn+1 such that λn+1(u) 6= fλn+1
and define the

(n+1)×n matrix A = (λj(uk)) of the standard form of this paper. Then AT = (ÃT , z)

is known, where z is the vector with components λn+1(uj). With v := C̃T z we have

ÃT v − z = 0 and w := (vT ,−1)T is in the nullspace of AT . From this vector, we
derive a sign vector s by taking the signs of its components, and we renormalize the
vector to generate a vector ws of nonnegative components such that ‖ws‖1 = 1 and
AT

s ws = 0. This means that the signs of the components of w now occur as signs
associated to columns of AT

s and that we can write AT
s = (ÃT , z) ·Ds with a diagonal

matrix Ds carrying the signs in its diagonal. This way we get the system (6.2). Using
the sign vector, we can form bs and have the matrix B that we need.

To get C = B−1 cheaply, it suffices to get the inverse of

(

AT
s

1T

)

=

(

(ÃT , z)
sT

)

· Ds

cheaply. This can be done at O(n2) cost from the inverse C̃ of the n× n matrix Ã in
the standard rank–one update way.

9. Numerical Demonstrations. In this section, we show some numerical ex-
amples that demonstrate the efficiency of our proposed algorithm. In all presented
examples, we have used the multiquadric kernel

Φc(x, y) =

√

1 +
||x − y||2

c2
,

where x, y ∈ R
2 and c > 0 is the scaling parameter. As a test equation, we solve the

Poisson problem with Dirichlet boundary conditions on Ω = [−1, 1]2, i.e.

△u(x) = f(x) for x ∈ Ω ⊂ R
d,

u(x) = g(x) for x ∈ ∂Ω.
(9.1)

The functions f and g in (9.1) are generated by the exact solution

u∗(x, y) =
1

2
log

(

(x − 2)2 + (x − 2)2
)

.

First, the test problem is run on Ω = [−1, 1]2 with different shape parameters c in
order to demonstrate the performance of the adaptive greedy scheme in [11] and the
proposed adaptive greedy linear optimization scheme of this paper. The number of
trial functions and test functionals offered to the algorithms for selection are M = 8822
and N = 2129, respectively, but note that the algorithms select much smaller subsets
adaptively. In Figure 10.1(a), the RMS errors of both schemes are given. Most of
the tested c values are unusual for the original RBF collocation method, since in the
standard set-up the shape parameters are usually chosen to have roughly the same
order as the mesh-norm of the test functionals in order to circumvent the problem of
ill-conditioning [9].

It turns out that the new linear optimization scheme is more stable in comparison
to the adaptive greedy scheme. In particular, when c = 4.75, the adaptive greedy
scheme fails to provide an acceptable solution, whereas the new linear optimization
scheme performs reasonably well. We observe, from Figure 10.1(a), that there is an
optimal shape parameter value of c = 0.75 for this particular example,
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Furthermore, we show the number m of selected trial centers in Figure 10.1(b).
Recall that the new adaptive linear optimization scheme uses the selected m trial
centers and finally performs an ℓ∞ fit to all N ≫ m available test functionals. In
contrast, the original adaptive greedy scheme of [11] calculates an exact interpolation
using the selected m trial functions and m = n ≪ N selected test functionals.

When the shape parameter c increases, the number of trial centers decreases.
Moreover, the distributions of the selected trial centers change. As shown in Fig-
ure 10.2, in which we show the trial center distributions of two cases when c = 1 and
c = 5, the adaptive algorithm tends to select trial centers away from the domain when
the shape parameter is large.

Our next test demonstrates the effect of increasing the number of offered test
functionals. This test is run on an L-shaped domain

Ω = {(x, y) : −1 ≤ x, y ≤ 1, sign(x) + sign(y) ≤ 0}.

For all runs, the trial space is adaptively selected from a fixed set of M = 34692 trial
functions. Four shape parameters c = 0.5, c = 1, c = 5, and c = 10 are tested.

Figure 10.3 shows the corresponding RMS errors versus different numbers of test
functionals. In all cases, large numbers of test functionals have no significant influence
on the error. This is in line with our theory, since the error is dominated by the
approximation properties of the trial space alone. Enlarging the set of test functionals
will stabilize the algorithm. In fact, the error profiles for all tested c values remain
stable even though the non-square background matrix increases in size, which usually
causes ill-conditioning in the original formulation.

Lastly, Figure 10.4(a) and Figure 10.4(b) show typical error functions of the
adaptive greedy method and the proposed linear optimization method, respectively.
Since the adaptive greedy method solves the selected small square submatrix system
in the sense of exact interpolation, its error function shows clear peaks. In contrast,
the linear optimization method handles the overdetermined system with the selected
trial functions and all test functionals in such a way that the maximal error in the
differential equation and the boundary values is minimized on very many points. Thus
the error profile usually is smaller in magnitude and more oscillatory with less obvious
peaks.

10. Conclusion. On the theoretical side, we prove that the unsymmetric mesh-
less collocation method, if carried out with smooth kernel-based trial functions and
sufficiently many test functionals, converges at the same rate as interpolation of the
solution. In particular, trial spaces formed by multiquadrics and Gaussian basis would
result in exponential convergence [12] if the solution is analytic. However, from the
computational point of view, exponential convergence is difficult to be observed under
double precision computation. Our proof techniques are much simpler than those of
[14] because we focus on minimizing the maximum of the residuals via semi-infinite
linear optimization.

On the practical side, we couple the previously proposed greedy technique of [11]
with linear optimization to provide a fully adaptive on-the-fly data-dependent method
guaranteeing solvability and fitting seamlessly into our theory. Numerical results show
that the proposed coupled method is very stable, even though serious ill-conditioning
of the resultant systems must be expected.
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Fig. 10.1. Solving a Poisson equation with MQ kernel on a square domain: Error profile and
degrees of freedom as a function of shape parameter c.
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Fig. 10.2. Solving a Poisson equation with MQ kernel on a square domain: Selected trial
centers for different shape parameters c.
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Fig. 10.4. Solving a Poisson equation with MQ kernel on an L-shaped domain: Error functions.




