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Abstract. We analyze a least-squares strong-form kernel collocation formulation for solving
second order elliptic PDEs on smooth, connected and compact surfaces with bounded geometry.
The methods do not require any partial derivatives of surface normal vectors or metric. Based
on some standard smoothness assumptions for high order convergence, we provide the sufficient
denseness conditions on the collocation points to ensure the methods are convergent. Besides of
some convergence verifications, we also simulate some reaction-diffusion equations to exhibit the
pattern formations.
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1. Introduction. The unsymmetric strong-form meshfree collocation method,
a.k.a. the Kansa method [21, 22], which is already popular for solving PDEs of var-
ious kinds, is simple to implement. It also handles scattered data and time-varying
discretization with ease, which is one of the many reasons for its popularity. Because
of its high flexibility, the number of successful applications of the Kansa method
has grown dramatically since the method was proposed in 1990. Theories of the
Kansa method are rather limited. However, one certainty is that its original exactly-
determined formulation cannot even guarantee solvability [20]. Yet, this does not
make researchers abandon the Kansa method. Alternatively, many variations of mod-
ified Kansa methods and rule-of-thumbs have been suggested and numerically studied.
It is obvious that the theoretical development does not measure up to the popularity
of the Kansa method. Recently, we proved an optimal H2-convergence of a class of
least-squares Kansa methods for solving general second order elliptic problems with
Dirichlet boundary conditions, see [9]. In this paper, we aim to take a step forward
by applying a Kansa method to PDEs on surfaces. We consider general second order
strongly elliptic partial differential equations

LSu = f on S ⊂ R
d, (1.1)

where the surface differential operator LS : Hm(S) → Hm−2(S) has Wm
∞(S)–bounded

coefficients and is in the form of:

LS := −a∆S + b ·∇S + c, (1.2)

on some smooth, connected, and compact surface S with bounded geometry (i.e., S is
complete) and dim(S) = d−1. Let n̂ = n̂(p) denote the unit outward normal vector at
p ∈ S. Then the surface gradient ∇S and the Laplace-Beltrami ∆S operators (a.k.a.
the surface Laplacian) in (1.2) can be defined in terms of the standard Euclidean
gradient ∇ and Laplacian ∆ operators for Rd via projections:

∇S := (I − nnT )∇ and ∆S := ∇S ·∇S , (1.3)

∗Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong
& ASTRI Hong Kong Applied Science and Technology Research Institute Company Limited.
(kccheung@astri.org)

†Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
(lling@hkbu.edu.hk)

1



2 K.C. CHEUNG & L. LING

where I is the identity operator. Typically, numerical methods for solving (1.2) can
be classified into two types: intrinsic and embedding. The former requires some
parametrization with local coordinates and discretization of the surface differential
operator based on surface mesh. The latter methods solve the PDEs in some embed-
ding spaces and is more related to the framework of meshfree method.

We are interested in casting some variants of Kansa methods to obtain an embed-
ding method. Ruuth et al. [33] proposed the closest point method for surface PDEs by
the closest point (or constant-along-normal) mapping. Once embedded, one can sim-
ply replace the surface gradient and the Laplacian-Beltrami operators by the standard
ones in Euclidean spaces. The embedded PDE can then be solved by available nu-
merical solvers developed in Euclidean space. In the same article, the standard finite
difference method was used for discretization with second order accuracy. Carefully
implemented interpolation between points on the surface and computational grids
were required for efficiency; further speed up can be achieved by multigrid [7]. Once
the surface differential operator is appropriately discretized, it can be used to solve
eigenvalue problems on surfaces [24]. When combined with the method-of-lines or
any semi-discrete approach [23, 25, 31], numerical methods for (1.2) can be extended
to time-dependent surface PDEs.

The orthogonal gradients method [29] is a meshfree extension of the closest-point
method. It uses data points orthogonal to the surface and, by construction, all off-
surface data points are in the normal direction of some data points on the surface.
Hence, they have identical function values under the closest point mapping. In this
setting, one must work with irregular data points and this is where meshfree methods
come into the play. To discretize the surface operator, one can work within the
embedding space and use a meshfree finite difference approach (for Euclidean spaces)
[39,41] in order to approximate the surface differential operator. It is shown in [8] that
combining the ideas of closest point and meshfree methods can successfully handle
PDEs on surfaces with corners.

Another meshfree approach is to directly project kernel-based approximants onto
the surface, see [13], to discretize surfaces operators at nodal points. Instead of the
closest point approach, this approach works with the projection operator I − n̂n̂T

arisen naturally from the definitions in (1.3). By combining surface projections with
the meshfree interpolant and its derivatives carefully, full convergence theories can
be found in the same article. Having the meshfree interpolant as the key player, the
method is in a symmetric setting and one cannot collocate freely.

The development of meshfree methods for surface PDEs is similar to its Rd coun-
terpart. This paper aims to extend the meshfree theories for surface PDEs from sym-
metric to unsymmetric settings, which yield methods that is similar to the orthogonal
gradients method [29] but has more flexibility in the positioning of the off-surface
points. In Section 2, a brief discussion on the closest point embedding technique and
the associated embedding conditions are given. In Section 3, we build up a series of
the meshfree theories concerning meshfree method in the embedding spaces. In par-
ticular, we prove a regularity estimate, a sampling inequality and an inverse inequality
in order to obtain a stability estimate, which gives rise to our proposed kernel-based
embedding method. The main challenge here is to connect trial functions defined in
the embedded spaces to the surface. All the results are of some hybrid types in the
sense that both the surface and the embedded spaces are involved in these inequalities.
In Section 4, we provide the implementation details and a convergence estimate of our
proposed method. Readers can see that the original orthogonal gradients methods use
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either the stability or embedding conditions in our analysis. In Section 5, we present
various numerical demonstrations concerning the convergence behaviour of our pro-
posed method. Then, by some three-dimensional pattern formations, we demonstrate
that the proposed method is numerically stable to deal with time-dependent PDEs.

2. Embedding conditions. Sobolev spaces on complete surfaces with bounded
geometry [34] can be defined by Hm(S) := (I−∆S)

−m/2L2(S). For m ∈ N, Hm(S) is
norm equivalent to the Sobolev space containing all L2 functions on S with bounded
covariant derivatives up to order m, see [40]. Instead of using covariant derivatives,
we can equivalently characterize the space by localization with an atlas of geodesic
normal charts {(℧i, ϕi)} and a subordinate partition of unity χi, see [19, Prop.2.2],
which is the common definition used in meshfree theories on manifolds, also see [12].

We consider smooth, connected and compact Riemannian manifolds with suffi-
cient smoothness and differentiability. A surface S is of smoothness class Cm if there
is a collection of charts {(℧i, ϕi)

∣∣ i ∈ N}, a.k.a. an atlas of S, so that S =
⋃

i ℧i and

ϕi : ℧i → ϕi(℧i) ⊂ R
dim(S) is a homeomorphism such that ϕi ◦ϕ

−1
j is of class Cm for

all i, j ∈ N. The associated norms are defined by

‖u‖Hm(S) :=
∑

|α|≤m

∑

i∈N

∥∥∥Dα
(
(χiu) ◦ ϕ

−1
i

) ∥∥∥
L2(ϕi(℧i))

, (2.1)

where Dα is the standard multi-index differential operator in R
dim(S). The norm in

(2.1) clearly depends on the selection of {(℧i, ϕi, χi)
∣∣ i ∈ N} but is norm equivalent

to the norm generated by any other selection. Without loss of generality, any atlas
dependency is considered as S dependent in our forthcoming analysis. By assuming
S compact, any atlas of S has a finite number of charts. As a result, S is complete.
The Hopf-Rinow Theorem then ensures that we can measure the distance between
any two points of S by the associated geodesic. Compactness of S also guarantees
bounded geometry so that every covariant derivative of the Riemannian curvature
tensor is uniformly bounded. In particular, our analysis requires certain uniform
boundedness of the Jacobian J(n̂) of the normal vector of S and satisfy some local
geometric properties in [18, Asm.2.1] similar to standard cone conditions in R

d.
We assume the function f in (1.1) is sufficiently smooth to admit a classical

solution, which we denote by u∗
S throughout the paper. Our method is built upon the

constant-along-normal property. To begin, we take a detour to the finite difference
based closest point method [33] and its meshfree extension [29]. The key idea we need
from them is the closest point mapping cp, which maps each “nearby” point x ∈ R

d

onto the surface cp(x) ∈ S so that cp(x) = arg infp∈S ‖p − x‖ℓ2(Rd). For any S of
class Cm+1, there exists a fixed domain

Σ :=
{
x ∈ R

d : inf
p∈S

‖p− x‖ℓ2(Rd) < ε0 < min(1, εcp,m)
}

(2.2)

for some constant εcp,m depending only on S and m such that uS ◦ cp ∈ Hm(Σ) for
all uS ∈ Hm(S), see [7]. Our goal is to properly “embed” the surface PDE in (1.1) to
some narrow-band domains in Σ and work with another PDE operator in the form of

LE := −aE∆+ bE ·∇+ cE in Σ, (2.3)

in which all incidents of ∇S are replaced by the Euclidean gradient operator ∇. All
coefficients in (2.3) are cp-extensions of those in (1.2), i.e. aE = a ◦ cp and etc for all
x ∈ Σ.
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Generally speaking, the surface operator in (1.2) and Euclidean operator in (2.3)
are different; however, the two operators coincide for a certain class of functions.
In [29], it was proposed that functions defined on Σ with sufficient smoothness and
satisfying embedding conditions n ·∇u = 0 and (n̂ ·∇)(n̂ ·∇)u = 0 have the desired
LSu = (LEu)|S property for S ⊂ R

3. Note, in the latter condition, partial derivatives
of the surface normal n̂ are required. In the following theorem, we prove some other
embedding conditions that only require n̂ but not its derivatives, which allows us to
develop methods working on point cloud on S without an explicit formula for n̂.

Theorem 2.1 (Embedding Conditions). Let S ⊂ R
d be a codimension one C3–

smooth, connected and compact surface with well-defined normal n̂ = n̂(p) for all

p ∈ S. Let u ∈ C2(Σ) ∩ H2+ 1
2 (Σ) be an extension of uS ∈ H2(S) with u|S = uS .

Then,

∇Su := ∇u− n̂∂n̂u and ∆Su := ∆u−HS∂n̂u− ∂
(2)
n̂

u on S, (2.4)

where ∂n̂u := n̂T∇u, ∂
(2)
n̂

u := n̂T J(∇u)n̂ and HS(p) = tr
(
J(n̂)(I − n̂n̂T )

)
, which

is d times the mean curvature of S at p, defined using the Jacobian operator J in

Euclidean space. In particular, for any second order differential operator in the form

of (1.2), if u satisfies the embedding conditions

∂n̂u = 0 and ∂
(2)
n̂

u = 0 on S, (2.5)

then LSuS = LEu on S.
Proof. Since ∇Su = ∇u − (n̂T∇u)n̂ for sufficiently smooth u, the two gradient
operators coincide on S as long as n̂T∇u = 0. Consider the surface Laplacian operator
defined as

∆Su := ∇S ·∇Su = (I − n̂n̂T )∇ · (I − n̂n̂T )∇u

= ∆u− (n̂n̂T∇) ·∇u− (I − n̂n̂T )∇ · (n̂n̂T∇u). (2.6)

It can be verified easily by the Einstein summation notation that

(A∇) · (B∇u) = Aij(Biku,k),j = tr((Biku,k),jA
T
jℓ) = tr(J(B∇u)AT ). (2.7)

Putting A = n̂n̂T and B = I in (2.7), we have

(n̂n̂T∇) ·∇u = tr(J(∇u)n̂n̂T ) = tr(u,ijn̂jn̂k) = n̂T J(∇u)n̂,

which yields one of the embedding conditions umust satisfy. Now, we simplify the last
term in (2.6) in order to eliminate all the derivatives of n̂ from the other embedding
condition. Using (2.7), we have

(I − n̂n̂T )∇ · (n̂n̂T∇u) = tr
(
J(n̂n̂T∇u) (I − n̂n̂T )

)

= tr
(
J(n̂n̂T∇u)

)
− tr

(
J(n̂n̂T∇u)n̂n̂T

)
.

Carrying on with more arithmetic operations, we can show that

tr
(
J(n̂n̂T∇u)

)
= (n̂in̂ju,j),i = (n̂i,in̂j + n̂in̂j,i)u,j + n̂in̂ju,ij

= tr(J(n̂))n̂T∇u+ n̂TJ(n̂)∇u+ n̂T J(∇u)n̂,
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and tr
(
J(n̂n̂T∇u)n̂n̂T

)
= tr

(
J(n̂)n̂n̂T

)
n̂T∇u+ n̂T J(n̂)∇u+ n̂T J(∇u)n̂. After can-

cellation, we obtain (I−n̂n̂T )∇·(n̂n̂T∇u) = tr
(
J(n̂)(I−n̂n̂T )

) (
n̂T∇u

)
. Altogether,

the equalities in (2.4) hold for any p ∈ S and (2.5) follows immediately. �

Corollary 2.2. Suppose all assumptions in Theorem 2.1 hold. Then there exist

some constant C depending only on S and LS such that

‖LSuS‖
2
ℓ2(X) ≤ C

(
‖LEu‖

2
ℓ2(X) + ‖∂n̂u‖

2
ℓ2(X) + ‖∂

(2)
n̂

u‖2ℓ2(X)

)

holds for any discrete set X ⊂ S.

3. Stability estimates of embedded PDEs. Let sgnS be an indicator func-
tion so that sgnS(x) = −1 (or +1) if x is located inside (or outside) of the closed
surface S, and sgnS(p) = 0 for all p ∈ S. We define a sequence of narrow-band
domains by

Ωδ = {x ∈ R
d : ‖x− p‖ℓ2(Rd) < δ for some p ∈ S}, (3.1)

and parallel surfaces

Sδ =
{
x ∈ R

d : sgnS(x) ‖x− p‖ℓ2(Rd) = δ for some p ∈ S
}
, (3.2)

with respect to some δ ∈ R. To cp–embed the surface PDEs into these Ωδ, we prove
a norm equivalency for Sobolev norms on S and Ωδ so that we can go between any
function on S and its cp–extension.

Lemma 3.1. Suppose S is of class Cm+1 with m ≥ 0 and let Ωδ ⊂ Σ be defined as

in (3.1) with sufficiently small δ with respects to S. Then there exists some constants

C1 and C2 depending only on S and k such that

C1δ
1/2‖u‖Hk(S) ≤ ‖u ◦ cp‖Hk(Ωδ) ≤ C2δ

1/2‖u‖Hk(S), 0 ≤ k ≤ m

holds for all u ∈ Hm(S).
Proof. With uS ∈ Hm(S) for some Cm+1 surfaces, we know that uS ◦cp ∈ Hm(Σ) for
all u ∈ Hm(S) and all Sobolev norms in the lemma are well-defined. Let {(℧i, ϕi)}Ni=1

be the selected atlas for S and χi the associated subordinate partition of unity.
For any fixed t > 0, define a bijection from the surface to its t-parallel surface by

Tt : S 7→ St such that Tt(p) := p+ tn̂(p) for any p ∈ S. Note that the cp operator is
a left inverse of Tt such that cp ◦Tt = id. Now, we define an atlas {(℧t

i, ϕ
t
i)}

N
i=1 and a

partition of unity χt
i for St based on the one for S. In particular, let ℧t

i = Tt(℧i) and
ϕt
i = ϕi ◦ T

−1
t . Moreover, χt

i = χi ◦ T
−1
t is a partition of unity for St subordinated to

{℧t
i}. Then, the Sobolev norm on the parallel surface St can be defined by (2.1) and

we have

‖u‖2Hk(St)
:=

∑

i∈N

‖(χt
iu) ◦ (ϕ

t
i)

−1‖2Hk(ϕt
i(℧

t
i))

=
∑

i∈N

∑

|α|≤k

∫

ϕi◦T
−1
t (℧t

i)

∣∣∣Dα
(
((χi ◦ T

−1
t )u) ◦ (ϕi ◦ T

−1
t )−1

)∣∣∣
2

dθ

=
∑

|α|≤k

∑

i∈N

∫

ϕi(℧i)

∣∣∣Dα
(
((χi ◦ T

−1
t )u) ◦ (Tt ◦ ϕ

−1
i )

)∣∣∣
2

dθ

=
∑

|α|≤k

∑

i∈N

∫

ϕi(℧i)

∣∣∣Dα
(
(χi(u ◦ Tt)) ◦ ϕ

−1
i

)∣∣∣
2

dθ =: ‖u ◦ Tt‖
2
Hk(S),



6 K.C. CHEUNG & L. LING

or equivalently, ‖u‖2Hk(S) = ‖u ◦ T−1
t ‖2Hk(St)

= ‖u ◦ cp‖2Hk(St)
for k ≤ m. Using the

coarea formula, we can obtain

‖u ◦ cp‖2Hk(Ωδ)
=

∑

|α|≤k

∫ δ

−δ

∫

St

∣∣∣Dα
(
(
∑

i∈N

χt
i)(u ◦ cp)

)∣∣∣
2

dx dt

≤
∑

|α|≤k

∑

i∈N

∫ δ

−δ

∫

℧t
i

∣∣∣Dα
(
χt
i(u ◦ cp)

)∣∣∣
2

dx dt

=
∑

|α|≤k

∑

i∈N

∫ δ

−δ

∫

ϕt
i(℧

t
i)

∣∣∣Dα
(
(χt

i(u ◦ cp))
)∣∣∣

2∣∣∣ det(J((ϕt
i)

−1))
∣∣∣dθ dt

≤ CS,k

(
sup
i∈N

sup
θ∈ϕt

i(℧
t
i)

∣∣∣ det(J((ϕt
i)

−1θ))
∣∣∣
) ∫ δ

−δ

‖u ◦ cp‖2Hk(St)
dt

= 2δCS,k

(
sup
p∈S

∣∣∣ det(J((Tt(p))))
∣∣∣
)
‖u‖2Hk(S).

By considering the characteristic polynomial of det(t−1I + J(n̂)), whose coefficients
λi(p) can be written in terms of traces of powers of J(n̂(p)), we have

det(J(Tt(p))) = det(I + tJ(n̂)) = td det(t−1I + J(n̂))

= td · (−1)d
(
t−d +

d∑

i=1

λit
i−d

)
= (−1)d

(
1 +

d∑

i=1

λit
i
)
.

Since S has bounded geometry, all (covariant and partial) derivatives of n̂ are bounded.
If t is small enough in terms of λi, which solely depends on S, then there exist some
constants 0 ≤ cS ≤ CS < 1/2 so that

1− cS ≤
∣∣∣det(J(Tt(p)))

∣∣∣ ≤ 1 + CS for all p ∈ S. (3.3)

To obtain the lower bound, consider

‖u‖2Hk(S) = ‖u ◦ cp‖2Hk(St)
=

∑

i∈N

‖(χt
i(u ◦ cp)) ◦ (ϕt

i)
−1‖2Hk(ϕt(℧t

i))

=
∑

|α|≤k

∑

i∈N

∫

ϕt
i(℧

t
i)

∣∣∣Dα
(
(χt

i(u ◦ cp)) ◦ (ϕt
i)

−1
)∣∣∣

2

dθ

=
∑

|α|≤k

∑

i∈N

∫

℧t
i

∣∣∣Dα(χt
i(u ◦ cp))

∣∣∣
2∣∣∣det(J(ϕt

i))
∣∣∣dx

≤ CS,k

∑

|α|≤k

∫

St

∑

i∈N

∣∣∣
∑

|β|≤|α|

(
α

β

)
Dβχt

i D
α−β(u ◦ cp)

∣∣∣
2

dx

≤ CS,k

(
sup
i∈N

sup
|α|≤k

∣∣∣Dαχt
i

∣∣∣
) ∑

|α|≤k

∫

St

∣∣∣Dα(u ◦ cp)
∣∣∣
2

dx.

Since S has bounded geometry, the supremum of |Dαχt
i| is bounded for k ≤ m + 1,

see [38, Thm.2.13]. We can now complete the proof by integrating both sides with
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respect to t and show that

2δ‖u‖2Hk(S) ≤ C′
S,k

∑

|α|≤k

∫ δ

−δ

∫

St

|Dα(u ◦ cp)|2dx dt = C′
S,k‖u‖

2
Hk(Ωδ)

.

Since k ≤ m, we can bound all constants C′
S,k by one that is independent of k for

simplicity. �

With Lemma 3.1, we can develop a regularity estimate for the surface PDE in
(1.1). Unlike the typical ones, this estimate uses a norm in Ωδ instead of on S to
bound a norm on S.

Theorem 3.2 (Regularity). Suppose S is of class Cm+1 for some m ≥ 2 and

the narrow-band domain Ωδ ⊂ Σ has a sufficiently small δ so that Lemma 3.1 holds.

Then there exists a constant C depending only on S such that

‖u‖Hk(S) ≤ Cδ−1/2‖LE(u ◦ cp)‖Hk−2(Ωδ), 2 ≤ k ≤ m (3.4)

for all u ∈ Hm(S).
Proof. Considering a regularity estimate for second-order linear elliptic PDEs on
some smooth domain Ωδ subject to Neumann boundary conditions, viz.,

‖w‖Hk(Ωδ) ≤ CΩδ

(
‖LEw‖Hk−2(Ωδ) + ‖∂n̂w‖Hk−3/2(∂Ωδ)

)
for all w ∈ Hm(Ωδ).

The regularity constant CΩδ
here depends on some open ball bounding Ωδ. Hence,

it can be bounded by some CΣ = CS instead. Since the function w = u ◦ cp satis-
fies this regularity estimate for any u ∈ Hm(S), inequality (3.4) follows immediately
Lemma (3.1) and the fact that ∂n̂(u ◦ cp) = 0 on ∂Ωδ. �

We are now ready to go discrete. In order to measure the denseness of a data set
in a domain, say Z ⊂ Ω, the mesh norm and the separation distance are defined as

hZ,Ω := sup
ζ∈Ω

min
z∈Z

‖z − ζ‖ℓ2(Rd) and qZ,Ω :=
1

2
min

zi, zj ∈ Z
zi 6= zj

‖zi − zj‖ℓ2(Rd),

respectively, and the quantity hZ,Ω/qZ,Ω =: ρZ,Ω is commonly referred as the mesh

ratio of Z. Let dS : S × S → R be the shortest distance function on S. Then we also
can measure these quantities on S for X ⊂ S similarly by

hX,S := sup
ξ∈S

min
x∈X

dS(x, ξ) and qX,S :=
1

2
min

xi, xj ∈ Z
xi 6= xj

dS(xi, xj).

We now follow the general framework in [30] and proceed to combine some sam-
pling and inverse inequalities in order to yield a stability result. Since we want meth-
ods that only collocate on S, any available domain-type sampling [1,2,26] and inverse
inequalities [9,16,17] must be used with care. First, we prove a hybrid-type sampling
inequality, which aims to bound continuous norms by a discrete one defined on a set
of points X ⊂ Ω by

‖w‖ℓ2(X) =

( ∑

xi∈X

∣∣w(xi)
∣∣2
) 1

2

for any w ∈ C(Ω),
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which yields strong-form collocation in our numerical formulation eventually.
Theorem 3.3 (Sampling inequality). Let k ≥ 2. Suppose S is of class Cm+1

for some m ≥ k + 1/2 and m > d/2, and the narrow-band domain Ωδ ⊂ Σ has

a sufficiently small δ so that Lemma 3.1 holds. Suppose further that the operators

LS : Hm(S) → Hm−2(S) in (2.3) has bounded coefficients belonging to Wm
∞ (S). Let

X ⊂ S be any discrete set with sufficiently small fill distance hX ≤ δ. Then there

exists a constant C depending only on S and LS such that

‖LE(u ◦ cp)‖Hk−2(Ωδ) ≤ Cδ1/2
(
h
m−k−1/2
X ‖u‖Hm−1/2(S) + h

d/2−k+3/2
X ‖LSu‖ℓ2(X)

)
,

holds for all u ∈ Hm(S).
Proof. The idea of the proof is to extend X ⊂ S to a larger set in Ωδ with controllable
density and apply a domain type sampling inequality. Consider the extension

X̂ = {ξ ∈ Ωδ : ξ = x+ k · hX n̂(x), x ∈ X, k ∈ Z}. (3.5)

For sufficiently dense X , we can show by using (3.3) that hX̂,Ωδ
≤ cShX for some

constant cS ≥ 1 that does not depend on X ; see [12, Thm.6] for the details of the
proof. Applying the sampling inequality in [2, Thm.3.1] to LE(u ◦ cp) ∈ Hm−5/2(Ωδ)

on X̂ yields

‖LE(u ◦ cp)‖Hk−2(Ωδ)

≤ CΣ

(
h
m−k−1/2

X̂
‖LE(u ◦ cp)‖Hm−5/2(Ωδ) + h

d/2−k+2

X̂
‖LE(u ◦ cp)‖ℓ2(X̂)

)
.

In the original theorem, the generic constant in the sampling inequality depends on
Ωδ that can be further bounded by some constant CΣ, or simply by CS . We know
that LE is a bounded operator because of LS . By the results in [14] and Lemma 3.1,
we have

‖LE(u ◦ cp)‖Hm−5/2(Ωδ) ≤ CΩδ,LE‖u ◦ cp‖Hm−1/2(Ωδ) ≤ C′
S,LE

δ1/2‖u‖Hm−1/2(S).

In the first inequality, the constant CΩδ,LE is the supremum of the coefficients of LE

and its derivatives over the domain Ωδ and hence bounded by some CΣ,LS
= CS,LS

.

We are left to handle the discrete X̂–norm in

‖LE(u ◦ cp)‖Hk−2(Ωδ)

≤ CS,LS

(
δ1/2h

m−k−1/2
X ‖u‖Hm−1/2(S) + h

d/2−k+2
X ‖LE(u ◦ cp)‖ℓ2(X̂)

)
.

Using Taylor expansions about the corresponding closest points on S along the normal
direction and the constant-along-normal property of LE(u◦ cp), we can see that there
are 2⌊δ/hX,S⌋ copies of exact data on different parallel surfaces besides of the desired
ℓ2(X) norm. Thus, we get

‖LE(u ◦ cp)‖ℓ2(X̂) ≤ (1 + 2⌊δ/hX⌋)1/2‖LE(u ◦ cp)‖ℓ2(X).

We obtain the desired sampling inequality by the fact that the sampling constant CLE

depends only on LS and Σ. By requiring hX ≤ δ, we have 1+2⌊δ/hX⌋ ≤ Cδ/hX . �

Up to this point, we are still in full Sobolev spaces. Now, we need an appropriate
inverse inequality to bound the H3(S) norm in Theorem 3.3 by some weaker norms on
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S. Such inequalities are available for functions in the native space of certain kernels.
More specifically, we consider translation-invariant symmetric positive definite kernels
Φm : Rd × R

d → R with smoothness m that satisfy

cΦm(1 + ‖ω‖22)
−m ≤ Φ̂m(ω) ≤ CΦm(1 + ‖ω‖22)

−m for all ω ∈ R
d, (3.6)

for some constants 0 < cΦm ≤ CΦm . This includes the standard Whittle-Matérn-
Sobolev kernels, that are defined via the Bessel functions of the second kind in the form

of Φm(x) := ‖x‖
m−d

2

2 Km− d
2
(‖x‖2), and the compactly supported piecewise polynomial

Wendland functions [36]. We denote the associated reproducing kernel Hilbert space,
a.k.a. the native space, of these kernels by NΩ,Φm . For any m > d/2, the native space
NΩ,Φm is norm-equivalent to Hm(Ω) provided Ω satisfies some standard smoothness
assumptions [6, 37].

Let Z = {z1, . . . , znZ} be a discrete set of trial centers in some domain Ω. We
define the corresponding finite-dimensional trial space by

UZ,Ω,Φm := span{Φm(· − zj) : zj ∈ Z} ⊂ NΩ,Φm .

Functions in the trial space have many special features. We now provide an inverse
inequality that is suitable to our context.

Theorem 3.4 (Inverse inequality). Let k > d/2. Suppose S is of class Cm+1 for

some m ≥ k and the narrow-band domain Ωδ ⊂ Σ has a sufficiently small δ so that

Lemma 3.1 holds. Suppose a kernel Φm : Rd × R
d → R satisfying (3.6) is given. Let

Z ⊂ Ωδ be any set of sufficiently dense trial centers. Then there exists a constant C
depending only on S, Φm, ρZ and k such that the inequality

‖u‖Hm−1/2(S) ≤ Cδ−1/2h−m+k
Z

(
‖u‖Hk(S) + h

−k+d/2
Z ‖u− u|S ◦ cp‖ℓ2(Z)

)

holds for all trial functions u ∈ UZ,Ωδ,Φm .

Proof. Let IZucp := IZ,Ωδ ,Φm(u|S ◦ cp) denote the unique interpolant of u|S ◦ cp on
Z from UZ,Ωδ,Φm . Since u|S ◦ cp is Z-dependent, we shall not rely on any convergence
result regarding IZucp → u|S ◦cp in this proof. Using a trace theorem with an explicit
δ-dependent constant, which can be extracted easily from [10, 15],

‖u‖Hm−1/2(S) ≤ CSδ
−1/2‖u‖Hm(Ωδ)

≤ CSδ
−1/2

(
‖IZucp‖Hm(Ωδ) + ‖u− IZucp‖Hm(Ωδ)

)
.

For any k > d/2 and m ≥ k, we can invoke the inverse inequality [9, Lem.3.2] within
the trial space UZ,Ωδ,Φm to obtain

‖IZucp‖Hm(Ωδ) ≤ CS,Φm,kh
−m+k
Z ‖IZucp‖Hk(Ωδ). (3.7)

For any ρZ-uniform Z ⊂ Ω, m > d/2 and m ≥ k, by [28, Cor.4.3], the interpolation
map IZ := IZ,Ωδ ,Φm : Hk(Ωδ) → Hk(Ωδ) with k < m and kernel Φm is bounded
uniformly in Z. Hence, by Lemma 3.1, we can further bound (3.7) from the above by

‖IZucp‖Hm(Ωδ) ≤ CΩδ,Φm,k,ρZh
−m+k
Z ‖u|S ◦ cp‖Hk(Ωδ)

≤ CΩδ,Φm,k,ρZ δ
1/2h−m+k

Z ‖u‖Hk(S).

After inspecting the proofs (Cor.3.5 in particular), we see that the constant here
depends on the norm of a Sobolev extension map EΩδ,k : Hk(Ωδ) → Hk(Rd) and
hence CΩδ,Φm,k,ρZ ≤ δ−1/2CS,Φm,k,ρZ .
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Since u − IZucp ∈ UZ,Ωδ,Φm , the magnitude of ‖u − IZucp‖Hm(Ωδ) is completely
determined by the function values of u − IZucp at Z. To prove this, we rely on the
norm equivalency of Hm(Rd) and NΦm(Rd), and the eigenvalue estimate of the kernel
matrix Φm(Z,Z) in [28] to obtain

‖u− IZucp‖Hm(Ωδ) ≤ ‖u− IZucp‖Hm(Rd)

≤ CΦm‖u− IZucp‖NΦm (Rd)

= CΦm‖u− IZucp‖NΦm (Ωδ)

≤ CΦm‖Φm(Z,Z)−1‖
1/2
2 ‖u− IZucp‖ℓ2(Z)

≤ CΦmq
−m+d/2
Z ‖u− IZucp‖ℓ2(Z)

for any u ∈ UZ,Ωδ ,Φm . Noting that the functions IZucp = IZ(u|S ◦ cp) and u|S ◦ cp
coincide at node Z completes the proof. �

We now have all the necessary components to derive an embedding PDE and
the associated stability estimate. Let X ⊂ S be any discrete set of sufficiently dense
collocation points. Using Theorem 3.2 and Theorem 3.3, we immediately obtain

‖u‖Hk(S) ≤ CSδ
−1/2‖LE(u ◦ cp)‖Hk−2(Ωδ)

≤ CS,LS

(
h
m−k−1/2
X ‖u‖Hm−1/2(S) + h

d/2−k+3/2
X ‖LSu‖ℓ2(X)

)
.

By employing a kernel Φm with higher order of smoothness m > k + 1/2 + d/2 and
defining its trial space using a set of distinct trial centers Z ⊂ Ωδ, we ensure that
the restrictions of all trial functions are smooth enough, i.e., u|S ∈ Hm(S) for all
u ∈ UZ,Ωδ,Φm , for the theories to be applied. Under a sufficient condition

h
m−d/2−k+ǫ
X ∼ δ1/2h

m−d/2
Z , for any ǫ > 0 (3.8)

which ensures

(CS,LS
h
m−k−1/2
X )(CS,Φm ,k,ρZδ

−1/2h−m+k
Z )h

−k+d/2
Z h

−(d/2−k+3/2)
X = O(hǫ

X),

Theorem 3.4 suggests that

‖u‖Hk(S) ≤ CS,LS ,Φm,k,ρZh
d/2−k+3/2
X

(
‖LSu‖ℓ2(X) + hǫ

X‖u− u|S ◦ cp‖ℓ2(Z)

)
.

At last, we obtain the following stability estimate within trial spaces.

Theorem 3.5 (Stability). Let k ≥ 2 and k > d/2. Suppose the assumptions in

Theorems 3.2, 3.3 and 3.4 hold for some m > k + 1/2 + d/2. Let X ⊂ S be any

discrete set with sufficiently small fill distance hX ≤ δ so that condition (3.8) holds

for some ǫ > 0. Then there exists a constant C depending only on S, Φm, LS , k and

ρZ such that the inequality

‖u‖Hk(S) ≤ Ch
d/2−k+3/2
X

(
‖LSu‖ℓ2(X) + hǫ

X‖u− u|S ◦ cp‖ℓ2(Z)

)
,

holds for all trial functions u ∈ UZ,Ωδ,Φm .
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4. Embedded Kansa methods and convergence estimate. After picking
a value of δ, the stability estimate in Theorem 3.5 immediately gives rise to a strong-
form collocation method. It is clear that δ cannot be arbitrarily small; due to the
radial shape of the trial basis functions, we must have Z ∩ (R \ S) 6= ∅ in order
to have the embedding conditions in Theorem 2.1 approximately satisfied. That is,
δ ≈ hZ,Ωδ

is the most computationally efficient selection, which agrees perfectly with
the setup of the orthogonal gradients method [29]. Moreover, Theorem 3.5 allows Z
to be scattered in Ωδ, which helps maximizing qZ .

Theorem 4.1 (Convergence). Let k ≥ 2 and k > d/2. Suppose u∗
S ∈ Hm(S)

with Sobolev smoothness order m > k + d/2 + 1/2 is the solution of the surface PDE

(1.1). Suppose all the other assumptions in Theorem 3.5 hold. Let uX,Z ∈ UZ,Ωδ ,Φm

be the least-squares Kansa solution defined by

arg inf
u∈UZ,Ωδ,Φm

(
‖LEu− f‖2ℓ2(X)︸ ︷︷ ︸
PDE collocations

+ ‖∂n̂u‖
2
ℓ2(X) + ‖∂

(2)
n̂

u‖2ℓ2(X)︸ ︷︷ ︸
Embedding conditions

+hǫ
X ‖u− u|S ◦ cp‖2ℓ2(Z)︸ ︷︷ ︸

Stability conditions

)
.

Then the estimate

‖uX,Z − u∗
S‖Hk(S)

≤ C
(

h
m−k−1/2−d/2
Z︸ ︷︷ ︸

Interpolation error

+ δ1/2h2−k
X h

m−2−d/2
Z︸ ︷︷ ︸

PDE error

+δh
d/2−k+3/2+ǫ
X hm−d

Z︸ ︷︷ ︸
Stability error

)
‖u∗

S‖Hm(S)

holds for some constant C depending only on S, Φm, LS , k, ρZ and ρX . With higher

smoothness order m > k+d/2+3/2, we have an improved error bound for interpolation

and

‖uX,Z − u∗
S‖Hk(S)

≤ C′
(
h
m−k−1/2
Z + δ1/2h2−k

X h
m−2−d/2
Z + δh

d/2−k+3/2+ǫ
X hm−d

Z

)
‖u∗

S‖Hm(S)

holds for another constant C′ with the same dependencies.

Proof. The convergence estimate can be obtained by following the general framework
in [9]. Note that the stability estimate in Theorem 3.5 only holds for functions in
the trial space UZ,Ωδ ,Φm . To obtain an error estimate, see [37, Thm.11.9] and [11,
Sec.15.1.2], we need the following manipulations:

‖uX,Z − u∗
S‖Hk(S) ≤ ‖uX,Z − IZu

∗
cp‖Hk(S) + ‖IZu

∗
cp − u∗

S‖Hk(S), (4.1)

where IZu
∗
cp = IZ,Ωδ ,Φm(u∗

S ◦ cp) is the unique interpolant of u∗
cp := u∗

S ◦ cp on Z
from the trial space UZ,Ωδ ,Φm . For m > k+1/2+ d/2, applying meshfree convergence
estimates and Lemma 3.1 yields the “interpolation error”

‖IZu
∗
cp − u∗

S‖Hk(S) = ‖IZu
∗
cp − u∗

cp‖Hk(S)

≤ CSδ
−1/2‖IZu

∗
cp − u∗

cp‖Hk+1/2(Ωδ)

≤ CS,Σ,Φmδ−1/2h
m−k−1/2−d/2
Z ‖u∗

cp‖Hm(Ωδ)

≤ CS,Σ,Φmh
m−k−1/2−d/2
Z ‖u∗

S‖Hm(S).

For larger values of m > k + 3/2 + d/2, one can use [27, Prop.3.3] to achieve higher
convergence rates of m− k − 1/2.
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If we define a functional by

J2(u) := ‖LEu‖
2
ℓ2(X) + ‖∂n̂u‖

2
ℓ2(X) + ‖∂

(2)
n̂

u‖2ℓ2(X) + hǫ
X‖u− u|S ◦ cp‖2ℓ2(Z),

then, by definition, the Kansa solution uX,Z minimizes J2(u∗
cp−u) over the trial space

UZ,Ωδ,Φm . Therefore, we get an overestimate if uX,Z is replaced by any other function
in the trial space; in particular, we use the interpolant IZu

∗
S ◦ cp as a comparison

function. By Theorem 3.5 and Corollary 2.2, the minimization property of uX,Y

suggests that

‖uX,Z − IZu
∗
cp‖Hk(S) ≤ CS,Φm,LS ,k,ρZh

d/2−k+3/2
X

(
J(u∗

cp − uX,Z) + J(u∗
cp − IZu

∗
cp)

)

≤ 2CS,Φm,LS ,k,ρZh
d/2−k+3/2
X J(u∗

cp − IZu
∗
cp). (4.2)

Firstly, we bound the PDE residual and embedding errors in J(u∗
cp − IZu

∗
cp) with

similar technique. For any m > 2+ d/2, we can estimate the “PDE error” as follows:

‖LE

(
IZu

∗
cp − u∗

cp

)
‖2ℓ2(X) + ‖∂n̂

(
IZu

∗
cp − u∗

cp

)
‖2ℓ2(X) + ‖∂

(2)
n̂

(
IZu

∗
cp − u∗

cp

)
‖2ℓ2(X)

≤ CS,LS

∑

|α|≤2

‖Dα
(
IZu

∗
cp − u∗

cp

)
‖2ℓ2(X)

≤ C′
S,LS

nX max
|α|≤2

‖Dα
(
IZu

∗
cp − u∗

cp

)
‖2L∞(Ωδ)

≤ C′
S,LS

(
CSq

−(d−1)
X

)
CΣ,Φmh2m−4−d

Z ‖u∗
cp‖

2
Hm(Ωδ)

≤ CS,Φm,LS ,ρX δh−d+1
X h2m−4−d

Z ‖u∗
S‖

2
Hm(S). (4.3)

For any z ∈ Z, we have

(
IZu

∗
cp

)
(z) = u∗

cp(z) = u∗
S(cp(z)) and

(
(IZu

∗
cp)|S ◦ cp

)
(z) =

(
IZu

∗
cp

)
(cp(z)).

Thus, for m > d/2, the “stability error” in J(u∗
cp − IZu

∗
cp) can be bounded by

‖
(
IZu

∗
cp − u∗

cp

)
−
(
IZu

∗
cp − u∗

cp

)
|S

◦ cp‖2ℓ2(Z) = ‖IZu
∗
cp − (IZu

∗
cp)|S ◦ cp‖2ℓ2(Z)

≤ nZ‖u
∗
S − IZu

∗
cp‖

2
L∞(S) ≤ nZ‖u

∗
cp − IZu

∗
cp‖

2
L∞(Ωδ)

≤ (CSδq
−d
Z )h2m−d

Z ‖u∗
cp‖

2
Hm(Ωδ)

≤ CS,ρZ δ
2h2m−2d

Z ‖u∗
S‖

2
Hm(S). (4.4)

Putting (4.3) and (4.4) into (4.2) yields the asserted estimate. �

It is worth pointing out that “PDE+Embedding conditions1” and “PDE+Stability
conditions” were considered as two different numerical recipes in [29]. The numerical
demonstrations there show that “PDE+Embedding conditions” yields better perfor-
mance. Readers can see that the embedding and stability conditions have their own
roles to play in our analysis. Both conditions are necessary to ensure high order
convergence.

Before presenting any numerical result, let us first go over some implementation
details. Our theories allow more general setting than that of the orthogonal gradients
method. For trial centers Z ⊂ Ωδ, one needs not keeping all the off-surface centers
in the orthogonal direction of some zi ∈ Z ∩ S. Since the end user has complete

1Embedding conditions in [29] are n ·∇u = 0 and (n̂ ·∇)(n̂ ·∇)u = 0 instead of our Theorem 2.1.
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control over the distribution of Z, it makes sense to place quasi-uniform trial centers
on S and then extend (either orthogonally or by other means) them out-of-surface by
distance hZ,S to form a quasi-uniform set Z ⊂ Ωδ. Collocation points in X should be
sufficiently dense to ensure stability, see (3.8) for a sufficient condition, and ideally
quasi-uniform, can be placed on S. By comparing to the optimal result in the domain
analogy [9], which only requires linear ratio of oversampling hX ≤ ChZ , the sufficient
condition (3.8) is unlikely to be a necessary one.

Firstly, we consider the “PDE collocations” part. Although LE is defined by the
cp–extension of LS , the discrete norm ‖LEu‖ℓ2(X) does not require any information
away from S. When implemented, it is unnecessary to cp–extend the coefficients
of LS . Also note that there are many zeros in the stability conditions, viz., ‖u −
u|S ◦ cp‖2ℓ2(Z) = ‖u − u|S ◦ cp‖2ℓ2(Z\S). Thus, the overdetermined linear system in
Theorem 4.1 can be written in matrix form as




LEΦm(X,Z)
∂n̂Φm(X,Z)

∂
(2)
n̂

Φm(X,Z)

Φm

(
Z \ S, Z

)
− Φm

(
cp(Z \ S), Z

)


λ =




f(X)
0

0

0


 , (4.5)

in which all differential operators act on the first argument of Φm. Once we obtain the
least-squares solution λ = {λi}

nZ

i=1, the Kansa solution can be evaluated everywhere
on S by uX,Z( · ) =

∑
ζi∈Z λiΦm( ·, ζi).

From Theorem 3.5, we can see that the “stability conditions” with a weight hǫ
X

is asymptotically insignificant as hX → 0. Moreover, the corresponding “stability
error” in Theorem 4.1 is much smaller than the others. Theoretically, the stability
conditions can be approximated by the embedding conditions plus an O(δ) Taylor
residual error and the “PDE+Embedding conditions” formulation remains low-order
convergent by our Theorem 3.5. Moreover, it has the smallest length scale as all the
other blocks involve derivatives of the kernel. All these justifications hint that the
“stability conditions” are numerically negligible. Our first example in Section 5 aims
to identify appropriate numerical setups for practical use.

5. Numerical examples. We present three numerical examples aiming to ad-
dress a few practical problems concerning the proposed kernel-based embedding method.
The first example aims to identify the smoothness and necessary denseness require-
ments on the kernel and the set of collocation points X ⊂ S respectively. The sec-
ond studies the effect when data points, Z and/or X , are not unevenly distributed
and the curvature of the surface becomes large. The last shows some simulated re-
sults when the proposed method is applied to time-dependent PDEs. Among all of
the numerical experiments, we use a scaled Whittle-Matérn-Sobolev kernel in the
form of Φm(x) := (m‖x‖2)m− d

2 Km− d
2
(m‖x‖2) in order to minimize the effect of ill-

conditioning.

Example 5.1 (Denseness and smoothness requirements). We consider overde-
termined systems in the form of

‖LEu− f‖2ℓ2(X) + ‖W1∂n̂u‖
2
ℓ2(X) + ‖W2∂

(2)
n̂

u‖2ℓ2(X) +W3‖u− u|S ◦ cp‖2
ℓ2(X̂)

with different weightings W1,W2 : S → R and W3 ∈ R. The linear system in (4.5)
corresponds toW1 = 1 = W2 and W3 = min(1, hǫ

X). When condition (3.8) is satisfied,
we have W3 = hǫ

X as defined in Theorem 4.1. Using Theorem 2.1, we can reintroduce
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Fig. 5.1. Example 1: The H2(S) convergence profiles of the proposed method with different
denseness of collocation points for solving a modified Helmholtz problem on the unit circle.

the geometry of S back into the linear system by setting W1 = aHS−b·n̂ and W2 = a
where a and b are coefficients of the embedding PDE in (1.2). Furthermore, setting
W3 = 0 drops the “embedding conditions” from the linear system. Formulations to
be tested are:

Method 1: A full system with W1 = aHS −b · n̂, W2 = a, and W3 = min(1, hǫ
X).

Method 2: A full system with W1 = 1, W2 = 1, and W3 = min(1, hǫ
X).

Method 3: A reduced system with W1 = aHS − b · n̂, W2 = a, and W3 = 0.
Method 4: A reduced system with W1 = 1, W2 = 1, and W3 = 0.

All four formulations are applied to solve a surface modified Helmholtz equation in
the unit circle and an ellipse in R

2. Trial centers Z ∩ S are placed on the curves
and orthogonally extended in- and outward to form the full set of collocation points
Z as in the orthogonal gradients method [29]. Collocation points X are uniformly
distributed on S.

To numerically seek for a necessary denseness condition, we consider different
relative fill distances hX = 1

2hZ , hX = 1
10hZ and lastly, a theoretically sufficient one

hX = h2
Z with ǫ = 2 − 11/6. All reported errors are in H2(S) approximated on a

dense set of evaluation points by an equivalent norm ‖(I −∆S)u‖L2(S) based on the
relationships in (2.4).

In Figure 5.1, the H2(S) errors with different hX resulting from an m = 6 kernel
are plotted against the fill distance hZ . When the sufficient condition is satisfied, all
four methods yield the same convergence and accuracy. The same conclusion remains
valid if the denseness is relaxed to hX = 1

10hZ . If we further reduce the denseness
to hX = 1

2hZ , we can see that both convergence and accuracy of Methods 1 and
2 are affected, whereas Methods 3 and 4 remain as accurate as the previous cases.
Instead of finding a proper formula of W3 to “violate” the denseness requirement
in Theorem 4.1, this demonstration suggests that we can simply drop the “stability
conditions” whose numerical importance is insignificant.

Next, we study the convergence rate with respect to the smoothness of the kernel.
Figure 5.2 shows the H2(S), i.e., k = 2, and L2(S) error profiles of Methods 3 and
4 for solving a modified Helmholtz equation on an ellipse with an axis ratio a/b = 2
and circumference 2π. It is trivial to see that the orders of convergence increase
with the smoothness parameter m > k + 1/2 + d/2. We can also see that the added
“geometry” does not help improve the accuracy of Method 3. Moreover, incrementing
m by 1 results in two extra orders of convergence inH2(S) errors. In the next example,
we will explore more about this idea.

Example 5.2 (Uniformities of data sets). Numerical evidence in Example 5.1
suggests that the economical Methods 3 and 4, which only collocates the embedding
PDE and our proposed embedding conditions, performs as well as the theoretically
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Fig. 5.2. Example 1: Convergence profiles for various different smoothness m of the reduced
systems (Methods 3 and 4) on an ellipse with axis ratio a/b = 2.

convergent Methods 1 and 2.
We continue to study the importance of having surface geometry in the formula-

tion (i.e., W1 and W2) by solving the modified Helmholtz equation in Example 5.1 on
two ellipses with different axis ratio a/b = 3 and = 5, see Figure 5.3. The problems
are solved by Methods 3 and 4 with hZ = 1

10hX . To show that the proposed method
is easy to apply for most users, we simply generate the sets X and Z by using regular
data from the parameter space of and unevenly distributed data points on S.

For comparison, results obtained by the projection method in [13] are also in-
cluded. Note that data points used there are relatively uniform and, in our test
problems, we can see the solutions of the projection method oscillate (around the
antipodal points along the major axis where the data points density is high). Such
numerical instability is typical in high-order meshfree interpolation. In contrast, our
proposed least-squares formulation is more easygoing in nonuniform data points. We
can see that orders of convergence of both Methods 3 and 4 (with m = 6) are similar.
Obviously, Method 3, which makes use of the geometry of S, should better capture
the embedding PDE and it is of no surprise to see that its H2(S) error is smaller.
However, the situation is reversed if we consider their L2(S) errors. We can easily
see the error in the solution of Method 3 in the case of a/b = 5. Method 4, which
is the simplest formulation among the tested ones, indeed is the most reliable one.
Note that the tested range of hZ is quite small here. With large eccentricity, the
estimated H2(S)–convergence rate of Method 4 is about 3.54, which agrees nicely
with the predicted m − k − 1/2 = 3.5 order by our theories. This suggests that the
higher-than-predicted orders of convergence of meshfree method reported in literature
only hold on some surfaces.

Next, we consider a modified Helmholtz on an ellipsoid2 or a torus3 in R
3. In

Figure 5.4, we show the error distributions for the numerical approximation obtained
by m = 6, and the convergence profiles of Method 4 and the projection methods with
various smoothness parameter m. The observations made here are similar to above.

2 x2 + (y/1.5)2 + (z/0.5391)2.
3 (1−

√

x2 + y2)2 + z2 = 1/9.
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Fig. 5.3. Example 2: Numerical results of the proposed method with m = 6 and the projection
method in [13] for solving a modified Helmholtz equation on ellipses with different axis ratio a

b
.

We can see that large absolute error accumulates near regions with large mean cur-
vature of the ellipsoid despite the high density of data points, but around the outer
surface of the Torus where data points are coarser. Convergence behaviours in L2(S)
are also provided for different kernel smoothness m. In terms of convergence, we
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can see that, for each m, the projection method and Method 4 have similar conver-
gence rates. As for accuracy, it is really up to the surface and its curvature; our
method is more accurate on the ellipsoid whereas the projection method yields better
approximations on the torus.
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Fig. 5.4. Example 2: Absolute error plot and convergence plot for torus and ellipsoid.

Example 5.3 (Reaction diffusion equations). The previous examples focus on
solving second order elliptic equations. It would be interesting to apply the proposed
method to solve time-dependent PDEs on surface. This example concerns about nu-
merical simulations of reaction diffusion equation for pattern formations on surfaces.
Consider the following system of equations [5, 35] for the Turing spot and stripe pat-

terns :

∂u

∂t
= δu∆Su+ fu(u, v) and

∂u

∂t
= δv∆Sv + fv(u, v), (5.1)

where u and v are the activator and inhibitor respectively, and

fu(u, v) := αu
(
1− τ1v

2
)
+ v (1− τ2u), fv(u, v) := βv

(
1 +

ατ1
β

uv

)
+ u (γ + τ2v).

By tuning the parameters, different patterns appear in the steady state solution. As
a demonstration, we use parameters in Table 5.1 and set δu = 0.516δv for these
simulations. The initial condition is generated by some uniformly random values
between −0.5 and 0.5 in a thin strip around the equator of the surface and zeros
elsewhere. The reaction diffusion equation is first semi-discretized by the implicit-
explicit SBDF2 method in [3,32]. The idea is to solve the reaction term explicitly and



18 K.C. CHEUNG & L. LING

surface Pattern δv α β γ τ1 τ2
CDP spots 1.5× 10−3 0.899 -0.91 -0.899 0.02 0.2

stripes 2.1× 10−4 0.899 -0.91 -0.899 3.5 0
Torus spots 2.3× 10−3 0.899 -0.91 -0.899 0.02 0.2

stripes 8.87× 10−4 0.899 -0.91 -0.899 3.5 0
Cyclide spots 2.2× 10−2 0.899 -0.91 -0.899 0.02 0.2

stripes 8.0× 10−3 0.899 -0.91 -0.899 3.5 0
Orthocircle spots 3.8× 10−2 0.899 -0.91 -0.899 0.02 0.2

stripes 9.0× 10−4 0.899 -0.91 -0.899 3.5 0
Table 5.1

Example 3. Parameters for Turing patterns.

handle diffusion implicitly. With ∆t = 0.05, we solve the resulting modified Helmholtz
equations by applying our Method 4 with around 5000 points on each surface. We run
our simulations on the following implicit surfaces: a constant distance product (CPD)
surface4, a torus5, a cyclide6 and an orthocircle7. We terminate the time evolution
at T = 400 and T = 6000 respectively for the Turing spot and stripe pattern. The
results are given in Figure 6.1.

We end this section with some spiral wave simulations of the Fitzhugh-Nagumo
equation [4] in the form of (5.1) with

fu(u, v) :=
1

α
u(1− u)

(
u−

v + b

a

)
, fv(u, v) := u− v.

on the torus and CDP surfaces. In this context, u and v represent some chemical
concentrations or membrane potential and current. Using α = 0.02, a = 0.75, b =
0.02, δv = 0 and the initial condition

u(0,x) =
1

2

(
1 + tanh(2x+ y)

)
, v(0,x) =

1

2

(
1− tanh(3z)

)
.

We solve the reaction diffusion equation by SBDF2 with a time step of ∆t = 0.02.
Using the values of u or v, we can construct spiral waves by assigning red to u = 1,
blue to u = 0, and interpolate the color in-between. The approximated solution by
Method 4 to u gives the spiral waves in Figure 6.2.

6. Conclusion. This work aims to give the first theoretical study for kernel-
based embedding methods for surface PDEs. By carefully applying the recently avail-
able inverse inequalities on some meshfree trial spaces, we derive a convergent formu-
lation of meshfree embedding method for second order elliptic PDEs on surfaces. The
proposed method is easy to implement; it is identical to its domain-type counterpart
plus some embedding and stability conditions. Our convergence analysis, which is
carried out in the embedding domains, ensures that the proposed method converge
at an m− k − 1/2 rate in Hk(S) if a reproducing kernel of Hm(Rd) is employed and
some smoothness assumptions are satisfied. Most of these assumptions are standard

4
√

(x− 1)2 + y2 + z2
√

(x+ 1)2 + y2 + z2
√

x2 + (y − 1)2 + z2
√

x2 + (y + 1)2 + z2−1.1 = 0.
5 (1−

√

x2 + y2)2 + z2 = 1/9.
6 (x2 + y2 + z2 − d2 + b2)2 − 4(ax + cd)2 − 4b2y2 = 0 with a = 2, b = 1.9, d = 1, c2 = a2 − b2.
7 ((x2 + y2 − 1)2 + z2)((y2 + z2 − 1)2 + x2)((z2 + x2 − 1)2 + y2)− c2

1
(1+ c2(x2 + y2 + z2)) = 0

with c1 = 0.075, c2 = 3.
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for high order convergence except those on the kernel smoothnessm and the denseness
of the collocation points, which are a direct consequence of the hybrid-type inequal-
ities in our proof. Thus, we present convincing numerical results to show that the
theoretical assumptions are sufficient, but not necessary, conditions for convergence.
Moreover, after taking both accuracy and efficiency into consideration, a reduced sys-
tem with some linear ratios of oversampling is recommended for practical use. When
the surface of interest has large mean curvature, we can see a clear advantage of this
reduce system over an interpolation-based projection method. The successful simula-
tions of various pattern formations further demonstrate the robustness of unsymmetric
meshfree collocation methods.
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