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Abstract

Partial differential equations (PDEs) on surfaces arise in a variety of application
areas including biological systems, medical imaging, fluid dynamics, mathemat-
ical physics, image processing and computer graphics. In this paper, we propose
a radial basis function (RBF) discretization of the closest point method. The
corresponding localized meshless method may be used to approximate diffusion
on smooth or folded surfaces. Our method has the benefit of having an a priori
error bound in terms of percentage of the norm of the solution. A stable solver
is used to avoid the ill-conditioning that arises when the radial basis functions
(RBFs) become flat.

Keywords: Power function, radial basis function (RBF), closest point
method, diffusion, surface.

1. Introduction

A variety of numerical methods have been proposed to approximate the so-
lution of partial differential equations on surfaces. These include discretizations
on parameterized surfaces, finite difference and finite element methods on tri-
angulated surfaces, and embedding methods.

Each class of methods is characterized by certain advantages and disadvan-
tages. Parametrization methods can be very efficient, but these methods require
a parametrization of the surface. Typically, the construction of a parameteri-
zation leads to distortions in the surface as well as singularities [1, 2, 3, 4]. We
may avoid this complication by discretizing on triangulated surfaces. Unfortu-
nately, finite difference discretizations on triangulated surfaces are more difficult
to construct on curved surfaces than on the plane and it can be difficult to com-
pute geometric quantities such as the curvature and the normal to the surface
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[5, 6, 7]. On the other hand, finite element methods on triangulated surfaces
can be effective when applied to problems of elliptic or parabolic type [8, 9].
In the embedding class of methods, the surface and the corresponding surface
PDE are represented in the underlying d-dimensional embedding space (e.g., a
problem posed on a two-dimensional curved surface might be represented and
solved in a three-dimensional neighbourhood of the surface) thereby enabling
the use of standard Cartesian grid methods in R

d. The most popular finite
difference [5, 6] and RBF discretizations [10, 11] of this type project the surface
Laplacian to the tangent space of the surface. Often, a level set representation
of the surface is used, in which case there is no direct generalization to open sur-
faces or surfaces without orientation. Moreover, embedding methods typically
introduce artificial boundary conditions at the boundary of the computational
domain, leading to an addition error and first-order accuracy for diffusion prob-
lems. These complications can be overcome by using the closest point method
[12], which is a high-order accurate method that embeds the surface within the
Euclidean embedding space by means of a closest point mapping. The standard
explicit closest point method is comprised of an evolution step and an interpo-
lation step: the method must interpolate function values on the surface at each
time step in order to replace derivatives intrinsic to the surface with standard
Cartesian operators.

In [13], Piret proposed to discretize the closest point method using radial ba-
sis functions. As a consequence of using radial basis functions, the method is not
restricted to Cartesian grids. This allows for two fundamental advantages over
the standard closest point method. First, it is straightforward to use irregular
or refined grids according to the needs of the problem. Second, the freedom of
selecting nodal points naturally allows one to eliminate the interpolation step of
the closest point method by making an appropriate node selection. By avoiding
the interpolation step, the computational error and cost associated with inter-
polation is eliminated. The method proposed in this paper also combines the
closest point method and the radial basis function projection method to solve
PDEs on surfaces. As in Piret’s approach, our approach does not involve an
interpolation step, thereby eliminating a source of error and opening the pos-
sibility of significant savings in computational cost. Apart from this, we will
show that our proposed method is error optimal, i.e., the spatial approximation
has a minimal error bound among all meshless methods. Moreover, the error
bound is of a-priori type: it depends only on the distribution of nodes and the
type of kernel or basis function. On the other hand, the discretization of the
spatial variables in our approach leads to a differentiation matrix W such that
ut = Wu. While the differentiation matrix W is error optimal, it is also very
ill-conditioned when the radial basis functions become flat or when the nodal
points are very dense. Consequently, as we refine our discretization, the differ-
entiation matrix becomes ill-conditioned [14, 15, 16]. This trade-off is inherent
in meshless methods. See [17, 18] for a strategy to handle the ill-conditioning
by changing the basis function to an orthogonal basis, thereby stabilizing the
computation for flat radial basis functions. Throughout this paper, the differ-
entiation matrix W arising in numerical experiments is solved by this RBF-QR
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strategy.
In addition to the development of an error-optimal RBF discretization, this

paper introduces a generalization of the closest point method appropriate for
diffusion on folded surfaces. The standard closest point method is built on
the assumption that the closest point function is sufficiently smooth within the
computational band. As a consequence, the standard method cannot be used
to compute the solutions of PDEs on curves with corners or surfaces with folds.
In [19], a transformation was introduced to give a smooth, transformed prob-
lem which is amenable to computation via the standard closest point method.
Unfortunately, the transformed problem has increased dimensionality, and con-
sequently is computationally expensive. In this paper, we develop an extension
of the closest point method for solving diffusion on curves with corners and
on folded surfaces. The method computes within the original embedding space
and uses node placement along the folds. This makes a radial basis function dis-
cretization particularly appropriate. Numerical experiments demonstrate that
the proposed method retains high-order accuracy for smooth curves and sur-
faces, while giving first order convergence for computations on geometries with
folds.

2. Surface Embedding

The closest point method, originally proposed by Ruuth and Merriman [12],
is an embedding method for solving PDEs on surfaces. The method embeds the
surface operator to the Euclidean space Rn using a closest point mapping. Such
an embedding is called a closest point extension. By alternating the closest
point extension with a traditional PDE solver on R

n, we can obtain an explicit
method for solving a surface PDE in the embedding space.

Let S ⊂ R
n be a smooth surface and ∇ be the standard Euclidean gradient

in R
n. Then, the surface gradient, denoted by ∇S , is defined as:

∇S := ∇− n̂(n̂ ·∇) , (1)

where n̂ is the unit normal to the surface S. Consider a C1 vector field φ : Rn →
R

n that is constant along the normal direction to S. The directional derivative
satisfies

0 =
d

dn̂
(u ◦ φ) = n̂ ·∇(u ◦ φ),

which we combine with (1) to obtain

∇S(u ◦ φ) = ∇(u ◦ φ)− n̂ ·∇(u ◦ φ) n̂ = ∇(u ◦ φ), on S. (2)

Thus, for any C1 function that is constant along the normal direction to S,
we observe that, on the surface, standard Euclidean gradients (defined on the
embedding space) coincide with the desired surface gradients. A particularly
convenient vector field φ : Rn → S is the closest point mapping

φS(x) = argmin
s∈S

|x− s|, for all x ∈ S, (3)
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where S ⊆ R
n is a neighborhood of S over which the closest point mapping φS

is C1. Generally, the maximum possible S is determined by the curvature of
S. For any C1 surface, we can properly embed S ⊂ S. For example, if S ∈ R

2

is circle, then the maximum possible S will be the whole plane R
2 except the

center of S.
Similar conditions can be derived for the surface divergence for any differen-

tiable vector field ϕ : Rn → R
n. Similarly, if ϕ is tangent to the surface and all

the surfaces displaced by a fixed distance from S, then the surface divergence
of ϕ coincides with the usual divergence at the surface

∇S · ϕ = ∇ · ϕ, on S. (4)

A combination of these two principles demonstrates that we may evaluate the
traditional Laplacian ∆(u ◦ φS) = ∇ · ∇(u ◦ φS) in S instead of the surface
Laplacian ∆S(u◦φS) = ∇S ·∇S(u◦φS) on S for u ∈ C2. In fact, any nonlinear
diffusion operator can be embedded to a traditional one in S; see [12].

3. S–Orthogonal Data Distribution

For the sake of clarity, let uS be the restriction to the surface S for any
function u defined on R

n. Consider the heat equation intrinsic to the surface S,
i.e.,

∂tuS = ∆SuS on S. (5)

After embedding the surface PDE to S, we get an embedded PDE:

∂tu = ∆(u ◦ φS) in S. (6)

We can use any solver developed for the embedded PDE posed on R
n to solve

the surface PDE (5).
Meshless methods are methods that do not require any mesh structure.

When applied to the closest point method with an appropriate mesh, mesh-
less methods give a trivial discretization of the closest point extension step. In
this work, we adopt the localized meshless approach in [20, 21, 13, 22, 23, 24].
First, let X = {xi}

N
i=1 ⊂ S be the set of data points used to discretize S;

see Figure 1 for a schematic demonstration. Using the set of normal vectors
n(X) = {n̂(xi) : xi ∈ X}, the set X can be extended to a discretization for S.
We define Gh(X) : S → S such that

Gh(X) = X + hn(X) = {xi + h n̂(xi) : xi ∈ X,h ∈ R}.

It is easy to see that Gh(X) is a set of points extended from X by a distance
h along its normal direction n(X). For simplicity, assume h > 0 is sufficiently
small (w.r.t. k) such that, G : S → S and

X = G(X) := X ∪G±h(X) ∪ · · · ∪G±kh(X) ⊂ S. (7)

With N = |X | points on S, we now have a set of M = (2k + 1)N data
points in S. By construction, trivially, we also have a discretized closest point
mapping (3), that maps u|X → u|X . The tradeoff is that the data points in X
are not regular.
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Figure 1: A schematic demonstration for a data point xi on surfaces S ⊂ R
2 along with its

symmetric 3-point local neighbourhood Xi and S-orthogonal extension Xi.

3.1. Point distribution for corners and folded surfaces

Suppose for now that our surface S is nonsmooth and S =
⋃
Sj , where

each Sj is smooth. Define the singular curve Γ to be the intersection of these
subsurfaces, i.e., the set on which S is nonsmooth. It is desirable to have
data on Γ to enhance the resolution of the numerical approximation. We now
describe mesh selection on singular surfaces. For each data point xi ∈ X ⊂ S,
we either have xi inside a smooth subsurface or on the singular curve. For
xi ∈ Sj \ ∂Sj (for some j), its local neighbourhood should be restricted to the
same subsurface; i.e., Xi ⊂ Sj . This local neighbourhood can then be extended
in the S-orthogonal direction to yield X i.

Now, for xi ∈ Γ, xi must belong to two or more smooth subsurfaces. That
is, xi ∈ Si1

⋂
· · ·

⋂
Sik ⊆ Γ where k ≥ 2. Notice that our discretization requires

smoothness of the closest point function in a band around each subsurface, a
requirement that can be satisfied by taking h sufficiently small. This contrasts
with the original closest point method that places a more strict, global restriction
over S. Figure 2 gives a simple case of two smooth curves meeting at a corner
point xi. At the corner point xi, asymmetric local neighbourhoods are used to
satisfy Xi1 ⊂ S1 and Xi2 ⊂ S2. In our method, these local neighbourhoods will
lead to multiple sets of weighings for the corner xi. An arithmetic average will
be taken as the final weighting.

Note that the S-orthogonal extensions Xi1 can extend past subsurface S2,
and vice versa for an acute angled corner with our method. These overlapping
grids will not cause any trouble for our method.

Figure 3(a) shows an example of a dented sphere S ⊂ R
3 composed of S1,

a part of the unit sphere, and S2, the dented top. Figure 3(b) is a bird’s-eye
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Figure 2: A schematic demonstration of the local neighbourhoods (Xi1
and Xi2

) and exten-

sions (Xi1
and Xi2

) for a corner point xi ∈ S1

⋂
S2.
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Figure 3: A nonsmooth manifold in R
3 and a schematic data point distribution.
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view of some data points X near a part of Γ. In this projected view, the outer
annular region belongs to S1 and the inner region belongs to S2. S1 and S2

meet at Γ (represented by the solid line). For a data point xi ∈ S1

⋂
S2, Xi1

and Xi2 are obtained via neighborhood searches. See Figures 3(b) and 3(c)
for illustrations of these sets.

3.2. Reduced semi-discrete form

For each xi ∈ X ⊂ S and some ε > 0, let the ith local neighbourhood be
denoted by Xi = {x ∈ X ⊂ S : |x − xi| < ε}. Then, this neighbourhood
on S can be extended to S by Xi = G(Xi) ⊂ X. Assuming we have a set of
generalized finite-difference weightings wij ∈ R, such that for each xi ∈ X,

Lu(xi) ≈
∑

j

wij u(ξj), ξj ∈ Xi, (8)

where L is a linear functional. For data xi ∈ Γ on the surface singularity, the
linear combination in (8) involves all points ξj ∈ Xi1

⋃
· · ·

⋃
Xik . A detailed

discussion on the generalized finite-difference method is presented in the next
section. For now, suppose (8) is available for all data points in X . Collecting all
these weights in an M×M sparse matrix W , as in the standard finite difference
method, we obtain a semi-discrete formulation,

∂tu(X) = W (u ◦ φS)(X). (9)

Advancing (9) via any time discretization scheme will yield a set of new nodal
values at all points in X. For simplicity, we consider the forward Euler scheme
which yields

u(X, t+∆t) = (u ◦ φS)(X, t) + ∆tW (u ◦ φS)(X, t). (10)

It remains to discretize the closest point mapping u◦φS . This will yield a stan-
dard difference equation to update the approximate solution of the embedded
PDE (6).

Recall that our target is the surface PDE (5) rather than the embedded
(6). In other words, we are only interested in the function values of u ◦ φS or,
equivalently, u values at points X belonging to S. Those at points X \X are
specified by the closest point mapping, i.e., u ◦ φS(X) = u(G−1(X)). Notice,
however, that our data points give the function values outside S as copies of
those on the surface. Thus, in (10), the values of u(X\X) and the corresponding
weightings in W are unnecessary. Applying this observation, the closest point
mapping can be written in matrix form as

(u ◦ φS)(X, t) = Eu(X, t), for E = 1⊗ IN ∈ {0, 1}M×N ,

where ⊗ is the kronecker product and E is an upsampling with the (2k + 1)
vector 1 of all ones, assuming points in X are listed first in X as in (7). We
also define the corresponding downsampling E† = eT1 ⊗ IN ∈ {0, 1}N×M that
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extracts values at X . Applying operators E and E†, the M × M system (10)
can be reduced to an N ×N system:

u(X, t+∆t) = E†u(X, t+∆t),

= E†
(
(u ◦ φS)(X, t) + ∆tW (u ◦ φS)(X, t)

)
,

= E†
(
Eu(X, t) + ∆tWEu(X, t)

)
,

=
(
IN +∆t E†WE

)
u(X, t), (11)

where the N ×N matrix E†WE only requires N sets of finite difference weights
wij , given by (8), for the points X instead of all M sets for X.

Equation (11) gives the forward Euler approximation of the time discretiza-
tion of the surface PDE ∂tuS = LSuS , (5), on data points X ⊂ S. Other
time-stepping methods may also be considered. Similar to the forward Euler
case, such methods should be applied to the reduced semi-discrete form for the
surface PDE,

∂tuS(X) = (E†WE)uS(X). (12)

4. Norm-Optimal Approximation

We now address how the generalized finite difference weightings (8) can be
obtained for all xi ∈ X ⊂ S to evaluate the matrix E†WE in the reduced semi-
discrete surface PDE (12). Recall that xi ∈ X is any given data point on the
surface S. The subset of neighboring points Xi ∈ S of xi is then obtained by
some neighborhood search technique over the set X , such as a kd-tree search.
Then, the subset X i ⊂ X is obtained by extending points in the normal direc-
tion, as in (7), and we denote ni = |X i|. Throughout this section, the index i
will be used to denote the current point under consideration and will be omitted
when no ambiguity arises. Generally speaking, we need a method to look for the
weighting {wij} in (8) such that the linear functional δxi

L is well-approximated
by a linear combination of the function values of u at Xi,

δxi
L[u] = Lu(xi) ≈

∑

j

wij u(ξj), ξj ∈ X i. (13)

Equivalently, in matrix form, it suffices to find the matrix W in the following
linear system

Lu(X) ≈ E†Wu(X),

where E†W is of size N×M with entries [E†W ]ij = wij in (13). For the singular
points xi ∈ Γ, the linear functional δxi

L has multiple approximations, one for
each subsurface to which xi belongs.

To select the weighting so that the discretization on a set of given nodes
is error optimal, we introduce a reproducing kernel Hilbert space. As will be
shown, a priori error estimation is possible with our approach.
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Let K : Ω × Ω → R be a symmetric, strictly positive definite kernel with
Ω ⊃ Xi and let HK(Ω) = span{K(·, y) : y ∈ Ω}. We define an associated
bilinear form 〈 ·, ·〉K for HK by

〈
∑

j

cjK(·, xj),
∑

k

dkK(·, yk)

〉

K

=
∑

j

∑

k

cjdkK(xj , yk).

Thus, HK(Ω) is a pre-Hilbert space with 〈·, ·〉K as an inner product. Completion
of HK(Ω) yields a Hilbert space which is called the native space, denoted by
H(Ω) for simplicity. The space H(Ω) satisfies

K(x, y) = 〈K(x, ·),K(y, ·)〉H,

f(x) = 〈f,K(x, ·)〉H,

〈δxi
L, δxj

L〉H∗ = δxi
Lxδxj

LyK(x, y) = LxLyK(xi,xj),

for all x, y ∈ Ω, f ∈ H and δxL ∈ H∗, where H∗ is the dual space of H and
the superscript in δxi

Lx is used to emphasize its action on the first variable of
K(x, y).

Suppose we want to find the weights in (8) to minimize the absolute error
[25]. The approximation error is given by

∣
∣
∣
∣
∣
∣
∣

Lu(xi)−
∑

ξj∈Xi

wju(ξj)

∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣

(

δxi
L−

∑

wjδξj

)

[u]
∣
∣
∣ ,

≤
∥
∥
∥δxi

L −
∑

wjδξj

∥
∥
∥
H∗

∥
∥u

∥
∥
H
, (14)

where wj := wij is the weight in (8). We define the power function εδxi
L,Xi,w

:=

δxi
L −

∑
wjδξj

for a linear functional δxi
L, node point Xi, and weighting w.

Note that the square of the norm of the power function is a bilinear form such
that:

P2(w) :=
∥
∥εδxi

L,Xi,w

∥
∥
2

H∗
=

∥
∥δxi

L−
∑

ξj∈Xi

wjδξj

∥
∥
2

H∗
,

= 〈δxi
L, δxi

L〉H∗ − 2
∑

wj〈δxi
L, δxj

〉H∗ +
∑∑

wjwk〈δxk
, δxj

〉H∗ ,

= LxLyK(xi,xi)− 2
∑

wjL
xK(xi,xj) +

∑∑

wjwkK(xk,xj).(15)

Finding an error optimal formula is equivalent to minimizing P2. It is easily
shown that the solution w∗ of the following system minimizes P2:

∑

xj∈Xi

w∗
jK(xk,xj) = LxK(xi,xk), xk ∈ Xi. (16)

Equivalently, in matrix form a minimizer is obtained if w∗ satisfies

K(Xi, Xi)w
∗ = LxK(xi, Xi). (17)
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Applying this result to (15), we observe that the minimum of P2 (i.e., the square
of absolute error of (8) at the point xi) is given by

min
w

P2(w) = P2(w∗) = LxLyK(xi,xi)−
∑

xj∈Xi

w∗
jL

xK(xi,xj).

Consequently, the solution of (16) is the weighting such that the approxima-
tion (13) has the smallest error in the sense of the native space norm ‖ · ‖H.
Note that the native space H is a reproducing kernel Hilbert space. For each
type of kernel K, there is a corresponding native space NK . In our prob-
lem, we take K(x,y) = e−( 1

c
‖x−y‖2)

2

. For the Matérn kernel K(x,y) :=

‖x−y‖
m−d/2
2 Km−d/2

(
1
c‖x− y‖2

)
, x,y ∈ R

d, where Kv(r) is the modified Bessel
function of the second kind, the corresponding native space is the Sobolev space
Wm

2 (Rd) for m > d/2. For the native space of other kernels, see [26, 27]. In
both cases, the shape parameter c controls the shape of the kernel. The trade-
off property for the radial basis function method [28, 29] is that the accuracy
improves as the shape parameter c grows large or as the nodal point distribu-
tion becomes dense. Computationally, either case comes at the cost of more
ill-conditioned matrices.

Once the kernel K is fixed, one can directly compute the power function and
error bound without any knowledge of the exact solution. Thus, we can obtain
an error bound for a given node before computing any numerical solution. Note
that the error bound (14) can also be interpreted as the relative error of the
discretization in terms of the H-norm of the exact solution u.

4.1. The meshless finite difference method

The meshless finite difference method, a.k.a. the localized meshless method
[20, 22, 23, 24], has been developed for the same purpose to find the weighting
w in (13). Here, we shall show that the weighting found by the meshless finite
difference method coincides in exact arithmetic with ours in (16).

Suppose we are given a set of data sites Xi, but with unknown function
values u(X i). Meshless methods, with a suitable kernel function K, give an
interpolant of ũ in the form

ũ(x) =
∑

xj∈Xi

wjK(x,xj).

Imposing interpolation conditions ũ = u at all x ∈ X i, we express the weighting
as

w = K(Xi, Xi)
−1u(X i),

where u(X i) is a vector of (unknown) function values and the matrix entries are
defined by [K(Xi, X i)]jk = K(xj ,xk) for xj ,xk ∈ Xi. Note that the matrix
K(Xi, X i) is nonsingular provided the kernel K is positive definite.
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The meshless finite difference method uses information from the interpolant
to approximate the unknown function. For our discussion we have

Lu(xi) ≈ Lũ(xi),

=
∑

xj∈Xi

wjL
xK(xi,xj),

= (LxK(xi, Xi))
T
·w,

= (Lx,K(xi, Xi))
TK(Xi, Xi)

−1u(X i),

= w · u(Xi) =
∑

xj∈Xi

wju(xj).

Therefore, the meshless finite difference method returns the solution of

K(Xi, Xi)w = LxK(xi, Xi),

as the weighting w, which is identical to our previous results (16) and (17).
Thus, the meshless finite difference method is error optimal. Note, however, that
the reproducing kernel Hilbert space approach [26, 25, 30] has the advantage of
allowing us to measure error by using the corresponding power function.

4.2. Finding optimal-weights numerically

To numerically obtain the generalized finite difference weighting for point
xi ∈ X ⊂ S, we solve the ni × ni matrix system (17). This gives an ni = |Xi|
point interpolant over a neighbourhood of xi. For any commonly used global ker-
nel, such as the Gaussian and Matérn kernels, the kernel matrixK := K(Xi, Xi)
is full and, generally speaking, ill-conditioned. To solve (17) directly, it is neces-
sary to invert the kernel matrix, which gives rise to numerical instability. In our
numerical computation, we adopt the Gaussian kernel K(x,y) = e−( 1

c
‖x−y‖2)

2

and apply the stable RBF-QR method by Fornberg et al. [17]. Note that the
method can also be applied to the Matérn kernel [31, 17] in which case one will
be working with error bounds in some standard Sobolev spaces, which are the
native spaces of the Matérn kernel [26].

It is not difficult to see why the matrixK(Xi, Xi) becomes ill-conditioned for
large c-values. In the limit c → ∞, the Gaussian kernels become flat and form a
numerically unstable basis. To avoid this problem, Gaussian radial basis func-
tions may be changed to another set of stable basis functions sharing the same
span. It is shown in [17] that the Gaussian kernel K(x,xk) = e−( 1

c
‖x−xk‖2)

2

has
an expansion in 2D,

K(x,xk) =
∞∑

j=0

j−p

2∑

m=0

dj,mcj,m(xk)T
c
j,m(x) +

∞∑

j=0

j−p

2∑

m=1−p

dj,msj,m(xk)T
s
j,m(x),

(18)
for 0 ≤ m ≤ ⌊ j

2⌋ =
j−p
2 with p = mod2j. In this expression, the functions

T c
j,m(x) = e−r2/c2r2mTj−2m(r) cos

(
(2m+ p)θ

)
, for 2m+ p = 0 (19)
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and

T s
j,m(x) = e−r2/c2r2mTj−2m(r) sin

(
(2m+ p)θ

)
, for 2m+ p 6= 0, (20)

form a linearly independent set and are defined using the Chebyshev polynomials
Tm(r) where x = (r, θ) is the polar coordinate of x. The coefficients in (18)
depend on the point distribution of X i only and are given by

dj,m = c−2j
(

2j−2m−1
(j + 2m+ p

2

)
!
(j − 2m− p

2

)
!
)−1

,

cj,m(xk) = b2m+ptj−2me−r2k/c
2

rjk cos
(
(2m+ p)θk

)

1F2(αj,m, βj,m, c−4r2k),

sj,m(xk) = b2m+ptj−2me−r2k/c
2

rjk sin
(
(2m+ p)θk

)

1F2(αj,m, βj,m, c−4r2k),

where b0 = 1 and bm = 2,m > 0, t0 = 1
2 and tj = 1, j > 0. The func-

tion 1F2 is the hypergeometric function with αj,m = j−2m+p+1
2 and βj,m =

[

j − 2m+ 1 j+2m+p+2
2

]
.

Despite the complexity, if we truncate the infinite sum in (18) after J > ni

terms, the kernel matrix can be analytically decomposed as

K(Xi, X i)
T = CDV T = (QR)DV T , (21)

where C = QR is an ni × J matrix consisting of coefficients cj,m(X i) and
sj,m(Xi) and its full QR-factorization, D, is a J ×J diagonal matrix consisting
of entries dj,m. The n × J matrix V = V (x) consists of the functions T c

j,m(x)
and T s

j,m(x).
The QR-factorization of the matrix C gives C = QR = Q [R1 R2] where

R1 contains the left ni ×ni block of R and R2 contains the remaining columns.
Let D1 be the ni×ni principal submatrix of the diagonal matrix D and denote
the remaining nonzero (J − ni)× (J − ni) submatrix by D2. We observe that

QTK(Xi, Xi)
T

= RDV T ,

= [R1 R2]

[
D1

D2

]

V T ,

= [R1D1 R2D2]V
T ,

D−1
1 R−1

1 QTK(Xi, Xi)
T

= [Ini
D−1

1 R−1
1 R2D2]V

T .

Once the above expansion is known, we define the new basis functions as

H(Xi, Xi) = K (QR−T
1 D−T

1 )
︸ ︷︷ ︸

=:G

= V [Ini
D−1

1 R−1
1 R2D2]

T

︸ ︷︷ ︸
. (22)

Note that the diagonal elements of D are computed analytically, whereas R−1
1 R2

is computed by backward substitution. The relation between the new kernel
matrix and the old kernel matrix is given by

H(Xi, Xi) = K(Xi, X i)G.
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Instead of solving the original system, K(Xi, Xi)w = LxK(xi, Xi), we find w

in the new (discrete) basis via

H(Xi, Xi)w = LxH(xi, Xi). (23)

Note that the right-hand vector can be obtained analytically from (19) and (20),
and that the interpolation matrix with respect to the new kernel, H(X i, X i), is
no longer symmetric.

In practice, some polynomial terms should be added to the expansion (13) in
order to guarantee polynomial accuracy, or when the kernel K is conditionally
positive definite. See [26, 17] for further details.

5. Numerical Demonstrations

To begin, we consider diffusion on various surfaces S ⊂ R
2. Three point local

neighbourhoods Xi will be used to extend one layer outwards and one inwards,
as shown in Figures 1 and 2. Throughout this section, we will use the (scaled)

Gaussian kernel K(x,y) = e−( 1

c
‖x−y‖2)

2

, with various shape parameters c, to
evaluate the generalized finite difference weights in (13) and the power function
P in (15). The reduced semi-discrete system (12) is evolved in time by the
forward Euler scheme. As our interest is the spatial discretization of the surface
embedding, small time steps are used: ∆t = 0.001~2 where ~ is the fill distance
[26].

Our first example evolves diffusion on the unit circle. The convergence of the
relative errors ε and the power function P for three different shape parameters,
c = 0.5, 1, and 2 are given in Figure 4. Convergence rates are approximately
second order for all three tested shape parameters (rates are estimated by the
last 5 data points). Notably, the proposed scheme is convergent for all tested
shape parameters. Moreover, the power function P also exhibits second order
convergence.

To test the performance on nonsmooth curves we apply the same method to
a diffusion problem on the square [−1, 1]2. As shown in Figure 5, the proposed
method is still convergent but the rate drops from second order to first. As in
the case of the unit circle, we observe a close agreement between the ε– and
P–convergence rates. Provided the temporal discretization error is negligible,
the numerically accessible convergence rate of P provides a good estimate for
the convergence rate of the error. The power function can be viewed as the local
truncation error in the finite difference method.

We emphasize that the evaluation of P is pointwise; that is, at the general-
ized finite difference stencils (8) and (13), the power function can be evaluated
by the stencils and assigned weights for any SPD kernel, independent of the so-
lution. The value of P yields an upper bound for the spatial discretization error:
when the solution is unknown, which is usually the case, the discretization error
is bounded by P times an unknown factor ‖u‖H. In our convergence plots, we
observe that the ratio ε/P changes with the shape parameter c. Since the native
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Figure 4: Convergence profiles for diffusion on the unit circle S. The relative error ε and
power function P are plotted for various grid spacings and shape parameters c.
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and power function P are plotted for various grid spacings and shape parameters c.
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Figure 6: Convergence profiles for diffusion on various triangles. The relative error ε and
power function P are plotted for various grid spacings with the shape parameter c = 2.0.

space H is generated by the c-dependent Gaussian kernel in our demonstrations,
different shape parameters yield different spaces H and hence different ‖u‖H.

Determining the optimal shape parameter is challenging and is not the pur-
pose of this work. Nonetheless, the introduction of the power function allows
an easy way to search for the optimal c by brute force. The values of P shown
in Figures 4 and 5 are the maximum over all stencils used in a particular run.
Intuitively, the first order spatial convergence observed in Figure 5 is due to the
error at the corners (this conjecture can be confirmed numerically). We may
determine the optimal shape parameters for a problem with corners by mini-
mizing the power function at the corners. Experimentally, we find c = 2 gives
good results, so we take it for all computations going forward. Figure 6 gives
results for diffusion over 3 different folded, triangulated curves. All three cases
give similar errors and first order convergence.

The observed quadratic convergence on smooth surfaces and linear conver-
gence on folded surfaces is also found in 3D. In Figure 7, the convergence rates
(as measured by the max-norm error) for ε and P are shown for the unit sphere
and a punch-in sphere, which is constructed by reflecting all points above z = 0.5
in the place z = 0.5 (thereby allowing an analytic solution to be derived). For
the unit sphere, data points X are quasi-uniformly placed on the manifold [32].
For the punch-in sphere we place points along the fold. The local neighborhood
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Figure 7: Convergence profiles for diffusion on the unit sphere S and a punch-in sphere. The
relative error ε and power function P are plotted for various grid spacings and the shape
parameter c = 2.0. Middle: snapshot at t = 1 for the same initial condition.

of xi on each smooth (sub-) surface is chosen to contain 13 points: 5 points are
chosen on the fold and 8 on each smooth subsurface. Similar to the treatment in
2D, we average the finite difference weighings over the two subsurfaces to yield
the final spatial discretization for points on the fold.

The unit sphere and the punch-in sphere share identical solutions for any
given initial condition despite the existence of a fold (we can map between
the unit sphere and the punch-in sphere via a reflection in z = 0.5). The
numerical schemes used for these two manifolds are clearly different and we
observe quadratic spatial convergence for the unit sphere and linear convergence
for the punch-in sphere. Figure 8 shows how the difference between the two
numerical schemes evolves over time for one fixed spatial discretization. The
top two subfigures are the respective initial conditions: they are identical if
we unfold the punch-in sphere. From the snapshots in Figure 8, we can see
that a disagreement between the two numerical solutions emerges and diffuses
away from the fold, which is not surprising since the two numerical recipes are
different at the fold. We can see that the relative difference grows gradually
with time due to the decay of the solution, whereas the absolute difference is
rather steady in time. Clearly, the difference is solely due to the treatment of
the fold. Note that our initial conditions vary along the meridian lines. This
choice was made to avoid over-simplifying the example via symmetric data at
the fold.

Not all manifolds are easily unfolded. As an example, consider a flat-
top sphere constructed by replacing the z-coordinates of the unit sphere by
min(z, 0.5). Figures 9 and 10 present two simulated results with different ini-
tial conditions. The first simulation begins with two hot spots on the large
smooth surface symmetric about the x-axis. As time evolves, we observe the
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Initial condition for both unit sphere and punch-in sphere
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Figure 8: Top: initial conditions. Middle, Bottom: relative difference of the numerical ap-
proximation on the unit sphere and the punch-in sphere at various times t with “identical”
initial conditions.
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Figure 9: Simulation of diffusion on a flat-top sphere with two hot spots in the x-symmetric
initial profile.

diffusion progress across the fold to the flat-top and across the large spherical
surface. For each snapshot, the maximum and minimum values of the numerical
solution are also presented to confirm that the maximum principle is satisfied
at consecutive snapshots. The second simulation is initialized with a hot spot
located near the edge of the flat-top in order to highlight the method’s treat-
ment of diffusion across a fold. Snapshots are presented at nonuniform times
to better visualize the rapid initial flow. We observe that heat flows across the
fold at a rate similar to the heat flow within the flat-top. At the final time,
the location of hottest temperature coincides with the hot spot for the initial
condition. Finally, we note that it will take longer for this simulation to reach
steady state due to its more isolated initial profile.

6. Conclusions

We propose an embedding method to solve diffusion on manifolds with folds.
Our discretization is based on meshless methods. This approach has the advan-
tage of eliminating the interpolation step in the underlying embedding method,
thereby eliminating a source of error and computational cost. Moreover, the
flexibility of data point placement is central to our approach for representing
folds and the associated differential operators. In future work we will develop
extensions of the method to more general operators and more general surfaces.
Higher order accurate methods will also be developed.
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Figure 10: Simulation of diffusion on a flat-top sphere with an off-centered initial hot spot at
the top.
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