
Noname manuscript No.
(will be inserted by the editor)

Numerical Caputo differentiation by radial basis

functions

Ming Li · Yujiao Wang · Leevan Ling

Received: date / Accepted: date

Abstract Previously, based on the method of (radial powers) radial basis
functions, we proposed a procedure for approximating derivative values from
one-dimensional scattered noisy data. In this work, we show that the same ap-
proach also allows us to approximate the values of (Caputo) fractional deriva-
tives (for orders between 0 and 1). With either an a priori or a posteriori
strategy of choosing the regularization parameter, our convergence analysis
shows that the approximated fractional derivative values converge at the same
rate as in the case of integer order 1.
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1 Introduction

Fractional derivatives are generally used in both direct [7] and inverse problems
[15,21,28]; for example, applications of fractional derivatives can be found in
physics [20], finance [24], and hydrology [4]. Therefore, we recently can see
a lot of studies on numerical methods [3,13,14,22] and numerical analysis
[10,11,17,29] for fractional partial differential equations. As soon as one shifts
from integer to fractional order models which involve approximating derivative
values, the need for approximating integer order derivatives will turn into
the fractional cases. Hence, finding the value of fractional derivatives from
scattered noisy data is a topic that is worth investigating. The problems of
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approximating (integer [2,8] and fractional) derivatives are well-known to be
ill-posed in the sense that small errors in the data might induce large errors in
the computed derivative. In this work, we are going to generalize our previously
proposed method to approximate derivative values of fractional orders.

Let f : [a, b] → R be the unknown function of interest. A set of n data
sites Ξn = {a = x1 < x2 < ... < xn = b} ⊂ R is given inside the interval [a, b].
Let hmax and hmin denote respectively the maximum and minimum separating
distances defined by

h := hmax = max
2≤j≤n

hj, hmin = min
2≤i≤n

hi, where hj = xj − xj−1, 2 ≤ j ≤ n.

(1)
For the sake of convergence, we assume that the sets of data sites {Ξn} satisfy
a quasi-uniformity condition hmax/hmin ≤ γ for some γ > 0 independent of n.
Now, the ill-posed problem we consider is as follows:

Given a set of noisy data {(xj , y
δ
j )}n1 , where 1

n‖yδj − f(xj)‖ℓ2 ≤ δ2, we
aim to seek a function to approximate the Caputo fractional derivative
of order 0 < α < 1, c

0D
αf , of the unknown function f∗.

After the details of our numerical procedure are presented in the coming sec-
tion, our theoretical goal is to prove that the resulting numerical approxima-
tion will in fact converge to c

0D
αf as the data gets dense and the noise reduces

(i.e. as hց 0 and δ ց 0). This work will then be concluded by some numerical
verifications for the proven convergence rate.

2 Numerical fractional differentiation

To begin, the Caputo fractional derivative of order 0 < α < 1 is defined as

c
0D

αf(x) =
1

Γ (1− α)

∫ x

0

d

ds
f(s)

ds

(x− s)α
; (2)

see monograph by Podlubny [19]. As α ր 1, the Caputo fractional derivative
in (2) coincides with the (integer) first-order derivative.

The objective here is to provide a numerical procedure that allows us to find
a numerical approximation of the Caputo fractional derivative of an unknown
function from its noisy function values. The method of radial basis functions
(RBF) is a renowned approach for finding interpolants from scattered data and
was used for numerical differentiation [12]. Throughout the paper, we focus on
the radial power RBF φ(x) = ‖x‖2β−1, β ∈ N, which is known (see [6]) to be
strictly conditionally positive definite1 of order β.

Suppose noisy data {(xj , y
δ
j )}n1 is available for some noise level δ such that

1

n
‖yδj − f(xj)‖ℓ2 ≤ δ2. (3)

1 More precisely, radial power RBF is (−1)β‖x‖2β−1. As the interpolation matrix is not
required in this work, we drop the term (−1)k for the sake of simplicity.
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Having an interpolant going through all the noisy data is almost meaningless
for numerical differentiation; we therefore seek a regularized fit in the Tihkonov
sense [23]:

yβ,σ := arg min
g∈Xβ

J(g) where J(g) :=
1

n

n∑

j=1

(
g(xj)− yδj

)2
+ σ |g|β, (4)

where β is specified by the employed radial power RBF. The trial space is
defined as Xβ = {Hβ ∩Cβ−1}[a, b], −∞ < a ≤ 0 < b <∞, and the seminorm
is defined as

|g|β =

(
∫ b

a

∣
∣
∣
∣

dβ

dxβ
g(x)

∣
∣
∣
∣

2

dx

) 1
2

, (5)

For any regularization parameter σ, we seek the optimizer of functional in (4)
in the form of

yβ,σ(x) =

n∑

j=1

cj φ(x − xj) +

β
∑

j=1

dj x
j−1. (6)

In our previous work, see [26], it is shown that the following two conditions

n∑

j=1

cj x
i
j = 0, and yβ,σ(xi) + 2(2β − 1)!(−1)βσncj = yδj , (7)

for all i = 1, . . . , k − 1, which allows us to analytically express all required
derivatives in the proof, are sufficient to ensure

J(g)− J(yβ,σ) =
1

n

n∑

i=1

[g(xi)− yβ,σ(xi)]
2 + σ‖g(β) − y

(β)
β,σ‖2L2(R) ≥ 0,

for all g ∈ Xβ . It is straightforward to show that this minimizer is unique.
This provides a way for finding the minimizer of the functional J in (4). The
interested reader is referred to the original article for further information.

With the analytical work done, solving (4) now turns out to be a linear
problem. Conditions in (7) allow us to find the unique minimizer to functional
in (4), i.e. the coefficients cj and dj in (6), can always be obtained via solving
the following (n+ β)× (n+ β) matrix system:

[
Φn + 2σ n (−1)β(2β − 1)! In P

PT 0

](−→c−→
d

)

=

(−→
yδ−→
0

)

, (8)

where Φn is the interpolation matrix of our RBF evaluated at points {xj}n1 , i.e.,[
Φn

]

j,k
= φ(xj , xk) (1 ≤ j, k ≤ n), and the matrix P arises from the appended

polynomial whose elements are
[
P
]

j,k
= (xj)

k−1 (1 ≤ j ≤ n, 1 ≤ k ≤ β).

Note that the matrix in (8) becomes the standard interpolation matrix if
we set the regularization parameter σ = 0. The regularization effect can also
be obtained by using RBF with higher smoothness if we assume the unknown
function is as smooth. The linkage between regularization and smoothness is
specified in the following theorem proven previously in [26].
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Theorem 1 Let f ∈ Xβ be the exact function and yβ,σ obtained by (6)–
(8) either with σ = δ2 (a prior) or the Morozov’s discrepancy principle2 (a
posteriori), then we have a convergence estimate

‖yβ,σ − f‖L2(a,b) ≤ Phβ− 1
2 +Qδ, (9)

where the constant P and Q depend on which σ is used and also on β, γ, and
the β-seminorm |f |β.

Obtaining the regularized fit yβ,σ from noisy data (xj , y
δ
j ) is the most

difficult part (besides convergence theories, see [26]) for finding the integer
order numerical derivatives of f ; one can simply differentiate each basis in (6)
to obtain approximated derivatives. Here we quote another theorem that will
become handy later in our analysis.

Theorem 2 Assume all in Theorem 1 holds, then for j = 1, . . . , β − 1, we
have

∥
∥
∥
∥

dj

dxj

(
yβ,σ − f

)
(x)

∥
∥
∥
∥
L2(a,b)

≤ Chβ−j− 1
2+

j
2β +Dδ

β−j
β , (10)

and the errors in the β-derivative are bounded by

∥
∥
∥
∥

dβ

dxβ

(
yβ,σ − f

)
(x)

∥
∥
∥
∥
L2(a,b)

≤
(

2 + 4

∥
∥
∥
∥

dβ

dxβ
f(x)

∥
∥
∥
∥

2

L2(a,b)

) 1
2

. (11)

For our problem, the fractional derivatives of each basis must be worked
out. First, we compute the Caputo fractional derivatives of the appended poly-
nomials from definition (2) and the binomial identity.

c
0D

αxj−1 =
1

Γ (1− α)

∫ x

0

d

ds
sj−1 ds

(x− s)α
, (j ≥ 2)

=
j − 1

Γ (1− α)

∫ x

0

sj−2

(x− s)α
ds

=
j − 1

Γ (1− α)

∫ x

0

(
x− (x− s)

)j−2

(x − s)α
ds

=
j − 1

Γ (1− α)

∫ x

0

(
x− ζ

)j−2

ζα
dζ.

2 By the Morozov’s discrepancy principle, we select σ that satisfies
1

n

n∑

i=1

(
yβ,σ(xi) −

yδi
)2

= δ2.
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For the radial power RBF, with a similar approach, a similar integral will be
yielded. For 0 ≤ x ≤ xj , we have

c
0D

αφ(x − xj) =
1

Γ (1− α)

∫ x

0

d

ds
|s− xj |2β−1 ds

(x− s)α

=
1− 2β

Γ (1− α)

∫ x

0

(s− xj)
2β−2

(x − s)α
ds,

=
1− 2β

Γ (1− α)

∫ x

0

(
(x− xj)− (x− s)

)2β−2

(x− s)α
ds

=
1− 2β

Γ (1− α)

∫ x

0

(
(x− xj)− ζ

)2β−2

ζα
dζ,

and, similarly, for 0 ≤ xj ≤ x,

c
0D

αφ(x − xj) =
1

Γ (1− α)

∫ x

0

d

ds
|s− xj |2β−1 ds

(x− s)α

=
1− 2β

Γ (1− α)

(
∫ x

x−xj

+

∫ 0

x−xj

) (
(x− xj)− ζ

)2β−2

ζα
dζ.

To complete the calculations, we simply need to apply the binomial formula
to evaluate the integrals of the form

∫ u

ℓ

(θ − ζ)℘

ζα
dζ =

∫ u

ℓ

℘
∑

k=0

℘Ck (−1)k θ℘−k ζk−αdζ

=

℘
∑

k=0

℘Ck (−1)k θ℘−k

k − α+ 1

(
uk−α+1 − ℓk−α+1

)
,

with the appropriate u, ℓ, θ, and ℘. For completeness, we will give the long
expression for evaluating approximated Caputo fractional derivatives:

c
0D

αyβ,σ(x) =

n∑

j=1

(1− 2β)cj
Γ (1− α)

2β−2
∑

k=0

2β−2Ck (−1)k
k − α+ 1

(x− xj)
2β−2−k

(

xk−α+1

− 2max(x− xj , 0)
k−α+1

)

+

β
∑

j=2

(j − 1)dj
Γ (1− α)

xj−1−α

j−2
∑

k=0

j−2Ck
(−1)k

k − α+ 1
.

(12)
Recall that the coefficients cj and dj were obtained by solving (6)–(8). Al-

though the regularization parameter σ does not appear on the right-hand side
of (12), its influence is implicit in the values of the coefficients. Numerically,
the approximate Caputo derivative (12) can be evaluated with any σ. In the
next section, we shall prove that the two choices, used in Theorem 1, will
guarantee convergence c

0D
αyβ,σ → c

0D
αf .
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3 Convergence analysis

This section contains a few lengthy and technical proofs for our main theoret-
ical result given in the following theorem.

Theorem 3 For arbitrary f ∈ Xβ, let yβ,σ be the approximate fit given by
(6)–(8). Suppose the regularization parameter is chosen either by σ = δ2 or
by the Morozov’s discrepancy principle, then for sufficiently small noisy level
δ and data site spacing h, the following convergence estimate holds:

‖ c
0D

αyβ,σ − c
0D

αf‖L2(a,b) ≤ Chβ− 3
2+

1
2β +Dδ

β−1
β , (13)

where the constant C and D depend on β, b − a, |y|β, and the selection of σ.

Note that inequality (13) has the same form as that for the first derivative
in [26]. If one can be sure about the smoothness of the unknown function f , as
both exponents of the h and δ terms are monotone increasing for β ≥ 1, using
the largest possible β will yield the highest convergence rate in theory. This
claim, of course, does not take the problem of ill-conditioning into account; we
will investigate that in the next section.

The proof of Theorem 3 relies heavily on the conditional stability of func-
tions within the trial space Hβ . The following theorem, which requires another
lemma (Lemma 5) to be proved, makes this specific.

Theorem 4 For any arbitrary f ∈ Xβ, 0 < α < 1, and 0 < ε ≤ 1, the
following inequality holds:

|f |2α ≤ Kε|f |2β +Kε−1/(β−1)|f |20, (14)

for some constant K that depends on α, β, b− a, and |y|2β.

Lemma 5 Suppose f ∈ C2[a, b], 0 < α < 1, and 0 < ε0 < ∞. Then for any
0 < ε < ε0, the following inequality holds:

|f |2α ≤ Kε|f |22 +Kε−1|f |20, (15)

for some constant K that depends on α, ε0, and b− a.

Proof. A technique for proofing interpolation inequalities [1] will be used
here. For simplicity, we begin by assuming a = 0 and b = 1. Without loss of
generality, we assume ε0 = 1; if (15) is proved under this condition, due to
0 < ε

ε0
< 1, a simple scaling, i.e. K ← Kmax(ε0, 1), allows us to prove the

original inequality.
Let ξ ∈ (0, 1/3) and η ∈ (2/3, 1). For any f ∈ C2[0, 1], the mean value

theorem ensures that there exists a λ ∈ (ξ, η) such that
∣
∣
∣
∣

d

dx
f(λ)

∣
∣
∣
∣
=

∣
∣
∣
∣

f(ξ)− f(η)

ξ − η

∣
∣
∣
∣

≤ 1

|ξ − η|
(
|f(ξ)|+ |f(η)|

)
≤ 3
(
|f(ξ)|+ |f(η)|

)
.
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Now, for any x ∈ (0, 1), we have

∣
∣
∣
∣

d

dx
f(x)

∣
∣
∣
∣
=

∣
∣
∣
∣

d

dx
f(λ) +

∫ x

λ

d2

dt2
f(t)dt

∣
∣
∣
∣

≤ 3|f(ξ)|+ 3|f(η)|+
∫ 1

0

∣
∣
∣
∣

d2

dt2
f(t)

∣
∣
∣
∣
dt.

We now consider the magnitude of the Caputo fractional derivative of f at
any x ∈ (0, 1):

| c0Dαf(x)| := 1

Γ (1− α)

∣
∣
∣
∣

∫ x

0

df(s)

ds
(x − s)−αds

∣
∣
∣
∣

≤ 1

Γ (1− α)

(

3|f(ξ)|+ 3|f(η)|+
∫ 1

0

∣
∣
∣
∣

d2

dt2
f(t)

∣
∣
∣
∣
dt

)∫ x

0

(x− s)−αds

=
1

Γ (1− α)

(

3|f(ξ)|+ 3|f(η)|+
∫ 1

0

∣
∣
∣
∣

d2

dt2
f(t)

∣
∣
∣
∣
dt

)
x1−α

1− α
.

Note that the improper integral can be evaluated because 0 < α < 1. We
integrate the former inequality with respect to the ξ and η variables from 0 to
1/3 and 2/3 to 1 respectively to obtain

1

9
| c0Dαf(x)| ≤ 1

Γ (1− α)

(
∫ 1

3

0

|f(ξ)|dξ +
∫ 1

2
3

|f(η)|dη

+
1

9

∫ 1

0

∣
∣
∣
∣

d2

dt2
f(t)

∣
∣
∣
∣
dt

)
x1−α

1− α

≤ 1

Γ (1− α)

(∫ 1

0

|f(t)|dt+ 1

9

∫ 1

0

∣
∣
∣
∣

d2

dt2
f(t)

∣
∣
∣
∣
dt

)
x1−α

1− α
.

By the Hölder’s inequality, we have

∫ 1

0

| c0Dαf(x)|2 dx ≤
(

1

Γ (1− α)

∫ 1

0

t1−α

1− α
dt

)2

·
(

2 · 92
∫ 1

0

|f(t)|2dt+ 2

∫ 1

0

∣
∣
∣
∣

d2

dt2
f(t)

∣
∣
∣
∣

2

dt

)

,

and hence, by taking K := 2 · 92
(

1

Γ (1− α)

∫ 1

0

t1−α

1− α
dt

)2

, we have an in-

equality for the α-seminorm, see (5), for the function f :

|f |2α :=

∫ 1

0

| c0Dαf(t)|2 dt ≤
(

K

∫ 1

0

∣
∣
∣
∣

d2

dt2
f(t)

∣
∣
∣
∣

2

dt

︸ ︷︷ ︸

= |f |22

+K

∫ 1

0

|f(t)|2 dt
︸ ︷︷ ︸

= |f |20

)

. (16)
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The general case of arbitrary intervals (a, b) can be handled similarly with
variables ξ ∈ (a, a+ (b − a)/3) and η ∈ (a+ 2(b− a)/3, b). We can generalize
(16) to

|f |2α ≤ K(b− a)2|f |22 +K(b− a)−2|f |20. (17)

Since 0 < ε ≤ 1, there exits a positive integer n such that 2−1ε1/2 ≤ n−1 ≤
ε1/2.

Now, we define a uniform partition aj = a+ j (b−a)/n, j = 0, 1, . . . , n, for
the interval (a, b). The fractional seminorm can be handled by applying (17)
to each subinterval as follows:

|f |2α :=

∫ b

a

| c0Dαf(t)|2 dt =
n∑

j=1

∫ aj

aj−1

| c0Dαf(t)|2 dt

≤ K

n∑

j=1

{

(aj − aj−1)
2
∫ aj

aj−1

∣
∣
∣
∣

d2

dt2
f(t)

∣
∣
∣
∣

2

+ (aj − aj−1)
−2
∫ aj

aj−1

|f(t)|2dt
}

≤ K

n∑

j=1

{(
b− a

n

)2 ∫ aj

aj−1

∣
∣
∣
∣

d2

dt2
f(t)

∣
∣
∣
∣

2

dt+

(
n

b− a

)2 ∫ aj

aj−1

|f(t)|2dt
}

.

By recalling that n2 ≤ 4ε−1 and n−2 ≤ ε and if we define K̃ = Kmax
(
(b −

a)2, 4(b− a)−2
)
, we obtain the following inequality (15) for f ∈ C2[a, b]. �

Proof of Theorem 4. By assumptions, f ∈ Xβ allows us to apply Lemma
5. Hence, there are constants 0 < δ < δ0 = 1 and K1 such that

|f |2α ≤ K1δ|f |22 +K1δ
−1|f |20, (18)

Since the right-hand side of (18) contains only integer order seminorms, we
are now in the right setting to apply the Sobolev imbedding theorems, see [1].
In particular, |f |2j ≤ Kj δ|f |2j+1 + Kj δ

−j |f |20, j ≥ 0, allows us to bring the

seminorm |f |2 in (18) to |f |β . First, with j = 2, putting |f |22 ≤ K2δ|f |23 +
K2δ

−2|f |20 into (18) yields

|f |2α ≤ K1δ
(
K2δ|f |23 +K2δ

−2|f |20
)
+K1δ

−1|f |20
= K1K2δ

2|f |23 + (K1K2 +K1)δ
−1|f |20.

Then, with |f |23 ≤ K3δ|f |24 +K3δ
−3|f |20, we have

|f |2α = K1K2K3δ
3|f |23 + (K1K2K3 +K1K2 +K1)δ

−1|f |20.

The process can be repeated until the case j = β, and we will have

|f |2α ≤ Kδβ−1|f |2β +Kδ−1|f |20,

with

K := max





β
∏

j=1

Kj,

β
∑

k=1

n∏

j=k

Kj



 .
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Now, let ε := δβ−1, then we obtain the desired inequality (14). �

Proof of Theorem 3. Denote the difference function e(x) := yβ,σ(x)−f(x) ∈
Xβ . According to Theorem 1, we can get |e|0 ≤ 1 for sufficiently small δ and h.

Now, by setting ε = |e|
2(β−1)

β

0 in Theorem 4 and the fact that
√
r2 + 1 < r + 1

for 0 < r < 1, we get

|e|α ≤
√
K
(
|e|β + 1

)
|e|

(β−1)
β

0 .

Note that |e|0 = ‖yβ,σ − f‖L2(a,b). We know from Theorem 1 that |e|0 ≤
Phβ− 1

2 +Qδ, and from Theorem 2 that |e|β ≤ (2 + |f |2β)1/2. Hence,

|e|α ≤
√
K
(√

2 + |f |2β + 1
) (

Phβ− 1
2 +Qδ

) β−1
β

≤
√
K
(√

2 + 2|f |β + 1
) (

P
β−1
β h(β− 1

2 )·
β−1
β +

(
Qδ
) β−1

β

)

=
√
K
(√

2 + 2|f |β + 1
)(

P
β−1
β hβ− 3

2+
1
2β +Q

β−1
β δ

β−1
β

)

=:
√
K
(√

2 + 2|f |β + 1
)(

Chβ− 3
2+

1
2β +Dδ

β−1
β

)

.

By noting that |e|α = ‖ c
0D

αe‖L2(a,b) = ‖ c
0D

αyβ,σ − c
0D

αf‖L2(a,b), the theo-
rem is proved. The constants in this theorem and those in Theorem 1 and Theo-

rem 4 are related by C =
√
K
(√

2 + 2|f |β + 1
)
P

β−1
β andD =

√
K
(√

2 + 2|f |β + 1
)
Q

β−1
β . �

4 Numerical examples

To demonstrate the effectiveness and stability of the proposed numerical dif-
ferentiation scheme, we consider the smooth exact function f(x) = cos(x)+x3

on [0, 1]. The Caputo derivatives for various orders α are shown in Figure 1.
As the proven theories in the previous sections do not have numerical

consideration included, in Figure 2 we display the condition numbers of the
matrix system (8) for various smoothness β and regularization parameters σ
as the number of uniformly distributed data n increases. When σ = 0, we
are looking at the standard RBF interpolation matrices; it is well known that
higher smoothness (hence faster theoretical convergence rate) and/or larger
n yields a more ill-conditioned matrix system. The matrix system (8), how-
ever, becomes better conditioned once we start regularizing (even with a tiny
parameter σ = 10−6).

Next, we want to verify the h-convergence behaviour implied from The-
orem 3. In Figure 3, the L2-errors of the approximate Caputo derivatives
‖ c

0D
αyβ,σ− c

0D
αf‖L2(0,1) are based on noise-free data. As δ = 0, the regular-

ization parameter σ is also 0 for both selection strategies. The most obvious
observation is that the convergence stagnates for small space distances h; this
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Fig. 1 Caputo derivatives of f(x) = cos(x) + x3 for various orders α.

is a behaviour also observable in the integer order cases. Before stagnation, we
can see that higher smoothness does yield faster convergence. Moreover, the
convergence behaviour is independent of differentiation order α. We remark
that the radial powers RBF basis will not achieve exponential convergence. For
direct problem, when one wants to discretize or evaluates Caputo derivatives
from noise-free data, the recent work of Piret and Hanert [18] using Gaussian
basis will be a much better choice.

The next test aims to study the δ-convergence behaviour. We use a rather
large number of data points, n = 27, to suppress the error due to the space
distance. Errors for both σ selection strategies are shown in Figure 4; both
strategies yield similar convergence behaviour (as long as they work) and ac-
curacy. Without a doubt, determining σ by the Morozov’s discrepancy prin-
ciple is numerically more expensive in comparison with the a priori strategy,
σ = δ2. Moreover, it gets harder and harder to determine the correct Mo-
rozov’s discrepancy principle regularization parameter for small noise. The
failure of σ = DP for small δ in Figure 4 could be corrected if one invests
more effort to improve the subroutine of discrepancy principle; it is obvious
that picking σ = δ2 is simple and works as well. Noise level, in many cases,
is another unknown that requires some knowledgable guesses or approxima-
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Fig. 2 Condition numbers of the resultant matrix in (8) with various kernels’ smoothness
β and regularization parameter σ.

tions. This means, in practice, one can only hope for having a value δ̃ ≈ δ in
the bound (3) for noise level. For comparison to other methods, the list of
available methods for this inverse problem is rather short. In Figure 4, results
obtained by the regularized finite difference scheme (with N = 500 points) in
[9] are also shown. Convergence behavior is very much identical to our a priori
strategy, but accuracy is off by a factor of 10. As the mollification technique
[16] is not too accurate, even in the case of no noise, we hence did not show
any comparison.

Instead of the Morozov’s discrepancy principle, we suggest taking regu-
larization parameter simply by σ = δ2; this should be simple as long as one
knows what δ is. Figure 5, in which we show similar δ-convergence behaviours
with various over- and under-estimated noise levels, shows that our scheme is
rather forgiving even if one incorrectly picks a noise level ten times larger than
the real value.

Edge detection in X-ray tomography [5] is an known application of frac-
tional differentiation. We shall end the conclusion with an application of edge
detection. The role of the Caputo differentiation order is to control the local-
ization of data used in the reconstruction, which allows higher flexibility [27]
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Fig. 3 h-Convergence behaviour (δ = 0) of various kernel’s smoothness β and differentiation
order α.

by having one extra parameter (i.e., the order of differentiation) to alter the
output images.

Similar to the numerical procedure given in [25], we apply the proposed
scheme in both x- and y-direction to the standard test image—head phantom;
see Figure 6. This results in the top images in Figure 7. To identify edges,
cutting threshold is calculated by a simple average of the magnitude of the
resulting differentiated image. The bottom images in Figure 7 show the pix-
els having values above the threshold. The results obviously look different to
human eyes even though both reveal similar details. Using fractional order Ca-
puto derivative results in images with the feel of pen sketching. The drawback
is that the directional property of the Caputo derivative leaves some artifacts
(in the left and bottom of the outer ellipse). We did not make any claim about
one model (i.e., integer verse fractional order) being superior to the other; we
believe the answer lies in the actual application itself.
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Fig. 4 δ-Convergence behaviours (α = 0.5) of various kernels’ smoothness β and differen-
tiation order α.

5 Conclusion

A numerical scheme for approximating Caputo derivatives from noisy data is
proposed. Our method starts with a regularized radial basis function inter-
polant and follows by taking Caputo differentiation of the basis. Convergence
and error estimates are theoretically proven for proper regularization param-
eters. Some numerical examples are provided to demonstrate the convergence
behaviours of the proposed scheme and its application to image processing.
It is not the scope of this work to study edge detection algorithms, but com-
bining the proposed algorithm of fractional differentiation with existing edge
detection models could open up a new area of research for more real-life ap-
plications.
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