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Abstract. In this paper, we give the uniqueness on the identification of unknown

source locations in two-dimensional heat equations from scattered measurements.

Based on the assumption that the unknown source function is a sum of some known

functions, we prove that one measurement point is sufficient to identify the number of

sources and three measurement points are sufficient to determine all unknown source

locations. For verification, we propose a numerical reconstruction scheme for recovering

the number of unknown sources and all source locations.
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1. Introduction

Inverse source identification problems are important in many branches of engineering

sciences. For example, an accurate estimation of pollutant source [7] is crucial

to environmental safeguard in cities with high population. In general, a complete

recovery of the unknown source is not attainable from practically restricted

boundary measurements. The inverse source problem becomes solvable if certain a

priori knowledge is assumed. Inverse problems are in nature unstable because the

unknown solutions/ parameters have to be determined from indirect observable data

which contain measurement errors. The major difficulty in establishing any numerical

algorithm for approximating the solution is the severe ill-posedness of the problem and

the ill-conditioning of the resultant discretized matrix.

The heat conduction process is irreducible in time, while the temperature profile

becomes rapidly smoother in time. This means that the characteristic of the solution

may not be affected by the observed data. To the knowledge of the authors, the

mathematical analysis and efficient algorithms for inverse heat problems are still very

limited. For instance, the uniqueness and conditional stability results for heat source

identification problem can be found in [3, 5, 17]. Studies on stationary point source

problem can be found in [2, 6, 11]. Some reconstruction schemes can be found in

[15, 16, 19, 20].

Consider a heat equation of the form

∂tũ(x, t) = △ũ(x, t) + h(t)f(x), x = (x1, x2) ∈ R
2, t > 0, (1)

with initial condition

ũ(x, 0) = 0, x ∈ R
2. (2)

In this paper we give a sufficient condition to determine the unknown source function

f(x), which is assumed to be a spatially density function of the sources, from some

scattered measurements. We also assume that the function h(t) in equation (1) can be

modelled as a known time dependent function. In other words, the source function f in

(1) is of a special form and is assumed to be the sum of a known function ρ ∈ S (R2),

f(x) =

N∑

k=1

ρ(x − ak) ∈ S (R2), (3)

where a1, . . . , aN are mutually distinct and S is the space of rapidly decreasing

functions. The methodology in this paper also works under the assumption that

ρ ∈ L1(R2). The function ρ is either radially symmetric or a product of two even

functions ρ̃ in R, namely ρ(x) = ρ̃(x)ρ̃(y). Moreover, we assume that
∫

R2

ρ(z) dz > 0.

This form of f(x) models heat sources which concentrate near ak, 1 ≤ k ≤ N with the

same unit strength. For example, in the case where the heat is provided by a single

kind of radioactive isotope, we can set h(t) = e−λt with a constant λ > 0. In particular,
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the form f can simulate point sources at ak given by the Dirac delta function δ(x− ak),

which can be justified if the respective supports of the sources near ak are sufficiently

small. Thus one can consider that the determination of f of form (3) is practical if we

can assume that all the sources near ak have the unit strength.

Equivalently, we will discuss an inverse problem of the form
{

∂tu(x, t) =∆u(x, t) + f(x), x = (x1, x2) ∈ R
2, t > 0,

u(x, 0) =0, x ∈ R
2.

(4)

If we set v(x, t) = ∂tu(x, t), then

∂tv(x, t) = ∆v(x, t), x ∈ R
2, t > 0, (5)

and from equations (2) and (4) we have

v(x, 0) = f(x), x ∈ R
2. (6)

Suppose h ∈ C1[0,∞) and h(0) 6= 0. If v satisfies (5) and (6), then we can directly

verify that

ũ(x, t) ≡
∫ t

0

h(t − s) v(x, s)ds, x ∈ R
2, t > 0,

satisfies (1) and (2). Notice that

ũ(x, t) ≡
∫ t

0

h(s) v(x, t − s)ds, x ∈ R
2, t > 0.

Differentiating both sides of the above equation with respect to t, we have

∂tũ(x, t) = h(0) v(x, t) +

∫ t

0

h′(t − s) v(x, s)ds, x ∈ R
2, t > 0.

Since h(0) 6= 0, this is a Volterra equation of the second kind. For any given observation

data at x0, we can stably recover v(x0, t) from ∂tũ(x0, t) by using some iterative methods.

The above inverse problem (1) with h(t) is then reduced to the inverse problem stated

in (4) if we choose ũ(bj , t), 1 ≤ j ≤ M , 0 ≤ t ≤ t1, as observation data where M ∈ N

and t1 > 0 are fixed. It is noted here that for more general parabolic equations, our

proposed method can be extended by using approximate fundamental solutions through

kernels generating functions. In this paper, we focus only on the two-dimensional heat

equation given in the form of (4).

The Inverse source identification problem is now stated as follows:

Determine a number N and N unknown source locations {ak}1≤k≤N ⊂ R
2 in

(4) by some observation data

u(bj, t), 1 ≤ j ≤ M,

where M ∈ N and t ∈ (t0, t1) with 0 < t0 < t1 are fixed.

The organization of this paper is as follow. The main theorem on the uniqueness in our

inverse problem is firstly presented in Section 2. Followed by some proofs on lemmas

and related theorems in Section 3, the proof of the main theorem 7 is given in Section 4.
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For numerical verification, on the basis of theorem 7, a novel computational scheme is

proposed in Section 5 to identify the unknown source locations based on the theoretical

result that only three measurement points are sufficient. Finally, the conclusion is given

in Section 6.

2. Main theorem

Denote v(x, t) = ∂tu(x, t). The solution v(x, t) of (5)–(6) is then given by

v(x, t) =
1

4πt

∫

R2

exp

(
−|x − z|2

4t

)
f(z) dz

=
N∑

k=1

1

4πt

∫

R2

exp

(
−|x − z|2

4t

)
ρ(z − ak) dz,

and hence the solution for (4) is given by

u(x, t) =

∫ t

0

v(x, τ) dτ

=

N∑

k=1

∫ t

0

∫

R2

1

4πτ
exp

(
−|x − z|2

4τ

)
ρ(z − ak) dz dτ. (7)

Since the source locations are unknown, the solution u(x, t) of equation (7) can be

approximated by the method of fundamental solutions [1, 4, 8, 9]:

un(x, t) =

P∑

i=1

λu,i

∫ t

0

∫

R2

1

4πτ
exp

(
−|x − z|2

4τ

)
ρ(z − ξi) dz dτ, (8)

where λu,i ∈ R, {ξi}P
i=1 ⊂ R

2, P ∈ N is a set of distinct trial centers. Here, P can

be infinity for the sake of analysis. Moreover, the approximate source function fn(x)

corresponding to the approximation un is given as

fn(x) = fn(x; λu,i) ≡ ∂tun(x, 0) =

P∑

i=1

λu,i ρ(x − ξi), (9)

which lies in the space S (R2). The unknown coefficients λu,i in (8) are obtained by

solving a collocation system with data taken at some given measurement points with

discrete time sampling rate.

For the well-posed direct problem where the source function f is known, since the

numerical approximation un(x, t) given in (8) satisfies sufficient collocation condition, it

can be expected that the numerical solution reasonably approximates the exact solution.

In the case of inverse problems, the ill-posed and non-uniqueness nature induce extreme

difficulties in handling, for instance, the inverse source identification posed in this paper.
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The imposed collocation condition implies that un(bj , t) = u(bj , t) for all j =

1, . . . , M and t ∈ (t0, t1). We define the difference by w = un − u and obtain from

equations (7) and (8) that

w(x, t) ≡ un(x, t) − u(x, t)

=

P+N∑

i=1

λw,i

∫ t

0

∫

R2

1

4πτ
exp

(
−|x − z|2

4τ

)
ρ(x − ξi) dz dτ,

(10)

where ak = ξP+k and λw,P+k = −1 for all k = 1, . . . , N . The difference function w

automatically satisfies the initial condition:

w(bj, t) = 0, j = 1, . . . , M, for all t ∈ (t0, t1),

and the heat equation

∂tw(x, t) = △w(x, t) + g(x), x ∈ R
2, t > 0, (11)

where g ∈ S (R2) is the source function corresponding to the difference function w as

g(x) ≡ [fn − f ](x) =

P+N∑

i=1

λw,i ρ(x − ξi) ∈ S (R2). (12)

Here, f is the unknown source function in (4) and fn is the source corresponding to the

approximation un defined in (9). Throughout the paper, we study the properties of the

coefficients λw,i appeared in the difference function w in (10) and the source function g

in (12).

If we can conclude that g = 0 identically, then the inverse source identification

problem has a unique solution. Unfortunately, this is not the case for M = 1. The main

theorem of this paper stated in the following is to show that M = 3 measurement points

are sufficient to determine N and all source locations in (3):

Theorem 1 Let b1, b2, b3 ∈ R
2 be measurement points that are not colinear. The data

at these three points

u(b1, t), u(b2, t), u(b3, t), for all t ∈ (t0, t1),

uniquely determines all source locations a1, . . . , aN ∈ R
2 of the unknown source function

(3) in the heat equation (4).

Some lemmas and related theorems will be proved in the following section before

giving the proof of the main theorem in Section 4.

3. Case with one measurement

We consider only one point measurement u(b1, t) where b1 ∈ R
2 is fixed. In this section,

we prove the power sum equality based on the unknown coefficients in (12).
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Let u∗
n be a numerical approximation with finite terms P that agrees with the exact

solution u(b, tℓ) = u∗
n(b, tℓ) at a finite sequence of distinct collocation points such that

tℓ ∈ (t0, t1) for all ℓ = 1, . . . , Q. We define a subspace K(b1, . . . , bM ) by

Span

{
exp (−η2|z − bi|2) : 1 ≤ i ≤ M, η2 =

1

4t
, ∀t ∈ (0, t0)

}
, (13)

which is the closure of the space spanned by all Gaussian functions centering at bj ,

j = 1, . . . , M with different shape parameters η. The closure in (13) is taken in the

space L2(R2).

Lemma 2 If ϕ(x) := φ(|x|2) for some φ ∈ L2(R+), then ϕ ∈ K(0).

Proof. Let

X =
{
ϕ ∈ L2(R2) : ϕ(x) = φ(|x|2) for some φ(x) ∈ L2(R+)

}
.

Since ϕn → ϕ in L2(R2) implies ϕn → ϕ almost everywhere in R
2 and the convergence

keeps the form of ϕ in X, we see that X is closed in L2(R2) and hence is a Hilbert space

with L2-scalar product. In order to complete the proof, it is sufficient to prove that

ϕ ∈ X and
∫

R2

ϕ(x) exp
(
−η2|x|2

)
dx = 0, η >

1

4t0
,

imply ϕ(x) = 0, x ∈ R
2. Setting r =

√
x2

1 + x2
2, we introduce the polar coordinate:

∫

R2

ϕ(x) exp
(
−η2|x|2

)
dx = 2π

∫ ∞

0

ϕ(r2) exp
(
−η2r2

)
r dr

= π

∫ ∞

0

ϕ(p) exp
(
−η2p

)
dp = 0,

with η2 > 1/(16t20). This means that the Laplace transform of ϕ(p) vanishes on a seg-

ment. By using the analyticity of the Laplace transform and the unicity theorem of the

analytic function, we know that the Laplace transform of ϕ vanishes identically. Hence

ϕ = 0 in R
2. �

Henceforth we set B(b1; R) = {x ∈ R
2 : |x − b1| < R}.

Corollary 3 The subspace K(b1) defined in (13) contains the characteristic function

χB(b1;R) for any R > 0.

Proof. This corollary follows immediately from Lemma 2 with a shift from the origin

to b1 and by picking ϕ̃ = H(0) − H(R) where H is the Heaviside function in R. �

The following theorem implies that the numerical solution un obtained from using

this collocation method is not unique. Moreover, the numerical solution un will not

approximate the desired exact solution u no matter how large one takes the values of P

and M .
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Theorem 4 Let w(x, t) be a solution of (11) with g ∈ S (R2). Furthermore, we assume

that the solution w(x, t) is identically zero along w(b1, t) for some b1 ∈ R
2 and for all

t ∈ (t0, t1). Then the source function g in (11) must satisfy
∫

R2

g(z) dz = 0, and N =

P∑

i=1

λu,i.

Proof. Without loss of generality, we assume b1 = 0 for simplicity. The condition

w(0, t) = 0 for t ∈ (t0, t1) implies

∂tw(0, t) =
1

4πt

∫

R2

exp

(
−|z|2

4t

)
g(z) dz = 0, for all t ∈ (t0, t1).

Therefore, the following condition is also true:∫

R2

exp

(
−|z|2

4t

)
g(z) dz = 0, for all t ∈ (t0, t1). (14)

Since the left-hand side of (14) is analytic, we can complete the proof by using analytic

extension and a limiting process with t → ∞ (using the Lebesgue convergence theorem

[10]). For illustration, we will complete the proof without using analytic extension.

¿From (14), the source function g ∈ S (R2) satisfies∫

R2

K(z) g(z) dz = 0, for all K ∈ K(b1). (15)

For any ǫ > 0, there exists a R > 0 such that if we pick K = χB(0;R), then
∣∣∣∣
∫

R2

g(z) dz

∣∣∣∣ ≤
∣∣∣∣
∫

R2

χB(0;R)g(z) dz

∣∣∣∣
︸ ︷︷ ︸

=0

+

∣∣∣∣
∫

R2

(1 − χB(0;R))g(z) dz

∣∣∣∣

≤
∣∣∣∣
∫

B(0;R)

(1 − χB(0;R))g(z) dz

∣∣∣∣
︸ ︷︷ ︸

=0

+

∣∣∣∣
∫

R2\B(0;R)

(1 − χB(0;R))g(z) dz

∣∣∣∣
< ǫ.

The second equality follows directly from (12). �

Theorem 4 highlights the fact that collecting data at only one measurement point

is sufficient only to determine the total number of sources (i.e., the net force). From the

numerical point of view, we have∫

R2

g(z) dz = ǫP,M ,

for some ǫP,M → 0 as P, M → ∞. Furthermore, from (3) and (9), we have an

approximation to the net force

P∑

i=1

λu,i = N + Cρ ǫP,M ,

where Cρ ǫP,M =
(∫

R2 ρ(z) dz
)−1

ǫP,M is the net force approximation error.
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Lemma 5 Under the same assumptions stated in Theorem 4, the expansion coefficients

λw,i of the difference function w in (10) must satisfy

P+N∑

i=1

|b1 − ξi|2 λw,i = 0 ∈ R
2.

Proof. By the similar argument given in the proof of Theorem 4 and using Lemma 2,

we can pick K(z) = χB(b1;R)|z − b1|2 for a sufficiently large R depending on ǫ. Then, we

have

0 =

∫

R2

|z − b1|2 g(z) dz

=

∫

R2

P+N∑

i=1

λw,i |z − b1|2 ρ(z − ξi) dz

=

∫

R2

P+N∑

i=1

λw,i |z − (b1 − ξi)|2 ρ(z) dz

=

∫

R2

P+N∑

i=1

λw,i

(
|z|2 − 2(b1 − ξi)

T z + |b1 − ξi|2
)

ρ(z) dz

=

∫

R2

|z|2 ρ(z) dz

(
P+N∑

i=1

λw,i

)
− 2

P+N∑

i=1

λw,i(b1 − ξi)
T

(∫

R2

z ρ(z) dz

)

+

(
P+N∑

i=1

|b1 − ξi|2 λw,i

)∫

R2

ρ(z) dz.

The first two terms of the above equation vanish due to the fact that

P+N∑

i=1

λw,i = 0 using

Theorem 4 and

∫

R2

z ρ(z) dz = 0 by the assumption. Since

∫

R2

ρ(z) dz is non-zero, we

must have
P+N∑

i=1

|b1 − ξi|2 λw,i = 0,

and the lemma is proven. �

Theorem 6 Under the same assumptions stated in Theorem 4, the expansion

coefficients λw,i of the difference function w in (10) must satisfy

P+N∑

i=1

|b1 − ξi|2p λw,i = 0 ∈ R
2, p ∈ N.

Proof. Based on the fact that χB(b1;R)|x − b1|2p ∈ K(b1) for all R > 0 and p ∈ N, this

theorem follows inductively from Lemma 5. �

We now give the proof of the main Theorem 1 in the following section.
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4. Source identification by three measurements

Denote rj,k ≡ |bj − ak|. From Theorem 6, we construct for each j = 1, 2, 3 the power

sum
N∑

k=1

(rj,k)
2p =

(
P∑

i=1

|bj − ξi|2p λu,i

)
, p ∈ N. (16)

The right-hand side of (16) can be approximated by the numerical solution u∗
n. For each

measurement point bj , the nonlinear system (16) is related to the elementary symmetric

polynomials. Using the Newton-Girard formulas [12], the system of N equations given

by (16) with p = 1, . . . , N is equivalent to




r2
j,1 + r2

j,2 + r2
j,3 + . . . + r2

j,N = −α1,

r2
j,1 · r2

j,2 + r2
j,1 · r2

j,3 + . . . + r2
j,N−1 · r2

j,N = +α2,
...

r2
j,1 · r2

j,2 · · · r2
j,N = (−1)N αN ,

(17)

for some α1, . . . , αN depending only on ξi and λu,i. Consider a polynomial of degree N

with respect to z of the form

f(z) = zN + α1z
N−1 + . . . + αN .

From (17), we can easily see that f(r2
j,k) = 0 for all k = 1, . . . , N . This yields

f(z) = (z − r2
j,1) · (z − r2

j,2) · · · (z − r2
j,N).

Hence, we can determine all rj,k as the roots of the polynomial f .

It is well known that any three circles in the R
2-plane with distinct centers which are

not colinear have at most one common intersection point. Consequently {r1,k, r2,k, r3,k}
can determine a unique source point ak if b1, b2, b3 are not colinear. Proof of Theorem

1 is hence completed.

It is noted here that the sufficient condition M = 3 given in Theorem 1 on the source

identification problem is not minimal. For M = 2, we have two sets of circles centering

at b1 and b2 that can provide a finite number of candidates for the source location ak.

Moreover, equation (15) could provide extra information on top of Theorem 6. For

example, if ρ(x) = exp(−ε2|x|2) is also a Gaussian, by picking

K(z) = exp
(
−γ(t)2|bj − z|2

)
∈ K(bj),

for j = 1, 2 and we can obtain another nonlinear systems

P+N∑

j=1

π λw,j

γ(t)2 + ε2
exp

(−γ(t)2 ε2 rj,k
2

γ(t)2 + ε2

)
= 0, for all γ(t) =

1

4t
, t ∈ (t0, t1).

This extra information can be used to identify the right candidate from the finite set

obtained by M = 2 measurement points. We do not study in this paper the minimum

number of the observation points for the problem but for practical application, it is more

interesting to study the case of multiple measurement points. The above discussion
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suggests also that our observations u(bj , t), 1 ≤ j ≤ M can uniquely determine also the

strengths γk 6= 0, γk ∈ R, 1 ≤ k ≤ N if we replace (3) by

f(x) =
N∑

k=1

γkρ(x − ak)

but we will not here discuss further.

Theorem 7 With data from three non-colinear measurement points, the expansion

coefficients λw,i of w in (10) must satisfy

P+N∑

i=1

(ξi − ζ) λw,i = 0 ∈ R
2,

and
P+N∑

i=1

|ξi − ζ |2 λw,i = 0 ∈ R,

for all ζ ∈ R
2.

Proof. From Theorem 6, for 1 ≤ j ≤ M = 3 we have

0 =
P+N∑

i=1

|bj − ξi|2 λw,i

=
P+N∑

i=1

(
|bj |2 − 2bT

j ξi + |ξi|2
)

λw,i

=

P+N∑

i=1

(
−2bT

j ξi + |ξi|2
)

λw,i. (18)

The last equality follows from Theorem 4. Subtracting consecutive equations in (18)

results in

(b1 − b2)
T

P+N∑

i=1

ξi λw,i = 0,

(b1 − b3)
T

P+N∑

i=1

ξi λw,i = 0.

If M = 3 and the measurement points bj = (bj,1, bj,2)
T , j = 1, 2, 3 are non-colinear, then

the following matrix
[

b1,1 − b2,1 b1,2 − b2,2

b1,1 − b3,1 b1,2 − b3,2

]
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is nonsingular and hence both elements in

P+N∑

i=1

ξi λw,i must vanish. Using Theorem 4,

we obtain
P+N∑

i=1

ζ λw,i = 0 for all ζ ∈ R. The first assertion is proven. Moreover,

P+N∑

i=1

|ξi|2 λw,i = 0,

follows immediately from (18) and the first assertion. Hence, the second assertion is

also true. �

Theorem 7 provides the first and second moment equations about the unknown

source locations. The first moment equations (for ζ = bj) can be used to reduce the

complexity of the nonlinear problems in Theorem 1. If more than three measurement

points are available, we can obtain higher moment equations by induction.

5. Numerical Verifications

In this section, we will verify the numerical efficiency of the different factors contained

in the equalities proven in the last section. Since the reconstruction procedure is based

on the proven uniqueness results using one set of measurement data, the provided

data should be redundant in order to overcome the presence of noise, i.e., M > 3

measurement points or M = 3 with repeated measurements. If the data is noisy,

some standard regularization technique (e.g. Tikhonov regularization with the L-curve

method) should be applied to the linear system solver and the proposed method can still

provide reasonable accuracy to the estimations of the measurement-to-source distance.

We leave the study of noisy data to our future research. Here we focus on the noise free

case.

Without loss of generality, assume the set of source locations {ak}1≤k≤N and the

set of measurement points {bj}1≤j≤M are both contained in an open domain Ω ⊂ R
2.

At first, the function ρ(x) in (3) is exp(−|x|2). All (discrete) data are obtained by either

a single measurement point b1 or all three measurement points given by

b1 = (0, 1),

b2 = (1/
√

2, −1/
√

2),

b3 = (−1/
√

2, −1/
√

2),

at some sampling times tℓ for 1 ≤ ℓ ≤ Q such that tℓ ∈ [10−10, Tmax] is equally

distributed. The trial centers ξi are uniformly placed within the unit circle Ω; whereas

the source locations ak are randomly placed in Ω unless otherwise specified. A

demonstration is given in Figure 1. In our computations, the linear systems are solved

by using Matlab’s MLDIVID and the nonlinear systems for locating rj,k are solved by

the Levenberg-Marquardt method [13, 14].
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In order to verify the numerical efficiency of Theorem 4, we investigate the effect

of increasing numbers of trial centers P for the cases when only one measurement point

b1 is used. The range for the sample time Tmax is set to be 20. Three sets of N = 1,

10, and 20 source points are tested. As P increases from 1 to 20, approximation errors

of all cases show a linear trend in the LOG-Y plot as shown in Figure 2 which implies

exponential convergence. The value of P is tested up to 100 to show that the numerical

computation is stable. Although some oscillations are observed, the approximation of

the total number of sources N is rather stable with respect to the number of trial points.

Furthermore, the accuracy is independent of the number of source points N .

Figure 3 studies the effect of increasing the numbers of sampling times Q with

various values of Tmax = 1, 5, 20, and 100. The number of trial centers is fixed at

P = 40. Similarly to Figure 2, we also observe a monotone trend as Q increases from

a small value up to 10. The value Tmax has a direct influence to the discretized sets

of K(b1) in (13); larger values of Tmax result in more distinct basis and therefore show

better accuracy.

Moreover, we verify the first equality given in Theorem 7 by using all three

measurement points and ζ = 0. In Figure 4, the numerical error of the first moment∑P+N

i=1 ξi,1 λw,i is displayed. In this computation the number of sampling times is Q = 40

for Tmax = 100 and the numbers of source points are N = 1, 10, and 20 respectively.

It can be observed from Figure 4 that the accuracy is independent of the number of

source points. The error profiles of the other first moment
∑P+N

i=1 ξi,2 λw,i and the second

equality in Theorem 7 behave similarly and are omitted here.

Next, the unknown measurement-to-source distances required in the proof of

Theorem 1 are identified from three measurement points. Here, the number of trial

points is P = 50 and the number of sampling times is Q = 100 between [10−10, 100].

Three different cases are studied:

Case 1: All sources are widely spread within Ω. Tested source points {ak}N
k=1 are:

Example 1: {(.4, 0), (−.26, .13), (−.36, −.33)},
Example 2: {(.4, 0), (−.26, .13), (−.36, −.33), (.25, .65)},
Example 3: {(.4, 0), (−.26, .13), (−.36, −.33), (.25, .65), (.2, −.65)}.

Case 2: Some sources are clustered within Ω.

Example 4: {(.4, 0), (.401, 0), (−.36, −.33)},
Example 5: {(.4, 0), (.401, 0), (−.36, −.33), (−.36, −.34)}.

Case 3: Some sources lie outside of the artificial domain Ω.

Example 6: {(.4, 0), (−.26, .13), (1, 1)},
Example 7: {(.4, 0), (−.26, .13), (1, 1), (−1, −1)}.

The last Case 3 refers to the situation when some source points are not surrounded by

the trial centers. This is an numerical test case corresponding to an incorrect selection

of the artificial domain and is independent of our previous definition of Ω in Section 2.

Once all the measurement-to-source distances rj,k are computed by using equation (16),
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Example {b1, b2, b3} {b′1, b′2, b′3}
1 4.6853e-6 0

2 3.9968e-4 4.7113e-4

3 2.0071e-2 2.1012e-2

4 4.9536e-4 4.1372e-4

5 7.6023e-3 4.6668e-3

6 1.1119e-3 7.1978e-5

7 5.6113e-2 8.7644e-2

Table 1. Maximum error in the approximated distances rj,k using two sets of

measurement points.

the source locations are identified by computing the intersection of the three circles, see

Figure 5 for illustration. There are two possibilities for the presence of numerical errors.

First, the rj,k are overestimated. This results in a small region of intersection which

will be regarded as numerical error. On the other hand, if the rj,k are underestimated,

there will have no intersection. In our computations, we progressively increase all rj,k

until some nonempty regions are found. An algorithm for finding such intersections of

circles was proposed by Vakulenko [18]. Successful numerical identification of source

locations strongly depends on the geometry of the unknown source locations and the

measurement points. In the following, only the error in rj,k will be reported. To refine

the estimation on the source locations with a priori estimation, other numerical method

can be applied, for instance see [11].

The accuracies in finding rj,k for the three Case 1 to Case 3 are displayed in Figure 6

to Figure 8 respectively. The order of rj,k are sorted according to its error in absolute

value. All plots are displayed in the same scale for easy comparison. In general, the

numerical efficiency of Theorem 7 drops as the value of P increases. Furthermore, due to

the complexity of the nonlinear systems, the accuracy is better in the case of smaller N.

For Example 1, all errors lie between 3.2E-7 to 4.7E-6. On the other hand, with N = 5

source points in Example 3, the errors lie between 6.6E-5 and 2.0E-2. The maximum

errors for Example 5 and Example 7 are 7.6E-3 and 5.6E-2, respectively. Numerical

performance on all these cases appears to be similar.

Finally, instead of using equally distributed measurement points, we allocate the

measurement points more close to the upper part of the domain. Namely,

b′1 = (0, 1),

b′2 = (1/
√

2, 1/
√

2),

b′3 = (−1/
√

2, 1/
√

2).

Figure 9 demonstrates the errors in approximating the distances for Examples 2, 4 and

7. The maximum errors in both sets of measurement points are summarized in Table

1. In general, both sets of measurement points result in similar accuracy (except for

Examples 1 and 6 in which the {b′1, b′2, b′3} set results in much smaller error).
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6. Conclusion

In this paper, we study the source identification problem for two-dimensional heat

equations. The source function is assumed to be the sum of a shifted known function.

Our work focuses on giving sufficient data for the uniqueness in the inverse problem.

We prove that the observation data taken at three measurement points are sufficient to

uniquely determine all unknown source locations. Some numerical examples are given

to demonstrate the possibility of numerical reconstruction. The result of this work

provides a theoretical foundation for developing practical numerical schemes for more

general inverse heat source problems with noises. In such cases, more measurement

points should be taken and will be a focus of our future work.
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[3] J. R. Cannon and Salvador Pérez Esteva. Uniqueness and stability of 3D heat sources. Inverse

Problems, 7(1):57–62, 1991.

[4] C. Y. Chan and C. S. Chen. Method of fundamental solutions for multi-dimensional quenching

problems. In Proceedings of Dynamic Systems and Applications, Vol. 2 (Atlanta, GA, 1995),

pages 115–121, Atlanta, GA, 1996. Dynamic.

[5] M. Choulli and M. Yamamoto. Conditional stability in determining a heat source. J. Inverse

Ill-Posed Probl., 12(3):233–243, 2004.

[6] A. El Badia and T. Ha Duong. Some remarks on the problem of source identification from

boundary measurements. Inverse Problems, 14(4):883–891, 1998.

[7] A. El Badia and T. Ha-Duong. On an inverse source problem for the heat equation. Application

to a pollution detection problem. J. Inverse Ill-Posed Probl., 10(6):585–599, 2002.

[8] M. A. Golberg. The method of fundamental solutions for Poisson’s equation. Eng. Anal. Boundary

Elements, 16(3):205–213, October 1995.



Identification of source locations 15

[9] M. A. Golberg and C. S. Chen. The method of fundamental solutions for potential, Helmholtz

and diffusion problems. In Boundary integral methods: numerical and mathematical aspects,

volume 1 of Comput. Eng., pages 103–176. WIT Press/Comput. Mech. Publ., Boston, MA,

1999.

[10] Elliott H. Lieb and Michael Loss. Analysis, volume 14 of Graduate Studies in Mathematics.

American Mathematical Society, Providence, RI, second edition, 2001.

[11] Leevan Ling, Y. C. Hon, and M. Yamamoto. Inverse source identification for Poisson equation.

Inverse Probl. Sci. Eng., 13(4):433–447, 2005.

[12] D. E. Littlewood. A university algebra. Dover Publications Inc., New York, 1970. An introduction

to classic and modern algebra, Republication of the second (1958) edition.

[13] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. J.

Soc. Indust. Appl. Math., 11:431–441, 1963.
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Figure 1. Sample arrangement of M = 3 measurement points bj, N = 3 source points

ak, and P = 50 trial points ξi.
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Figure 2. Approximation error to the total number of sources as a function of the

number of trial centers using one measurement point. As of the title of Y-axis : error

in number of sources
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number sampling times using one measurement point.
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Figure 4. Error in the first moment as a function of the number of trial centers using

three measurement points.
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Figure 6. Case 1: Example 1 to Example 3. Error in approximate distance for each

rj,k (sorted based on the errors), 1 ≤ j ≤ 3 and 1 ≤ k ≤ N using M = 3 measurement

points {b1, b2, b3}.
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Figure 7. Case 2: Example 4 to Example 5. Error in approximate distance for each

rj,k (sorted based on the errors), 1 ≤ j ≤ 3 and 1 ≤ k ≤ N using M = 3 measurement

points {b1, b2, b3}.
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Figure 8. Case 3: Example 6 to Example 7. Error in approximate distance for each

rj,k (sorted based on the errors), 1 ≤ j ≤ 3 and 1 ≤ k ≤ N using M = 3 measurement

points {b1, b2, b3}.
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Figure 9. Error in approximate distance for each rj,k (sorted based on the errors),

1 ≤ j ≤ 3 and 1 ≤ k ≤ N using M = 3 measurement points {b′
1
, b′

2
, b′

3
}.


