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Abstract

We consider the solutions of a space-time fractional diffusion equation
on the standard interval [−1, 1]. The equation is obtained from the stan-
dard diffusion equation by replacing the second order space derivative by a
Riemann-Liouville fractional derivative of order between one and two, and
the first order time derivative by a Caputo fractional derivative of order
between zero and one. As the fundamental solution of this fractional equa-
tion is unknown (if exist), an eigenfunction approach is applied to obtain
approximate fundamental solutions which are then used to solve the space-
time fractional diffusion equation with initial and boundary values. Numer-
ical results are presented to demonstrate the effectiveness of the proposed
method in long time simulations.

1 Introduction

In the waste management guidance, it is stated that any free-flowing solvent re-
moved from the industrial wipers (i.e. shop towels, rags and disposable wipes used
in commercial and industrial settings such as auto repair and printing shops) must
be collected and managed as hazardous wastes. In reality, potentially hazardous
solvents are widely used in many industrial processes that, if spilt or improperly
treated, will seriously contaminate the environment. A variety of industrial users
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Figure 1: The reality (solid) and prediction from conventional model (dot-
ted) of pollutant spread.

have sought guidance for environment safety level. Making such guidance would
require the understanding of the spread of pollutants underground. When the
wastes are disposed, underground pollution is then caused by the diffusion and
the possible penetration by natural groundwater flow. Many highly industrialized
sites and their nearby residential areas are therefore at risk of the leaking of sol-
vents from factories, waste disposal, treatment areas, and dumping grounds. One
of the most typical environmental problems to be considered is the estimation of
large-scale and long term environmental pollution; see [1] for more detailed review.

Due to the heterogeneousity of soils (micro-scale ∼100µm), field data from
[2] first showed that water flow in aquifer is better modeled by anomalous diffu-
sion instead of conventional diffusion. The analysis based on a 20-month natural
gradient tracer study in the saturated zone of a highly heterogeneous aquifer re-
veals dramatically non-Gaussian behavior and asystematic mass loss in concentra-
tion distributions versus time and spatial moments, see Figure 1 for a schematic
demonstration. A long-term goal is to take a step towards a better fundamental
understanding and quantification of pollutants transported by underground water
in non-saturated soils and develop suitable numerical methods for practical ap-
plications. Site assessment and monitoring of soils affected are often difficult and
expensive. Understanding the transport processes of underground pollutants and
the ability to correctly predict the concentration downstream (with limited noisy
data from laboratory testing) are essential tools in environmental protection—the
quantitative targets of soil purification in real site (marco-scale ∼100m–10km) can
be set and the performance of pollutant-barrier can be determined.

It is nowadays well-known that the anomalous phenomena can be better sim-
ulated using the model of continuous-time random walk that leads to diffusion
equations of fractional order as macroscopic model. In particular, we are interested
in diffusion processes of contaminants in porous media; see [3] and the references
therein. Fractional differential equations can also be derived for other anomalous
processes in many applied fields. As for works on numerical methods for fractional
diffusion equations, we can refer to the recent articles [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
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and the references within. Most of these papers treat the case where the spatial di-
mension is one; see also [10] for a nonlinear fractional diffusion equation. Despite
many references for the more-or-less completed ordinary equations of fractional
order, theory of the partial differential equations of fractional order still has many
gaps; this situation holds for both the direct and inverse problems. To our best
knowledge, the first uniqueness of an inverse problem for 1D fractional diffusion
equation is proven recently in [14].

In this paper, we are interested in developing novel numerical algorithm for
solving the Space-Time Fractional Diffusion Equations (STFDE): for 0 < α < 1 <
β < 2,

c
0∂

α
t u(x, t) = −1D

β
xu(x, t), −1 ≤ x ≤ 1, 0 < t,

u(x, 0) = u0(x), −1 ≤ x ≤ 1,
u(±1, t) = 0, 0 < t,

(1)

where c
0∂

α
t is the Caputo fractional derivative of order–α:

c
0∂

α
t u(x, t) =

1

Γ(1 − α)

∫ t

0

∂u(x, η)

∂η

dη

(t− η)α
,

and −1D
β
x is the Riemann-Liouville fractional derivative of order–β:

−1D
β
xu(x, t) =

1

Γ(2 − β)

∂2

∂x2

∫ x

−1

u(ξ, t)dξ

(x− ξ)(β−1)
. (2)

Existence and uniqueness results of a symmetric version of (1) can be found in
[15]. When α → 1 and β → 2, the STFDE (1) becomes to the well-known
diffusion equation (Markovian process) in the limit, ∂tu(x, t) = ∂xxu(x, t). In the
cases 0 < α < 1, the current solution depends on its history (non-Markovian
process); this is so–called the memory-effect of fractional derivatives. Whereas,
setting α = 1 and β = 1 yields an overspecified wave equation that has no solution
in general.

The method of fundamental solutions (MFS) and its related methods have been
developed for the numerical solutions of elliptic [16] and parabolic type differential
equations and their corresponding inverse problems [17]. Detailed reviews of the
method can be found in [18] and [19]. The MFS belongs to a general class of bound-
ary collocation methods (see [20]) in which the unknown solution is represented
as a linear combination of fundamental solutions with their source points located
outside the computational domain [21]. The boundary conditions are satisfied by
collocation or least squares fitting. Unlike traditional methods, the MFS does not
involve integral evaluations and hence provides an efficient computational alter-
native for problems in higher dimension with irregular domains. If MFS can be
used in solving the STFDE (1), the extra dimension in time will be canceled out.
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The aim of this paper is to develop an approximate fundamental solution for (1).
We focus our study in 2D which will already be useful for long-time simulations;
generalization to higher dimensions is straightforward. After a brief introduction
of STFPE, we will detail the procedure of constructing approximate fundamental
solutions in Section 2 with the help of the Jacobi spectral-collocation method. In
Section 3, an MFS-like expansion is derived and the STFDE can be solved by
collocation methods as seen in the standard MFS approach. As exact solution to
(1) is difficult to obtain analytically, we demonstrate some simulated results in
Section 4. Consecutive differences are shown (instead of the exact error) to give
evidences of convergence. Note that if an existing method can solve a STFDE
from time t = 0 to t = 1, either the linear system or the memory requirement has
to be enlarged by 100 times to obtain solution at t = 100. Long time simulations
are shown to justify the ability of the proposed approach as above claimed.

2 Approximate fundamental solution

We begin by considering the following eigenfunction problem

−1D
β
xϕk(x) = λkϕk(x), −1 < x < 1, 1 < β < 2, (3)

ϕk(±1) = 0.

The general solution to (3) is given by [22]

Axβ−1Eβ,β(λk(x + 1)β) +Bxβ−2Eβ,β−1(λk(x + 1)β),

where the generalized two-parameter Mittag-Leffler function is given as

Eµ,ν(z) =
∞
∑

k=0

zk

Γ(µk + ν)
.

Because the Mittag-Leffler function is not oscillating (for real z), the properties of
(3) will be completely different from its integer order counterparts with sin or cos.
There is no theoretical support as of today to ensure the existence of A 6= 0 6= B
satisfying (3). In this section, the eigenvalue problem (3) will be solved by the
Jacobi spectral-collocation method which gives some numerical evidences to the
existence of nontrivial solution.

To numerically solve (3), We will soon see that we need to approximate integrals
of the form

∫ 1

−1

G(x)(1 − x)p(1 + x)q. (4)

The Gauss-Jacobi quadrature is a well-known method for numerical quadrature
based on Gaussian quadrature over the interval [−1, 1] with the weight function
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ω(x) = (1−x)p(1+x)q, where f is a smooth function on [−1, 1] and p, q > −1. The
orthogonal polynomials associated to the weight function ω(x) consist of Jacobi
polynomials. Thus, the Gauss-Jacobi quadrature rule on n points has the form

∫ 1

−1

G(x)(1 − x)p(1 + x)qdx ≈

n
∑

i=1

ωiG(xi), (5)

where {xj}
n
j=1, called Jacobi-collocation points, are the roots of the Jacobi poly-

nomial of degree n and the weights ωi are giving by

ωi = −
2n + p+ q + 2

n + p+ q + 1

Γ(n + p+ 1)Γ(n+ q + 1)

Γ(n + p+ q + 1)(n+ 1)!

2p+q

P
(p,q)′
n (xi)P

(p,q)
n+1 (xi)

, (6)

where Γ(·) denotes the Gamma function. The Jacobi polynomials P
(p,q)
n are solu-

tion of

(1 − x2)y′′ +
(

q − p− (p+ q + 2)x
)

y′ + n(n+ p+ q + 1)y = 0, (7)

having the following explicit expression

P (p,q)
n (xi) =

Γ(p+ n + 1)

n!Γ(p + q + n+ 1)

n
∑

k=0

(

n

k

)

Γ(p+ q + n + k + 1)

Γ(p+ k + 1)

(

xi − 1

2

)k

, (8)

and satisfy the orthogonality condition
∫ 1

−1

(1 − x)p(1 − x)qP (p,q)
m (x)P (p,q)

n (x)dx

=
2p+q+1

2n+ p+ q + 1

Γ(n+ p + 1)Γ(n+ q + 1)

Γ(n + p+ q + 1)n!
δnm.

From [23], if the eigenfunction ϕ(x) (index-k is dropped for simplicity) is two-
time continuous differentiable in [−1, 1], then the Riemann-Liouville fractional
derivatives (2) coincides with the Griinwald-Letnikov derivatives; that is

−1D
β
xϕ(x) =

1
∑

j=0

ϕ(j)(−1)(x + 1)j−β

Γ(j + 1 − β)
+

1

Γ(2 − β)

∫ x

−1

(x− ξ)1−βϕ′′(ξ) dξ. (9)

Assuming sufficient smoothness in the STFDE allows us to use reformulate the
eigenfunction problem using the Grünwald-Letnikov definitions. Because of the
zero Dirichlet boundary conditions, ϕ(±1) = 0, we can further simplify (9) to the
form

−1D
β
xϕ(x) =

ϕ′(−1)(x+ 1)1−β

Γ(2 − β)
+

1

Γ(2 − β)

∫ x

−1

(x− ξ)1−βϕ′′(ξ) dξ. (10)

5



To approximate the integral term in (10), we apply the following transformation
∫ x

−1

(x−ξ)1−βϕ′′(ξ) dξ =

(

x + 1

2

)2−β ∫ 1

−1

(1−τ)1−βϕ′′

(

x + 1

2
τ +

x− 1

2

)

dτ, (11)

by using the transformation (in which the variable x can be considered as fixed),

ξ =
x + 1

2
τ +

x− 1

2
, τ ∈ [−1, 1]. (12)

Using the n-point Gauss-Jacobi quadrature formula relative to the Jacobi
weight {ωi}

n
i=1, the integration term can be approximated by

∫ 1

−1

(1 − τ)1−βϕ′′

(

x + 1

2
τ +

x− 1

2

)

dτ ∼

n
∑

k=1

ϕ′′

(

x + 1

2
xk +

x− 1

2

)

ωk (13)

where τ is discretized at the collocation or Jacobi points {x}ni=1.
Imposing the collocation conditions, also, at the Jacobi points {x}ni=1 yields,

λϕ(xi) =
ϕ′(−1)(xi + 1)1−β

Γ(2 − β)
+

1

Γ(2 − β)

∫ xi

−1

(xi−ξ)
1−βϕ′′(ξ) dξ, ξ ∈ [−1, xi] (14)

or after discretization,

λϕ(xi) =
ϕ′(−1)(xi + 1)1−β

Γ(2 − β)
+

1

Γ(2 − β)

n
∑

k=1

ϕ′′

(

xi + 1

2
xk +

xi − 1

2

)

ωk. (15)

Here, the Jacobi weight {ωi}
n
i=1 with p = 1 − β and q = 0 is used to compute the

integral term in (10). At this stage, we approximate the eigenfunction in the form

ϕ(x) =
n

∑

i=1

ϕ(xi)Li(x), (16)

where Li(x) is a cardinal basis function associated with the Jacobi collocation
points {xi}

n
i=1; namely, Li(xj) = δij ∈ {0, 1}. The JSCM was first apply to solve

the Volterra integral equations of second kind with a weakly singular kernel, and
it is proven in the same paper that the method enjoys exponential convergence.
Following [24], we adopt the Lagrange interpolation basis as Li.

As in the Trefftz method, the zero boundary conditions can be satisfied exactly
by the construction of basis functions. This is done by adding the points ±1 into
the construction of the Lagrange interpolation basis. Now, equation (14) becomes

λϕ(xi) =
(xi + 1)1−β

Γ(2 − β)

n
∑

j=1

ϕ(xj) L′

j(−1)

+
1

Γ(2 − β)

(

xi + 1

2

)2−β n
∑

j=1

ϕ(xj)

n
∑

k=1

L′′

j

(

xi + 1

2
xk +

xi − 1

2

)

ωk
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With a total of n unknown ϕ(xi), the collocation system can be rewritten in the
following n× n matrix form:

λ















ϕ(x1)
ϕ(x2)

...

...
ϕ(xn)















=















D11 D12 · · · · · · D1n

D21 D22 · · · · · · D2n
...

...
. . .

...
...

...
. . .

...
Dn1 Dn2 · · · · · · Dnn





























ϕ(x1)
ϕ(x2)

...

...
ϕ(xn)















,

where the matrix entries are given as

Dij =
(xi + 1)1−β

Γ(2 − β)
 L′

j(−1)+
1

Γ(2 − β)

(

xi + 1

2

)2−β n
∑

k=1

L′′

j

(

xi + 1

2
xk +

xi − 1

2

)

ωk.

The eigenvectors ϕk corresponding to the eigenvalues λk (k = 1, . . . , n) of matrix D
are the approximation of function ϕ(x) evaluated at the Jacobi collocation points
{xi}

n
i=1.

From the fact that the Mittag-Leffler functions are the eigenfunctions of the
Caputo fractional derivative [23], the solution

ψk(t) = Eα,1

(

λkt
α
)

, (17)

can be obtained for the k-th fractional eigenfunction problem in time

c
0∂

α
t ψk(t) = λkψk(t), t > 0, 0 < α < 1, (18)

ψk(0) = 1.

We now have the approximate fundamental solutions in hand. Besides of the
many unanswered theoretical questions, we construct the approximate solution to
the STFDE (1) in the following form:

u(x, t) =
∞
∑

k=1

σk Fk(x, t) =
∞
∑

k=1

σkϕk(x)ψk(t), (19)

where {σk} is the set unknown coefficients to be determined.

3 Numerical expansion and collocation system

It is easy to verify that each complex-valued approximate fundamental solution
Fk(x, t), that is product of eigenfunctions (3) and (18) with appropriated eigenval-
ues, satisfies the STDFE and the boundary conditions in (1), but not the initial
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condition in general. In the STFDE, as the order β decreases, complex eigenvalues
appears in the eigenvalue problem (3) as the property of the Riemann-Liouville
differs more from that of the Laplacian. If β is away below 1, our numerical sim-
ulations also show that Re(λn) < 0 all the time. In order to avoid the complexity
of calculations that involves complex numbers, we separate the real and imaginary
part of those complex eigenvalues according to their conjugation property. Since
complex eigenvalues always appear in the form of complex conjugates, we reorder
the set of eigenvalues of (14) whenever both real and complex eigenvalues exist.
Let

Λ = {λ1, λ1, λ2, λ2, . . . , λn′, λn′, λ2n′+1, . . . , λn, },

for some 0 ≤ n′ ≤ ⌊n/2⌋, where n′ is the number of the pairs of complex con-
jugate and let ϕj be the corresponding eigenvectors. The jth–eigenfunctions ϕj

(j = 1, . . . , n) of the Riemann-Liouville eigenproblem corresponding to λj will be
approximated by the Lagrange interpolation formula (16) using its values ϕj(xn)
at the Jacobi points.

By rearrange our eigenvalue set, we can further expand the solution Un to the
exact solution u of (1) as

Un(x, t) :=
n′

∑

j=1

σ2j−1Re
(

Eα,1(λjt
β)ϕj(x)

)

(20)

+
n′

∑

j=1

σ2j Im
(

Eα,1(λjt
β)ϕj(x)

)

+
n

∑

j=n′

σjEα,1(λjt
β)ϕj(x),

in which all functions are real-valued and σ here differs from the ones in (19). To
determine the set unknown coefficients {σj}

n
j=1, we follow the standard procedure

in MFS and take a large set of (equispaced) collocation points X ′ = {x′1, . . . , x
′

m}
(m≫ n) in [−1, 1]. Via the standard least-squares fit to the m×n matrix system,
we seek {σk}

n
k=1 that satisfy the initial condition

Un(x′i, 0) ≈ u0(x
′

i), (i = 1, . . . , m).

After the determination of {σk}
n
k=1, the numerical solution (20) can be evaluated

anywhere in (x, t) ∈ [−1, 1] × [0,∞).

4 Numerical examples

To demonstrate the effectiveness of the proposed method for solving STFDE, we
consider the following equations with boundary conditions and initial condition:
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N maxx

(

Un(x, t) − Un−2(x, t)
)

13 1.74 × 10−4

15 8.38 × 10−5

17 4.02 × 10−5

19 2.06 × 10−5

21 1.12 × 10−5

23 6.44 × 10−6

25 3.74 × 10−6

27 2.38 × 10−6

29 1.60 × 10−6

31 1.06 × 10−6

Table 1: Maximum differences of consecutive numerical approximation.

for 0 < α < 1 < β < 2,

c
0∂

α
t u(x, t) = −1D

β
xu(x, t), −1 ≤ x ≤ 1, 0 < t,

u(x, 0) = cos(πx/2), −1 ≤ x ≤ 1,
u(±1, t) = 0, 0 < t.

(21)

Using a downloadable script [25], all Mittag-Leffler functions are evaluated to
an accuracy of 10 decimal places. First, we test the obvious limiting case when
α = 1 and β = 2 − 10−6; note that the proposed algorithm does not allowed
β = 2 exactly but α = 1 is possible. As the fractional derivative approaches to
the integer order derivative, and the STFDE solution u(x, t) approaches that of
the standard heat diffusion exp(−π2t/4) cos(πx/2). With m = 100 collocation
points, the maximum differences between the numerical approximations and the
nearby standard heat solution are respectively 1.42 × 10−5 and 1.36 × 10−5 for
n = 21 and 31. To verify convergence, we set α = 0.8, β = 1.8 and Table 1 reports
the maximum differences of consecutive approximation Un(x, t) − Un−2(x, t), n =
13, 15, . . . , 31, over the computation domain −1 ≤ x ≤ 1, 0 ≤ t ≤ 1. The observed
monotonic behavior provides some evidences of convergence despite the lack of
exact solution for comparison.

As our proposed method only requires collocations for the initial condition, the
memory effect does no effect to the complexity of the solution process. Once the
unknown coefficients are obtained, the numerical solution can be evaluated at any
time t as wish. With n = 21, the solution profiles can be plotted easily up to time
t = 100 (or larger) as shown in Figure 2. A slight asymmetry in the solution can
be observed from the 2D snapshots, also see Figure 3(a).

To further parameter analysis, Figure 3 demonstrate the approximation solu-
tions to (21) for four pairs of α and β values. All figures show the solutions for
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0 ≤ t ≤ 2 and employ the same color scheme for easy comparison. On the first row,
in Figure 3(a) and 3(b), the numerical solutions for fixed α = 0.8 and, respectively
β = 1.8 and β = 1.4 are shown. As β decreases, the solution of the STFDE skews
to the left towards the x = −1 boundary due to the asymmetry in the Riemann-
Liouville derivative; the same asymmetric behavior is also observed in the field
data [2]. When we compare the figures columnwise, the effect of decreasing α can
be observed. Smaller α yields “slower diffusion” with a rapid temperature drop
at the initial time. In the second row with α = 0.4, it is difficult to observe any
region with solution value greater than 0.8.

In [26], the STFDE (1) with a piecewise linear initial condition

u(x, 0) = min

(

2(1 + x),
2

3
(1 − x)

)

with singularity at x = −1/2 was studied with a finite difference scheme. For
standard heat equation, it is common to start the simulation with some low order
difference schemes and switch back to high order spectral after the solution is
smoothed by diffusion. For the STFDE we consider, due to the memory effect,
the initial singularity will in theory never leave the picture of this non-Markov
process. When the number of collocation is being set large (i.e. m = 100 as in the
above), the corner will be rounded in the numerical approximation. For suitable
small m so that the a collocation point coincides with the corner, the singularity
could be well preserved; Figure 4 demonstrates two numerical results obtained by
m = n = 21.

5 Conclusions

In this paper, we propose a numerical procedure for solving a space-time frac-
tional diffusion equation in a boundary domain. We use the Jacobi Spectral-
Collocation Method to solve the eigenvalue problems of the Riemann-Liouville
fractional derivative. Using the resulting eigen-information and the generalized
two-parameter Mittag-Leffler functions, we construct approximate fundamental
solutions for the space-time fractional diffusion equation. Due to the lack of exact
solution, convergence and accuracy of the proposed scheme are partially verified
by numerical results. A numerical solution is shown for 1 ≤ t ≤ 100 as a demon-
stration of time algorithm’s capability on long time simulation. To illustrate the
diffusion pattern in STFDE, simulations for various fractional orders in space and
time are included. Our last example shows that the proposed spectral based ap-
proach can still well handle initial conditions with singularity.
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Figure 2: Numerical solutions for the STFDE with α = 0.8 and β = 1.8.
(Left) Snapshots at various time. (Right) Solution profiles.

(a) α = 0.8, β = 1.8 (b) α = 0.8, β = 1.4

(c) α = 0.4, β = 1.8 (d) α = 0.4, β = 1.4

Figure 3: Dispersion patterns for various orders of fractional derivative α
and β.
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(a) α = 0.8, β = 1.8
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(b) α = 0.6, β = 1.6

Figure 4: Decaying profiles for STFDE from a singular initial condition to
time t = 0.4.
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