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Matrix

Matrix can be used to describe the relationship between
objects, and objects with different attributes:

O1 O2 · · · On

O1 a1,1 a1,2 · · · a1,n
O2 a2,1 a2,2 · · · a2,n
..
.

..

.
..
. · · ·

..

.
On an,1 an,2 · · · an,n

A1 A2 · · · Am

O1 a1,1 a1,2 · · · a1,m
O2 a2,1 a2,2 · · · a2,m
..
.

..

.
..
. · · ·

..

.
On an,1 an,2 · · · an,m

Examples: (left) a similarity matrix, an image, a Google
matrix; (right) a gene expression data, multivariate data,
terms and documents.

large data (n is large); high-dimensional data (m is large)



Tensor

Tensor can be used to describe the multiple relationships
between objects. A tensor is a multidimensional array. Here a
three-way array is used:

O1 O2 · · · On

O1 a1,1,1 a1,2,1 · · · a1,n,1
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...

On an,1,1 an,2,1 · · · an,n,1
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... · · ·
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On an,1,2 an,2,2 · · · an,n,2

· · ·

O1 O2 · · · On

O1 a1,1,p a1,2,p · · · a1,n,p

O2 a2,1,p a2,2,p · · · a2,n,p

...
...

... · · ·
...

On an,1,p an,2,p · · · an,n,p

p relationships among n objects



Tensor

Web information retrieval is significantly more challenging
than that based on web hyperlink structure

One main difference is the multiple links based on the other
features (text, images, etc)

Example: 100,000 webpages from .GOV Web collection in
2002 TREC and 50 topic distillation topics in TREC 2003
Web track as queries

Multiple links among webpages via different anchor texts

39,255 anchor terms (multiple relations), and 479,122 links
with these anchor terms among the 100,000 webpages
(100000 × 100000 × 39255)



Tensor

In a social network where objects are connected via multiple
relations, via sharing, comments, stories, photos, tags,
keywords, topics, etc

In a publication network where the interactions among items
in three entities: author, keyword and paper

A tensor: the interactions among items in three
dimensions/entities: author, keyword and paper; A matrix:
the interactions between items in two dimensions/entities:
concept and paper



Information Retrieval

The hyperlink structure is exploited by three of the most
frequently cited Web IR methods: HITS (Hypertext Induced
Topic Search), PageRank and SALSA.

PageRank: L. Page, S. Brin, R. Motwani and T. Winograd.
The PageRank Citation Ranking: Bringing Order to the Web.
1998.

HITS: J. Kleinberg. Authoritative Sources in a Hyperlinked
Environment. Journal of the ACM, 46: 604-632, 1999.

SALSA: R. Lempel and S. Moran. The Stochastic Approach
for Link-structure Analysis (SALSA) and the TKC effect. The
Ninth International WWW Conference, 2000.

[The survey given by A. Langville and C. Meyer, A Survey of
Eigenvector Methods for Web Information Retrieval, SIAM Review,
2005.]



HITS

Each page/document on the Web is represented as a node in a
very large graph. The directed arcs connecting these nodes
represent the hyperlinks between the documents.



HITS

The HITS IR method defines authorities and hubs. An
authority is a document with several inlinks, while a hub has
several outlinks.

The HITS thesis is that good hubs point to good authorities
and good authorities are pointed to by good hubs. HITS
assigns both a hub score and authority score to a webpage.

Webpage i has both a hub score xi and an authority score yi.
Let E be the set of all directed edges in the Web graph and
let ei,j represent the directed edge from node i to node j.



HITS

Given that each page has been assigned an initial hub score x
(0)
i

and authority score y
(0)
i , HITS successively refines these scores by

computing

y
(k)
j =

∑

i:ei,j

x
(k−1)
i and x

(k)
i =

∑

j:ei,j

y
(k−1)
j

With the help of the adjacency matrix L of the directed Web
graph: Li,j = 1, if there exists an edge from node i to node j,
Li,j = 0, otherwise.

y(k) = LTx(k−1) and x(k) = Ly(k)



HITS

These two equations define the iterative power method for
computing the dominant eigenvector for the matrices LTL
and LLT . Since the matrix LTL determines the authority
scores, it is called the authority matrix and LLT is known as
the hub matrix.

LTL and LLT are symmetric positive semi-definite matrices.
Computing the hub vector x and the authority vector y can
be viewed as finding dominant right-hand eigenvectors of LLT

and LTL, respectively.

The structure of L allows to be a repeated root of the
characteristic polynomial, in which case the associated
eigenspace would be multi-dimensional. This means that the
different limiting authority (and hub) vectors can be produced
by different choices of the initial vector.



PageRank

PageRank importance is determined by “votes” in the form of
links from other pages on the web. The idea is that votes
(links) from important sites should carry more weight than
votes (links) from less important sites, and the significance of
a vote (link) from any source should be tempered (or scaled)
by the number of sites the source is voting for (linking to).
The rank r(s) of a given page s is

r(s) =
∑

t∈Bs

r(t)

#(t)

where Bs = { all pages pointing to s }, and #(t) is the
number of out links from t.
Compute

r = Pr (column vector)

where P is the matrix with pi,j = 1/#(sj) if sj links to si,
otherwise pi,j = 0.



PageRank

The raw Google matrix P is nonnegative with column sums
equal to one or zero.

Zero column sums correspond to pages that that have no
outlinks such pages are sometimes referred to as dangling
nodes.

Dangling nodes can be accounted for by artificially adding
appropriate links to make all column sums equal one, then P
is a column stochastic matrix, which in turn means that the
PageRank iteration represents the evolution of a Markov
chain.

This Markov chain is a random walk on the graph defined by
the link structure of the web pages in the Google database.



PageRank

An irreducible Markov chain is one in which every state is
eventually reachable from every other state. That is, there exists a
path from node j to node i for all i, j.

Irreducibility is a desirable property because it is precisely the
feature that guarantees that a Markov chain possesses a unique
(and positive) stationary distribution vector r = Pr (α = 1) or
r = P̃r (0 < α < 1), the Perron-Frobenius theorem at work:

P̃ = αP + (1− α)E

where E is a matrix of all ones by the number of pages. The
matrix E can guarantee irreducible matrix P̃ .



SALSA

Stochastic Approach for Link Structure Analysis (SALSA).
SALSA, developed by Lempel and Moran in 2000, was
spawned by the combination of ideas from both HITS and
PageRank.

Like HITS, both hub and authority scores for webpages are
created, and like PageRank, they are created through the use
of Markov chains:

y(k) = Normalize(LT )x(k−1) and x(k) = Normalize(L)y(k)

Both Normalize(LT ) and Normalize(L) are transition
probability matrices (column sum is equal to 1).



Multi-relation Data: The Representation

Example: five objects and three relations (R1: green, R2: blue, R3:
red) among them.
A tensor is a multidimensional array. Example: a three-way array is
used, where each two dimensional slice represents an adjacency
matrix for a single relation. The data can be represented as a
tensor of size 5× 5× 3 where (i, j, k) entry is nonzero if the ith
object is connected to the jth object by using the kth relation.
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Notation

Let R be the real field. We call T = (ti1,i2,j1) where ti1,i2,j1 ∈ R,
for ik = 1, · · · ,m, k = 1, 2 and j1 = 1, · · · , n, a real (2, 1)th order
(m× n)-dimensional rectangular tensor.

(i1, i2) to be the indices for objects and j1 to be the indices for
relations.

For instance, five objects (m = 5) and three relations (n = 3) are
used in the example. When there is a link from the i1th object to
the i2th object when the j1th relation is used, we set ti1,i2,j1 = 1,
otherwise ti1,i2,j1 = 0.

T is called non-negative if ti1,i2,j1 ≥ 0.



The Contribution

Propose a framework to study the hub and authority scores of
objects in multi-relational data for query search.

Besides hub score x and authority score y for each object, we
assign a relevance score z for each relation to indicate its
importance in multi-relational data.

These three scores have the following mutually-reinforcing
idea:

1 An object that points to many objects with high authority
scores through relations of high relevance scores, receives a
high hub score.

2 An object that is pointed by many objects with high hub scores
through relations of high relevance scores, receives a high
authority score.

3 A relation that is connected in between objects with high hub
scores and high authority scores, receives a high relevance
score.



The Idea

m
∑

i2=1

n
∑

j1=1

hi1,i2,j1yi2zj1 = xi1 , 1 ≤ i1 ≤ m

m
∑

i1=1

n
∑

j1=1

ai1,i2,j1xi1zj1 = yi2 , 1 ≤ i2 ≤ m

m
∑

i1=1

m
∑

i2=1

ri1,i2,j1xi1yi2 = zj1 , 1 ≤ j2 ≤ n



The HAR Model

Transition Probability Tensors:
H = (hi1,i2,j1), A = (ai1,i2,j1) and R = (ri1,i2,j1) with respect to
hubs, authorities and relations by normalizing the entry of T as
follows:

hi1,i2,j1 =
ti1,i2,j1
m
∑

i1=1

ti1,i2,j1

, i1 = 1, 2, · · · ,m,

ai1,i2,j1 =
ti1,i2,j1
m
∑

i2=1

ti1,i2,j1

, i2 = 1, 2, · · · ,m,

ri1,i2,j1 =
ti1,i2,j1
n
∑

j1=1

ti1,i2,j1

, j1 = 1, 2, · · · , n.



The Interpretation

To compute hub and authority scores of objects and relevance
scores of relations by considering a random walk in a
multi-relational data/tensor, and studying the limiting
probabilities having objects as hubs or as authorities, and
using relations respectively.

hi1,i2,j1 (or ai1,i2,j1) can be interpreted as the probability of
having the i1th (or i2th) object as an hub (or as an authority)
by given that the i2th (or i1th) object as an authority (or as a
hub) is currently considered and the j1th relation is used;

ri1,i2,j1 can be interpreted as the probability of using the j1th
relation given that the i2th object as an authority is visited
from the i1th object as a hub.



The Interpretation

hi1,i2,j1 = Prob[Xt = i1|Yt = i2, Zt = j1]

ai1,i2,j1 = Prob[Yt = i2|Xt = i1, Zt = j1]

ri1,i2,j1 = Prob[Zt = j1|Yt = i2,Xt = i1]

Xt, Yt and Zt are random variables referring to consider at any
particular object as a hub and as an authority, and to use at any
particular relation respectively at the time t respectively. Here the
time t refers to the time step in a Markov chain (higher order
generalization).

The construction of ai1,i2,j1 is related to the transpose of hi1,i2,j1.
This is similar to the construction of SALSA algorithm to
incorporate the link structure among objects for the role of hub
and authority in the single relation data.



HAR - Tensor Equations

hub score: x̄
authority score: ȳ
relevance score: z̄

Hȳz̄ = x̄, Ax̄z̄ = ȳ, Rx̄ȳ = z̄,

with
m
∑

i1=1

x̄i1 = 1,

m
∑

i2=1

ȳi2 = 1,

n
∑

j1=1

z̄j1 = 1.

hub and authority scores for objects and relevance scores for
relations by solving tensor equations based on mutually-reinforcing
relationship among hubs, authorities and relations.



Generalization

When we consider a single relation type, we can set z̄ to be a
vector l/n of all ones, and thus we obtain two matrix equations

Hȳl/n = x̄ Ax̄l/n = ȳ.

We remark that A can be viewed as the transpose of H.
This is exactly the same as that we solve for the singular vectors to
get the hub and authority scoring vectors in SALSA. As a
summary, the proposed framework HAR is a generalization of
SALSA to deal with multi-relational data.



The MultiRank Model

Transition Probability Tensors:
A = (ai1,i2,j1) and R = (ri1,i2,j1) with respect to nodes and
relations by normalizing the entry of T as follows:

ai1,i2,j1 =
ti1,i2,j1
m
∑

i2=1

ti1,i2,j1

, i2 = 1, 2, · · · ,m,

ri1,i2,j1 =
ti1,i2,j1
n
∑

j1=1

ti1,i2,j1

, j1 = 1, 2, · · · , n.

Ax̄z̄ = x̄, Rx̄2 = z̄,

with
m
∑

i

x̄i = 1,
n
∑

j

z̄j = 1.



HAR - Query Search

To deal with query processing, we need to compute hub and
authority scores of objects and relevance scores of relations with
respect to a query input (like topic-sensitive PageRank):

(1− α)Hȳz̄+ αo = x̄,

(1− β)Ax̄z̄+ βo = ȳ,

(1− γ)Rx̄ȳ + γr = z̄,

where o and r are two assigned probability distributions that are
constructed from a query input, and 0 ≤ α, β, γ < 1, are three
parameters to control the input.



HAR - Theory

F (x,y, z) =





(1− α)Hȳz̄+ αo
(1− β)Ax̄z̄+ βo
(1− γ)Rx̄ȳ + γr





Ωm = {u = (u1, u2, · · · , um) ∈ Rm|ui ≥ 0, 1 ≤ i ≤ m,
m
∑

i=1

ui = 1}

and

Ωn = {w = (w1, w2, · · · , wn) ∈ Rn|wj ≥ 0, 1 ≤ j ≤ n,

n
∑

j=1

wj = 1}



HAR - Theory

Theorem

Suppose H, A and R are constructed from T , 0 ≤ α, β, γ < 1,
and o ∈ Ωm and r ∈ Ωn are given. If T is irreducible, then there

exist x̄ > 0, ȳ > 0 and z̄ > 0 such that (1− α)Hȳz̄+ αo = x̄,

(1− β)Ax̄z̄+ βo = ȳ, and (1− γ)Rx̄ȳ+ γr = z̄, with x̄, ȳ ∈ Ωm

and z̄ ∈ Ωn.

Using Brouwer’s Fixed Point Theorem.

Theorem

Suppose T is irreducible, and H, A and R are constructed from

T , 0 ≤ α, β, γ < 1 and o ∈ Ωm and r ∈ Ωn are given. If 1 is not

the eigenvalue of the Jacobian matrix of the mapping F , then the

solution vectors x̄, ȳ and z̄ are unique.

Using Kellogg’s Unique Fixed Point Results.



HAR - Theory (α, β, γ > 1/2)

Theorem

Suppose H, A and R are constructed from T , and o ∈ Ωm and

r ∈ Ωn are given. If 1/2 < α, β, γ < 1 then the solution vectors x̄,

ȳ and z̄ are unique.

Check the Jacobian matrix

J =





0 (1− α)J12 (1− α)J13
(1− β)J21 0 (1− β)J23
(1− γ)J31 (1− γ)J32 0





Jst are transition probability matrices (their column sum are equal
to 1). The largest magnitude of the eigenvalue of J is less than 1.



The HAR Algorithm

Input: Three tensors H, A and R, two initial probability
distributions y0 and z0 with (

∑m
i=1[y0]i = 1 and

∑n
j=1[z0]j = 1),

the assigned probability distributions of objects and/or relations o
and r (

∑m
i=1[o]i = 1 and

∑n
j=1[r]j = 1), three weighting

parameters 0 ≤ α, β, γ < 1, and the tolerance ǫ
Output: Three limiting probability distributions x̄ (authority
scores), ȳ (hub scores) and z̄ (relevance values)
Procedure:

1: Set t = 1;
2: Compute xt = (1− α)Hyt−1zt−1 + αo;
3: Compute yt = (1− β)Axt−1zt−1 + βo;
4: Compute zt = (1− γ)Rxt−1yt−1 + γr;
5: If ||xt − xt−1||+ ||yt − yt−1||+ ||zt − zt−1|| < ǫ, then stop,

otherwise set t = t+ 1 and goto Step 2.



Convergence (α, β, γ > 1/2)

Theorem

Suppose H, A and R constructed, and o ∈ Ωm and r ∈ Ωn are

given. If 1/2 < α, β, γ < 1 then the HAR algorithm converges to

the unique vectors x̄, ȳ and z̄.

Gauss Seidel iterations:

Compute xt = (1− α)Hyt−1zt−1 + αo;
Compute yt = (1− β)Axtzt−1 + βo;
Compute zt = (1− γ)Rxtyt + γr;



Gauss Seidel is faster than Jacobi

Example in Information Retreival:

0 5 10 15
10

−15

10
−10

10
−5

10
0

Number of iterations

||
u

t−
u

t−
1
||

1
+

||
v

t−
v

t 1

||
1
+

||
w

t−
w

t−
1
||

1

 

 

Jacobi method
Gauss−Seidel method

0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

Number of iterations

||
u

t−
u

t−
1
||

1
+

||
v

t−
v

t−
1
||

1
+

||
w

t−
w

t−
1
||

1

 

 

Jacobi method
Gauss−Seidel method

0 1 2 3 4 5 6 7 8 9
10

−15

10
−10

10
−5

10
0

Number of iterations

||
u

t−
u

t−
1
||

1
+

||
v

t−
v

t−
1
||

1
+

||
w

t−
w

t−
1
||

1

 

 

Jacobi method
Gauss−Seidel method

0 1 2 3 4 5 6 7 8 9
10

−15

10
−10

10
−5

10
0

Number of iterations

||
u

t−
u

t−
1
||

1
+

||
v

t−
v

t−
1
||

1
+

||
w

t−
w

t−
1
||

1

 

 

Jacobi method
Gauss−Seidel method



Experiment 1

100,000 webpages from .GOV Web collection in 2002 TREC
and 50 topic distillation topics in TREC 2003 Web track as
queries

Links among webpages via different anchor texts

39,255 anchor terms (multiple relations), and 479,122 links
with these anchor terms among the 100,000 webpages

If the i2th webpage links to the i1th webpage via the j1th
anchor term, we set the entry ti1,i2,j1 of T to be one. The
size of T is 100, 000 × 100, 000 × 39, 255

Sparse tensors: the percentage of nonzero entries is
1.22 × 10−7%



Evaluation

P@k: Given a particular query, we compute the precision at
position k as follows: P@k = # relevant documents in top k
results / k

NDCG@k the normalized version of DCG@k that discounts the
contribution of low-ranking relevant documents

MAP: Given a query, the average precision is calculated by
averaging the precision scores at each position in the search
results where a relevant document is found. MAP is then the
mean of the average precision scores of all queries.

R-prec is the precision score after R documents are retrieved,
i.e., R-prec=P@R, where R is the total number of relevant
documents for such query.



P@10 P@20 NDCG@10 NDCG@20 MAP R-prec

HITS 0.0000 0.0000 0.0000 0.0000 0.0041 0.0000
SALSA 0.0160 0.0140 0.0157 0.0203 0.0114 0.0084

TOPHITS 0.0020 0.0010 0.0044 0.0028 0.0008 0.0002
(500-rank)
TOPHITS 0.0040 0.0020 0.0088 0.0057 0.0016 0.0010
(1000-rank)
TOPHITS 0.0040 0.0030 0.0063 0.0049 0.0011 0.0018
(1500-rank)
BM25+ 0.0280 0.0180 0.0419 0.0479 0.0370 0.0370
DepInOut

HAR 0.0560 0.0410 0.0659 0.0747 0.0330 0.0552
(rel. query)

HAR 0.1100 0.0800 0.1545 0.1765 0.1035 0.1051
(rel. and

obj. query)

The results of all comparison algorithms on TREC data set.



ranks HAR

1 www.tempe.gov/library/youth/teach.htm
2 www.get.wa.gov/reading.htm
3 www.tempe.gov/library/content.htm
4 www.ed.gov/pubs/Paraprofessionals/norfolk.html
5 www.loc.gov/rr/international/int-gateway.html
6 graham.sannet.gov/public-library/searching-the-net/childrensites.shtml
7 www.cde.ca.gov/ci/literature/
8 www.cde.ca.gov/news/releases2001/rel36.asp
9 www.hud.gov/lea/leastand.html/
10 libwww.library.phila.gov/databases/keywordsearch.taf

ranks TOPHITS
1 www.students.gov/link search/listlinks.cfm?cfid=1139239&cftoken=44790442&Topic=0101
2 www.students.gov/link search/listlinks.cfm?cfid=1139177&cftoken=3776877&Topic=0404
3 www.crh.noaa.gov/dlh/firewx.htm
4 www.students.gov/link search/listlinks.cfm?cfid=1139251&cftoken=50170076&Topic=0101
5 www.bls.gov/oes/2000/oestec2000.htm
6 www.students.gov/link search/listlinks.cfm?cfid=1139205&cftoken=97602529&Topic=0203
7 www.students.gov/link search/listlinks.cfm?cfid=1130081&cftoken=49786299&Topic=0101
8 www.students.gov/link search/listlinks.cfm?cfid=1139251&cftoken=50170076&Topic=0103
9 www.crh.noaa.gov/sgf/hydro/reports/hydrorpt.shtml
10 graham.sannet.gov/directories/privacy.shtml



ranks HAR

1 www.npwrc.usgs.gov/
2 pastel.npsc.nbs.gov/resource/2001/impplan/appenE.htm
3 water.usgs.gov/eap/env guide/fish wildlife.html
4 fedlaw.gsa.gov/legal2a.htm
5 envirotext.eh.doe.gov/data/uscode/16/
6 envirotext.eh.doe.gov/data/uscode/16/ch5A.html
7 envirotext.eh.doe.gov/data/uscode/16/ch6.html
8 www.nwr.noaa.gov/1salmon/salmesa/pubs.htm
9 www.dfg.ca.gov/hcpb/conplan/mitbank/banking report.shtml
10 www.hawaii.gov/dlnr/IdxConservation.htm

ranks TOPHITS
1 www.npwrc.usgs.gov/
2 www.students.gov/link search/listlinks.cfm?cfid=1133639&cftoken=90444830&Topic=0101
3 www.students.gov/link search/listlinks.cfm?cfid=1133456&cftoken=20839758&Topic=0101
4 www.fedstats.gov/qf/states/29000.html
5 www.students.gov/link search/listlinks.cfm?cfid=1133457&cftoken=22178553&Topic=0404
6 www.students.gov/link search/listlinks.cfm?cfid=1139247&cftoken=47516940&Topic=0101
7 www.crh.noaa.gov/sgf/products/mtruno.shtml
8 www.students.gov/link search/listlinks.cfm?cfid=1139201&cftoken=34746433&Topic=0101
9 www.students.gov/link search/listlinks.cfm?cfid=1130149&cftoken=13070299&Topic=0101
10 www.students.gov/link search/listlinks.cfm?cfid=1139266&cftoken=37252845&Topic=0203



ranks HAR
1 usembassy.state.gov/seoul/wwwh42x4.html
2 usembassy.state.gov/seoul/wwwhe404.html
3 www.state.gov/r/pa/bgn/2792pf.htm
4 www.state.gov/r/pa/bgn/2792.htm
5 www.voa.gov/korean/
6 www.st.nmfs.gov/st3/multilateral.html
7 www.usinfo.state.gov/regional/ea/easec/nkoreapg.htm
8 usembassy.state.gov/seoul/wwwh42yt.html
9 usembassy.state.gov/seoul/wwwh0108.html
10 citrus.sbaonline.sba.gov/nd/ndoutreach.html

ranks TOPHITS
1 www.students.gov/link search/listlinks.cfm?cfid=1139239&cftoken=44790442&Topic=0101
2 www.students.gov/link search/listlinks.cfm?cfid=1139177&cftoken=3776877&Topic=0404
3 www.crh.noaa.gov/dlh/firewx.htm
4 www.students.gov/link search/listlinks.cfm?cfid=1139251&cftoken=50170076&Topic=0101
5 www.bls.gov/oes/2000/oestec2000.htm
6 www.students.gov/link search/listlinks.cfm?cfid=1139205&cftoken=97602529&Topic=0203
7 www.students.gov/link search/listlinks.cfm?cfid=1130081&cftoken=49786299&Topic=0101
8 www.students.gov/link search/listlinks.cfm?cfid=1139251&cftoken=50170076&Topic=0103
9 www.crh.noaa.gov/sgf/hydro/reports/hydrorpt.shtm
10 graham.sannet.gov/directories/privacy.shtml



Experiment 2

1 five conferences (SIGKDD, WWW, SIGIR, SIGMOD, CIKM)

2 Publication information includes title, authors, reference list,
and classification categories associated with publication

3 6848 publications and 617 different categories

4 100 category concepts as query inputs to retrieve the relevant
publications

5 Tensor: 6848 × 6848 × 617, If the i2th publication cites the
i1th publication and the i1th publication has the j1th category
concept, then we set the entry ti1,i2,j1 of T to be one,
otherwise we set the entry ti1,i2,j1 to be zero.

6 24901 nonzero entries, the percentage of the nonzero entries
is 8.61 × 10−5%



P@10 P@20 NDCG@10 NDCG@20 MAP R-prec

HITS 0.2260 0.1815 0.3789 0.3792 0.2522 0.2751
SALSA 0.4100 0.3105 0.5606 0.5352 0.3462 0.3929

TOPHITS 0.1360 0.1145 0.1684 0.1557 0.0566 0.0617
(50-rank)
TOPHITS 0.1640 0.1340 0.2012 0.1857 0.0646 0.0732
(100-rank)
TOPHITS 0.1920 0.1410 0.2315 0.1998 0.0732 0.0765
(150-rank)
BM25+ 0.0170 0.0145 0.0147 0.0138 0.0162 0.0109
DepInOut

HAR 0.5880 0.4155 0.7472 0.6760 0.4731 0.4683
(rel. query)

The results of all comparison algorithms on DBLP data set.



P@10 P@20 NDCG@10 NDCG@20 MAP R-prec

HAR 0.2000 0.1312 0.1488 0.1647 0.1312 0.2075
(rel. query)

HAR 0.6000 0.7500 0.6995 0.7697 0.5422 0.6226
(rel. and

(obj. query)

The results of HAR with two settings when we query “clustering”
concept and “document” related papers. In this case, we judge a
paper to be relevant if it has “clustering” concept and a
“document” related title for evaluation.



Community Discovery

(a) An example of an academic publication network where R1 indicates paper-author-keyword interaction, R2

indicates author-author collaboration, R3 indicates paper-paper citation, R4 indicates paper-category interaction.

(b) One tensor and three matrices are used to represent the interactions among authors, papers, keywords and

categories.



For SIAM journal data, we consider the papers published in
SIMAX, SISC and SINUM in the recent 15 years

Multi-dimensional networks:
the paper-author-keyword (x1-x2-x3) tensor P

(1)

[3736 × 1807 × 7630; nz = 31257 6.07 × 10−5%];
the paper-paper (x1-x1) citation tensor P(2) [3736 × 3736;
nz = 4523 0.032%] ;
the author-author (x2-x2) collaboration tensor P(3) [1807 × 1807;
nz = 4410 0.14%];
the paper-category (x1-x4) concept tensor P

(4) [3736 × 1202;
nz = 11897 0.26%]

P(1) → P(1,1),P(1,2),P(1,3)

P(2) → P(2,1)

P(3) → P(3,1)

P(4) → P(4,1),P(4,2)



Multi-dimensional networks tensor equations:

(paper) x1 = (1− α)

[

1

3
P(1,1)x2x3 +

1

3
P(2,1)x1 +

1

3
P(4,1)x4

]

+

αz1

(author) x2 = (1− α)

[

1

2
P(1,2)x1x3 +

1

2
P(3,1)x2

]

+ αz2

(keyword) x3 = (1− α)P(1,3)x1x2 + αz3

(category) x4 = (1− α)P(4,2)x1 + αz4

z1, z2, z3, z4 are seeds for papers, authors, keywords and
categories respectively.



Numerical Example

Community MetaFac Clauset LWP MultiComm

SIMAX 0.3544 0.0612 0.0022 0.6396
SINUM 0.4591 0.4321 0.0001 0.5113
SISC 0.3868 0.3047 0.0056 0.4321

average F-measure 0.4001 0.2660 0.0026 0.5277

KDD 0.5741 0.7662 0.0020 0.7722
SIGIR 0.6497 0.6664 0.0015 0.7350

average F-measure 0.6119 0.7163 0.0018 0.7536

Community(AMS code) MetaFac Clauset LWP MultiComm

65F10 0.2123 0.1143 0.0090 0.4602
65F15 0.1641 0.2197 0.0222 0.4282
65N30 0.2133 0.0701 0.0059 0.3672
65N15 0.1341 0.0802 0.0152 0.3244
65N55 0.1743 0.2555 0.0001 0.3321

average F-measure 0.1796 0.1480 0.0105 0.3824



Image Retrieval

An image can be represented by several visual concepts, and a
tensor is built based on visual concepts as its entry contain
the affinity between two images in the corresponding visual
concept.

A ranking scheme can be used to compute the association
scores of images and the relevance scores of visual concepts
by employing input query vectors to handle image retrieval:
MultiRank and HAR algorithms.



Image Retrieval



Image Retrieval
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Image Retrieval (MSRC data)
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Image Retrieval (Corel data)
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Image Retrieval

The top ten results of different algorithms on MSRC data for a query image. The red
lines mark the salient regions. The first row is the query image, and the second, third,

fourth, fifth, sixth, seventh and eighth rows show the results of MultiVCRankI,
MultiVCRankII, HypergraphRank VC, ManifoldRank VC, RankSVM, TOPHITS, and

SimlarityRank, respectively.



The top ten results of different algorithms on Corel data for a query image. The red
lines mark the salient regions produced by the algorithm in [?]. The first row is the

query image, and the second, third, fourth, fifth, sixth, seventh and eighth rows show
the results of MultiVCRankI, MultiVCRankII, HypergraphRank VC, ManifoldRank VC,

RankSVM, TOPHITS, and SimlarityRank, respectively.



Image Retrieval

The performance comparison in terms of Precisoin@k and
NDCG@k on MSRC and Corel datasets.

MSRC Corel
P@5 P@10 NDCG@5 NDCG@10 P@5 P@10 NDCG@5 NDCG@10

MultiVCRankI 0.4867 0.4506 0.5271 0.4715 0.5417 0.4860 0.5699 0.5214
MultiVCRankII 0.5000 0.4683 0.5327 0.4708 0.5433 0.4887 0.5717 0.5237
HypergraphRank 0.3521 0.3196 0.4013 0.3512 0.4021 0.3521 0.4286 0.4073
ManifoldRank 0.3267 0.2983 0.3892 0.3393 0.3505 0.3076 0.3759 0.3837
SVMRank 0.1433 0.1183 0.1485 0.1280 0.1015 0.0840 0.1101 0.1021
TOPHITS 0.1301 0.1083 0.1521 0.1122 0.1086 0.0819 0.1027 0.0964
SimilarityRank 0.2633 0.2367 0.3005 0.2696 0.2479 0.2046 0.2565 0.2161



Image Retrieval with Feedback Training (MSRC data)
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Image Retrieval with Feedback Training (Corel data)
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Transition Probability Matrix

Suppose there is a fixed probability pi,j independent of time such
that

Prob(Xt+1 = i|Xt = j,Xt−1 = it−1, . . . ,X0 = i0)

= Prob(Xt+1 = i|Xt = j) = pi,j

where i, j, i0, i1, . . . , it−1 ∈ 〈n〉. Then this {Xt} is called a Markov
chain process. The probability pi,j represents the probability that
the process will make a transition to the state i given that
currently the process is in the state j. Clearly one has

pi,j ≥ 0,

n
∑

i=1

pi,j = 1, j = 1, . . . , n.

The matrix P = (pi,j) is called the one-step transition probability
matrix of the process.



Transition Probability Matrix

Suppose P = (pi,j) is a transition probability matrix, then there
exists a non-negative vector x̄ such that P x̄ = x̄. In particular, if
P is irreducible, then x̄ must be positive and unique. When P is
primitive, for

lim
t→∞

xt = lim
t→∞

Pxt−1

with any initial distribution vector x0, we have

x̄ = P x̄.



Transition Probability Tensor

The (m− 1)th order Markov chain model is used to fit the
observed data through the calculation of the (m− 1)th order
transition probabilities:

0 ≤ pi1,i2,··· ,im = Prob(Xt+1 = i1|Xt = i2, . . . ,Xt−m+2 = im) ≤ 1

where i1, i2, . . . , im ∈ 〈n〉, and

n
∑

i1=1

pi1,i2,··· ,im = 1.

The probability pi1,i2,··· ,im represents the probability that the
process will make a transition to the state i1 given that currently
the process is in the state i2 and previously the process are in the
states i3, · · · , im.



Transition Probability Tensor

x̄i1 = lim
t→∞

Prob(Xt = i1)

=
n
∑

i2,··· ,im=1

pi1,i2,··· ,im ×

× lim
t→∞

Prob(Xt−1 = i2,Xt−2 = i3, · · · ,Xt−m+1 = im)

=
n
∑

i2,··· ,im=1

pi1,i2,··· ,im

m
∏

j=2

lim
t→∞

Prob(Xt = ij)

=

n
∑

i2,··· ,im=1

pi1,i2,··· ,im x̄i2 · · · x̄im = (Px̄m−1)i1 ,

To determine a limiting probability distribution vector of a
(m− 1)th order Markov chain by solving a tensor equation:

x̄ = Px̄m−1



Transition Probability Tensor

Definition: An mth order n-dimensional tensor A is called reducible
if there exists a nonempty proper index subset I ⊂ {1, 2, · · · , n}
such that

ai1,i2,··· ,im = 0, ∀i1 ∈ I, ∀i2, · · · , im /∈ I.

If A is not reducible, then we call A irreducible.

Theorem: If P is a transition probability tensor of order m and
dimension n, then there exists a nonzero non-negative vector x̄
such that Px̄m−1 = x̄ and

∑n
i=1 x̄i = 1. In particular, if P is

irreducible, then x̄ must be positive.



Transition Probability Tensor

(Order 3) Let S be a proper subset of 〈n〉 and S′ be its
complementary set in 〈n〉, i.e., S′ = 〈n〉\S. For P = (pi1,i2,i3), let

γ(P) := min
S⊂〈n〉

{

min
i3∈〈n〉

(

min
i2∈S

∑

i∈S′

pi,i2,i3 + min
i2∈S′

∑

i∈S

pi,i2,i3

)

+

min
i2∈〈n〉

(

min
i3∈S

∑

i∈S′

pi,i2,i3 + min
i3∈S′

∑

i∈S

pi,i2,i3

)}

.

Theorem: Suppose P is a transition probability tensor of order 3
and dimension n. If γ(P) > 1, then the nonzero non-negative
vector x̄ is unique.



Transition Probability Tensor

(Order 3) A simplified condition:

|pi,i2,i3 − pi,j2,j3 | <
1

n
, ∀i, i2, i3, j2, j3 ∈ 〈n〉.

A general case:

δm(P) := min
S

{

min
i2,··· ,im∈〈n〉

∑

i∈S′

pi,i2,··· ,im + min
i2,··· ,im∈〈n〉

∑

i∈S

pi,i2,··· ,im

}

.

Theorem: Suppose P is a transition probability tensor of order m
and dimension n. If δm(P) > m−2

m−1 , then the nonzero non-negative
vector x̄ is unique.



Transition Probability Tensor

Theorem: Suppose P is a transition probability tensor of order 3
and dimension n. Then {xt} generated by the iterative method,
satisfies

‖xt+1 − xt‖1 ≤ (2− γ(P))‖xt − xt−1‖1, ∀t = 0, 1, · · · .

If γ(P) > 1, then {xt} converges linearly to the unique solution x̄,
for any initial distribution vector x0.

Theorem: Suppose P is a transition probability tensor of order m
and dimension n. Then {xt} generated by the iterative method,
satisfies

‖xt+1 − xt‖1 ≤ (m− 1)(1− δm(P))‖xt − xt−1‖1, ∀t = 0, 1, · · · ,

If δm(P) > m−2
m−1 , then {xt} converges linearly to the unique

solution x̄, for any initial distribution vector x0.



Perturbation Results

The Perron vector x associated to the largest Z-eigenvalue 1 of P,
satisfies

Pxm−1 = x

where the entries xi of x are non-negative and
∑n

i=1 xi = 1.

When P is perturbed to an another transition probability tensor P̃
by ∆P, the 1-norm error between x and x̃ ?

Extension of matrix perturbation bound



Perturbation Results

Theorem: Let P and its perturbed tensor P̃ = P+∆P be
mth-order n-dimensional transition probability tensors. If
δm(P) > m−2

m−1 , then the Perron vector x of P is unique, and for

any Perron vector x̃ of P̃,

||x̃− x||1 ≤
||∆P||1

(m− 1)δm(P) + 2−m
.

Theorem: Let P and its perturbed tensor P̃ = P+∆P be 3th-order
n-dimensional transition probability tensors. If γ(P) > 1, then the
Perron vector x of P is unique, and for any Perron vector x̃ of P̃

||x̃− x||1 ≤
||∆P||1
γ(P)− 1

.



Perturbation Results

The bound is sharp. Let Pε be a 3th order 2-dimension tensor
given by

Pε =

(

1
3 + ε 1

3 + ε 2
3 − ε 2

3
2
3 − ε 2

3 − ε 1
3 + ε 1

3

)

where ε > 0 and

P̃ =

(

1
3

1
3

2
3

2
3

2
3

2
3

1
3

1
3

)

.

By a simple computation, γ(P̃) = 4
3 , δ3(P̃) = 2

3 and

||∆P||1 = ‖Pε − P̃‖1 = 2ε. We have

||∆x||1 ≤
3

2
ε.



Perturbation Results

A simple calculation reveals that the equality holds when ε = 2
3 .

Indeed, the eigenvector solutions are given by

x =

(

2−
√

2(2− 3ε)

3ε
, 1−

2−
√

2(2− 3ε)

3ε

)T

and x̃ = (1/2, 1/2)T ,

respectively. When ε = 2/3, we have x = (1, 0)T ,
‖x− x̃‖1 =

3
2ε = 1.



Perturbation Results

(P. Schweitzer)

||∆x||1 ≤ ||Z||1||∆P ||1,

where Z := (I − P + xeT )−1 and e is a vector of all ones.

(C. Meyer)

||∆x||1 ≤ ||(I − P )#||1||∆P ||1,

where (I − P )# is the group inverse of (I − P ).

(E. Seneta)

||∆x||1 ≤
1

1− η(P )
||∆P ||1,

where η(P ) := sup||v||1=1,vT
e=0 ||Pv||1.

||∆x||1 ≤ η((I − P )#)||∆P ||1 = η(Z#)||∆P ||1.



Perturbation Results

Theorem: Let P and its perturbed matrix P̃ = P +∆P be
transition probability matrices. If δ2(P ) > 0, then the Perron
vector x with ||x||1 = 1 of P is unique, and for any Perron vector
x̃ with ||x̃||1 = 1 of P̃ we have

||x̃− x||1 ≤ max
S⊂〈n〉

2α2(∆P, S)

δ2(P, S)
≤

||∆P ||1
δ2(P )

.

Although we cannot show our bound is always better than the
other bounds, the following example shows that our bound is
better:

P =

(

1/3 2/3
2/3 1/3

)

, ∆P =

(

−0.0156 0.0119
0.0156 −0.0119

)

.

The bounds: 0.0312, 0.0234, 0.0468, and 0.0229 (our)



Multilinear PageRank

Theorem: Let P be an order-m stochastic tensor, v be a
stochastic vector. Then the multilinear PageRank equation

x = αPxm−1 + (1− α)v

has a unique solution if there exists a vector σ = (σ1, · · · , σn) such
that

α



max
s∈〈n〉

m
∑

k=2

max
{i2,··· ,im}\{ik}

∑

i∈〈n〉,ik=s

|pi,i2,··· ,ik,··· ,im − σi|



 < 1.



Multilinear PageRank

Since for any s ∈ 〈n〉

m
∑

k=2

max{i2,··· ,im}\{ik}

∑

i∈〈n〉,ik=s

|pi,i2,··· ,ik,··· ,im − σi|

≤ (m− 1)max{i2,··· ,im}

∑

i∈〈n〉

|pi,i2,··· ,im − σi|,

the multilinear PageRank equation has a unique solution provided
there exists a vector σ = (σ1, · · · , σn) such that

α <
1

(m− 1)max{i2,··· ,im}

∑

i∈〈n〉 |pi,i2,··· ,im − σi|
.

Taking σi = 0, then the condition reduces to α < 1
m−1 .



Multilinear PageRank

The multilinear PageRank equation has a unique solution provided
that

α <
2

(m− 1)
∑

i∈〈n〉

(

max
{i2,··· ,im}

pi,i2,··· ,ik,··· ,im − min
{i2,··· ,im}

pi,i2,··· ,ik,··· ,im

) ,

or

α <
1

(m− 1)
(

1−
∑

i∈〈n〉mini2,··· ,im pi,i2,··· ,im

) ,

or

α <
1

(m− 1)
(

∑

i∈〈n〉maxi2,··· ,im pi,i2,··· ,im − 1
) .



Multi-Stochastic Tensor

A real square matrix with non-negative elements all of whose
row-sums and column-sums are equal to 1 is said to be doubly
stochastic.

One of the most important properties for a doubly stochastic
matrix is the Birkhoff-von Neumann theorem:

Theorem: Any n-by-n doubly stochastic matrix is in the convex
hull of c permutation matrices for c ≤ (n− 1)2 + 1.



Multi-Stochastic Tensor

Definition: An mth-order n-dimensional nonnegative tensor
A = (ai1,i2,··· ,im) is called multi-stochastic if for all ij = 1, · · · , n,
j 6= k we have

n
∑

ik=1

ai1,··· ,ik,··· ,im = 1, k = 1, ...,m.

We denote the set of mth-order n-dimensional multi-stochastic
tensors by Ω(m,n).

Definition: An mth-order n-dimensional nonnegative tensor P is
said to be a permutation tensor if P has exactly nm−1 entries of
unity such that Pi1,··· ,ik,··· ,im = 1 is the only non-zero entry in the
(i1, · · · , ik−1, ; , ik+1, · · · , im) tube of the kth-class tubes of P for
1 ≤ k ≤ m. We denote the set of mth-order n-dimensional
permutation tensors by Ψ(m,n).



Multi-Stochastic Tensor

Theorem: Let A be a 3rd-order n-dimensional triply stochastic
tensor with its 1-unfolding matrix A(1) = [A1 | A2 | · · · | An].
Then A is a convex combination of finitely many permutation
tensors if and only if Ai can be written as follows:

Ai =

c
∑

k=1

α
(k)
i P

(k)
i , 1 ≤ i ≤ n (1)

where P
(k)
i is a permutation matrix,

c
∑

k=1

α
(k)
i = 1, α

(k)
i = α

(k)
j ≥ 0, 1 ≤ i 6= j ≤ n,

and
P

(k)
i ◦ P

(k)
j = 0, 1 ≤ k ≤ c, 1 ≤ i 6= j ≤ n.



Multi-Stochastic Tensor

In general, a triply stochastic tensor cannot be expressed as a
convex combination of finitely many permutation tensors. We
guess that the set of extreme points in Ω(3,n) contains more than
permutation tensors. It is known that the set of all permutation
matrices is the same as the set of extreme points in Ω(2,n) (the set
of doubly stochastic matrices).
As an example, the 1-unfolding matrix of S given by

S(1) =





0.5 0 0.5 0 0.5 0.5 0.5 0.5 0
0.5 0.5 0 0 0.5 0.5 0.5 0 0.5
0 0.5 0.5 1 0 0 0 0.5 0.5





is an extreme point (is not a permutation tensor).



Concluding Remarks

Develop models and algorithms for multiple relational data
ranking in tensors

Relevant theoretical results are presented

Numerical examples are given to show the usefulness of the
models

More and more applications involving tensor/multi-relational
data

Theory and Algorithms are required to be investigated


