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Abstract
In this paper, we consider the variable selection problem in functional linear regres-
sion with interactions. Our goal is to identify relevant main effects and corre-
sponding interactions associated with the response variable. Heredity is a natural 
assumption in many statistical models involving two-way or higher-order interac-
tions. Inspired by this, we propose an adaptive group Lasso method for the multiple 
functional linear model that adaptively selects important single functional predictors 
and pairwise interactions while obeying the strong heredity constraint. The proposed 
method is based on the functional principal components analysis with two adaptive 
group penalties, one for main effects and one for interaction effects. With appro-
priate selection of the tuning parameters, the rates of convergence of the proposed 
estimators and the consistency of the variable selection procedure are established. 
Simulation studies demonstrate the performance of the proposed procedure and a 
real example is analyzed to illustrate its practical usage.

Keywords Functional linear model · Main effect · Multiple functional predictors · 
Interaction effect · Heredity structure · Variable selection

1 Introduction

Functional data analysis has received considerable attentions in various fields, 
including, for example, environmental science, biology, medicine, finance and sys-
tem engineering. The basic idea behind functional data analysis is to express each 
individual in repeatedly measured data as a smooth function and then make statisti-
cal inference from the collection of functional data (Ramsay & Silverman, 2005; 
Horváth & Kokoszka, 2012). There are a large body of recent work devoted to 
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regression models with functional predictors, and among them, the most popular 
model is the functional linear model (Cardot et al., 2003; Cai & Hall, 2006; Hall & 
Horowitz, 2007; Crambes et al., 2009; Hall & Hooker, 2016). A standard functional 
linear model (FLM) with scalar response and functional predictor is defined as

where Y is the scalar response variable, X(t) is the random function defined on com-
pact interval T  , �0 is the intercept, �(t) is the unknown coefficient function, and � is 
the random error.

FLM is designed to describe the relation between a scalar response and one func-
tional explanatory variable, which is often simple and easy to interpret. However, as 
pointed out in Yao and Müller (2010), this model imposes a constraint on the regres-
sion relationship that may not be appropriate in many real problems. In practice, the 
scalar response can be potentially associated with multiple or even a large number of 
functional predictors, which yields the multiple FLM as

For model (2), Matsui and Konishi (2011), Gertheiss et  al. (2013) and Lian 2013 
considered the shrinkage estimation and selection; Huang et al. (2016) studied the 
robust variable selection; Collazos et al. (2016) investigated the connection between 
model testing and variable selection; and Xue and Yao (2021) considered the 
hypothesis testing problem with the number of functional predictors being diverge 
as the sample size increases. In addition, (Kong et al., 2016; Ma et al., 2019) and 
(Yu et  al., 2019) studied the regularized estimation and variable selection for the 
partial FLM with multiple functional predictors.

One limitation of model (2) is that the effects of the functional predictors are 
additive, that is, only the main effects of the individual functional predictors enter 
the regression model. In practice, however, ignoring the interaction effects may 
result in inaccurate or biased estimates of the model parameters which in turn lead 
to incorrect conclusions. To capture the interaction effects which can also arise in 
practice, it is often desired to develop new functional regression models that can 
accommodate both multiple functional predictors and the interaction terms among 
them. For this purpose, Yao and Müller (2010) considered the full quadratic effect 
∫ ∫ �(s, t)X(s)X(t)dsdt where X(s) and X(t) represent the same functional predictor. 
Fuchs et al. (2015) and Usset et al. (2016) considered the interaction terms of the 
form ∫ ∫ �(s, t)X1(s)X2(t)dsdt where X1(s) and X2(t) represent different functional 
predictors.

In this paper, we consider the following functional regression model with main 
terms and all possible two-way interaction terms

(1)Y = �0 + ∫ �(t)X(t)dt + �,

(2)Y = �0 +

p∑

j=1
∫ �j(t)Xj(t)dt + �.
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where Xj(t) (j = 1,⋯ , p) are main effects, and Xj(s)Xm(t) ( 1 ≤ j < m ≤ p ) are two-
way interaction effects. The regression coefficient functions �j(t) and �jm(s, t) are 
assumed to be smooth and square integrable. When p = 2 , model (3) reduces to the 
model in Fuchs et al. (2015) and Usset et al. (2016).

A special feature about model (3) is the intrinsic relationship among the regres-
sor terms, for example, Xj(s)Xm(t) is the child of Xj(s) and Xm(t) , or equivalently, 
Xj(s) and Xm(t) are the parents of Xj(s)Xm(t) . This model structure is known as the 
hierarchical structure, with the two different types including strong heredity and 
weak heredity (Chipman, 1996; Bien et al., 2013). Strong heredity means that if an 
interaction term exists in the model, then both of its parent effects must be present; 
while for weak heredity, it only requires one of its parent effects must be present 
in the model. Heredity is a nature requirement in interaction models (Bien et  al., 
2013; Hao et al., 2018; She et al., 2018). There are two reasons one would prefer 
to add main effects to the model ahead of interaction effects. First, as pointed out 
by Cox (1984), large component main effects are more likely to lead to appreciable 
interactions than small components. And moreover, the interactions associated with 
larger main effects may also be in some sense of more practical importance. Second, 
interaction effects are often more difficult to interpret than main effects, thus, given 
similar predictive ability, one would prefer to add a main effect ahead of an interac-
tion effect.

Variable selection for linear regression models with interaction effects has 
attracted considerable attentions in the past two decades. To name a few, Yuan et al. 
(2009) proposed non-negative garrote methods that naturally incorporate a general 
hierarchical structure among the predictors; Choi et  al. 2010 extended the Lasso 
method for simultaneously fitting the regression model and identifying interaction 
terms under the strong heredity constraint; Bien et al. (2013) investigated a Lasso 
for hierarchical interactions; She et al. (2018) studied group regularized estimation 
under weak or strong heredity, respectively; Hao et  al. (2018) proposed two-stage 
regularization methods on model selection and estimation for quadratic regression 
models under strong or weak heredity constraint, respectively. To the best of our 
knowledge, none of these papers studied the setting with functional data, and none 
of the variable selection methods for multiple functional linear models satisfied the 
heredity constraint when the interactions are also included.

In this paper, we propose to fill the gap by studying the variable selection and 
estimation of model (3) with strong heredity constraint. Based on the functional 
principal components analysis (FPCA) and the adaptive group Lasso (Yuan and 
Lin 2006), we propose a new variable selection method to adaptively select func-
tional predictors and interactions while automatically obeying the strong heredity 
constraint. We carry out estimation and variable selection by optimizing a penal-
ized least squares function that includes two adaptive penalty terms, one for the 
main effects and another for the reparameterized interaction effects. An effective 
algorithm has also been developed. With proper choice of tuning parameters, we 

(3)Y = 𝛼0 +

p∑

j=1
∫ 𝛽j(t)Xj(t)dt +

∑

j<m
∫ ∫ 𝛾jm(s, t)Xj(s)Xm(t)dsdt + 𝜀,
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establish the convergence rates of the estimators for the coefficient functions and the 
consistency of the variable selection procedure.

The rest of the paper is organized as follows. In Sect. 2, we first describe the vari-
able selection procedure using FPCA and the adaptive group Lasso penalties, and 
then propose an iterative algorithm for finding the penalized estimators. In Sect. 3, 
we present the theoretical properties of the proposed variable selection procedure. 
Simulation studies are carried out in Sect. 4 to assess the finite sample performance 
of the proposed estimators, and an environmental data set is analyzed in Sect.  5. 
Lastly, we conclude the paper in Sect. 6 with some future work. Technical details are 
given in the supplementary material.

2  Estimation methodology

2.1  Functional principal component analysis

Assume that we have independent and identically distributed observations 
{(Yi,Xij(t)) , i = 1,⋯ , n, j = 1,⋯ , p} , where Xij(t) are zero mean random functions 
belonging to L2(T) , and Yi are response variables generated from model (3). We also 
assume that �i are independent and identically distributed random errors with a finite 
second moment, and they are independent of the functional predictors.

Let also (X1(t),⋯ ,Xp(t), Y) denote the generic random functions with the same 
distribution as (Xi1(t),⋯ ,Xip(t), Yi) and denote the covariance function of Xj(t) by 
Σj(s, t) = Cov(Xj(s),Xj(t)) . Then by Mercer’s Theorem, we can obtain the spectral 
decomposition as

where 𝜏j1 > 𝜏j2 > ⋯ > 0 are the eigenvalues of the linear operator associated with 
Σj(s, t) , and �jk are the corresponding eigenfunctions. By the Karhunen-Loè ve 
expansion, Xj(t) can be represented as

where �jk are the principal component scores satisfying E(�jk) = 0 , E(�2
jk
) = �jk and 

E(�jk�jk� ) = 0 for k ≠ k′ . In addition, the sample Xij(t) can be expressed as

where �ijk are independent copies of �jk.
Since the sequences �jk (k = 1, 2,⋯) are all complete in the class of square inte-

grable functions on T  , the regression coefficient functions in (3) can be represented 
as

Σj(s, t) =

∞∑

k=1

�jk�jk(s)�jk(t),

Xj(t) =

∞∑

k=1

�jk�jk(t),

Xij(t) =

∞∑

k=1

�ijk�jk(t),
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for suitable sequences (�jk)k=1,2,⋯ and (�jm,kl)k,l=1,2,⋯ with 
∑

k 𝛽jk < ∞ and ∑
k,l 𝛾jm,kl < ∞ . By (4) and the orthonormality property of the eigenfunctions, model 

(3) can be alternatively expressed as a function of the scores �jk and �ml,

Our goals are to provide a method that determines which terms in the right-hand 
side of (5) have important effects on the response, and then construct the coeffi-
cient function estimators with desirable properties and develop an efficient compu-
tational algorithm. The existing variable selection methods for the functional regres-
sion models do not guarantee the strong heredity constraint, as they treat all the 
elements of ( �jk , �jm,kl ) equally and do not distinguish between them. To tackle the 
problem, we first reparameterize the coefficients for the interaction terms �jm,kl in (5) 
as �jm,kl = �jm,kl�jk�ml , which yields the strong hierarchical multiple functional linear 
model as

With this reparameterization, the coefficient function for an interaction term 
Xj(s)Xm(t) must be zero if either of its two main effects Xj(s) or Xm(t) has a zero coef-
ficient function; and in contrast, if the coefficient function for Xj(s)Xm(t) is not equal 
to zero, it implies that both �j(t) ≠ 0 and �m(t) ≠ 0 , which guarantees the strong 
heredity constraint.

Note that the eigenvalue �jk of Xj(t) often decreases to zero rapidly as k increases, 
that is, Xj(t) mainly depends on the leading Kj principal components. This implies 
that it is reasonable to assume Y is dependent on the leading Kj principal compo-
nents in Xj(t) . A practical strategy to select the smoothing parameters Kj will be dis-
cussed in Sect. 2.3. Moreover, for the sake of descriptive convenience, we set �0 = 0 
in model (6) so that the final model is approximated as

2.2  Model estimation

Since the scores �ijk are unknown, we cannot estimate �jk and �jm directly. To esti-
mate the functional principal component scores, we first estimate the covariance 
functions by

(4)�j(t) =

∞∑

k=1

�jk�jk(t), �jm(s, t) =

∞∑

k=1

∞∑

l=1

�jm,kl�jk(s)�ml(t),

(5)Yi = 𝛼0 +

p∑

j=1

∞∑

k=1

𝛽jk𝜉ijk +
∑

j<m

∞∑

k=1

∞∑

l=1

𝛾jm,kl𝜉ijk𝜉iml + 𝜀i.

(6)Yi = 𝛼0 +

p∑

j=1

∞∑

k=1

𝛽jk𝜉ijk +
∑

j<m

∞∑

k=1

∞∑

l=1

𝛼jm,kl𝛽jk𝛽ml𝜉ijk𝜉iml + 𝜀i.

(7)Yi ≈

p∑

j=1

Kj∑

k=1

𝛽jk𝜉ijk +
∑

j<m

Kj∑

k=1

Km∑

l=1

𝛼jm,kl𝛽jk𝛽ml𝜉ijk𝜉iml + 𝜀i.
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where X̄j(s) =
1

n

∑n

i=1
Xij(s) . Also by the empirical spectral expansion,

where 𝜏j1 ≥ 𝜏j2 ≥ ⋯ ≥ 0 and (𝜏jk, �̂�jk) are pairs of eigenvalue and eigenfunction of 
Σ̂j(s, t) . Then consequently, the principal component scores �ijk can be estimated by

With these preliminary estimates at hand, we further denote

and 𝛽 = (𝛽⊤
1
,⋯ , 𝛽⊤

p
)⊤ , 𝛽j = (𝛽j1,⋯ , 𝛽jKj

)⊤ , 𝛼 = (𝛼⊤
12
,⋯ , 𝛼⊤

(p−1)p
)⊤,

where 1 ≤ j < m ≤ p . Then for the purpose of variable selection, we define the 
penalized least squares function with the adaptive group Lasso as

where ‖ ⋅ ‖2 stands for the vector L2-norm. As can be seen, the tuning parameters 
�1j control the functional main effect estimates. If ‖�j‖2 is shrunken to zero, all 
terms involving Xj(t) , including the main effect ∫ �j(t)Xj(t)dt and the interactions 
∫ ∫ �jm(s, t)Xj(s)Xm(t)dsdt for any m > j , will be removed from the model. The tun-
ing parameters �2,jm control the functional interaction effect estimates. If ‖�j‖2 ≠ 0 
and ‖�m‖2 ≠ 0 but the corresponding interaction effect is not strong, ‖�jm‖2 still has 
the possibility of being zero. The penalty term controlled by �2,jm thus provides the 
flexibility of selecting only main effects of Xj(t) and Xm(t) but not their interaction 
term.

2.3  Tuning parameter selection

For practical implementation, one has to decide the values of the tuning parameters 
and smoothing parameters. Note that there are a total of p(p + 1)∕2 tuning parame-
ters and p smoothing parameters in model (8), and thus the classical method includ-
ing, for example, CV, AIC and BIC, may not be applicable.

Σ̂j(s, t) =
1

n

n∑

i=1

(Xij(s) − X̄j(s))(Xij(t) − X̄j(t)),

Σ̂j(s, t) =

∞∑

k=1

𝜏jk�̂�jk(s)�̂�jk(t),

𝜉ijk = ∫ (Xij(s) − X̄j(s))�̂�jk(s)ds.

Ûi = (Û⊤
i1
,⋯ , Û⊤

ip
)⊤, Ûij = (𝜉ij1,⋯ , 𝜉ijKj

)⊤, Ŵi = (Ŵ⊤
i12
,⋯ , Ŵ⊤

i(p−1)p
)⊤,

Ŵijm = (𝛽j1𝛽m1𝜉ij1𝜉im1,⋯ , 𝛽j1𝛽mKm
𝜉ij1𝜉imKm

,⋯ , 𝛽jKj
𝛽mKm

𝜉ijKj
𝜉imKm

)⊤,

𝛼jm = (𝛼jm,11,⋯ , 𝛼jm,1Km
,⋯ , 𝛼jm,KjKm

)⊤,

(8)L(𝛽, 𝛼) =

n�

i=1

(Yi − Û⊤
i
𝛽 − Ŵ⊤

i
𝛼)2 + n

p�

j=1

𝜆1j‖𝛽j‖2 + n
�

j<m

𝜆2,jm‖𝛼jm‖2,
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To overcome this problem, we apply the methods in Zou (2006) and Wang et al. 
(2007) and simplify the tuning parameters as

where 𝛽u
j
 and �̂�u

jm
 are the unpenalized least squares estimators of �j and �jm , and � is a 

pre-specified positive number for which we take � = 1 in our simulation study and 
real data analysis. Let also � = (K1,⋯ ,Kp). We then consider to select � and the 
tuning parameter � according to the following extended BIC (EBIC) criterion:

where P is the total dimension of the model space, and � ∈ [0, 1] is a regulation 
parameter, and the associated degree of freedom is

According to Chen and Chen (2008), we take � = 0.5 throughout the simulation 
study and real data analysis. To further reduce the computations of EBIC(�,�) , 
one can set Kj ≡ K0 for all 1 ≤ j ≤ p so that the resulting criterion reduces to 
EBIC(�,K0).

Another way to alleviate the computation burden is to apply a two-stage method 
that first selects Kj by the cumulative percentage of total variance (CPTV) crite-
rion and then chooses � by EBIC . To be more specific, we first define the CPTV 
explained by the first d functional principal components as

and choose Kj as the minimum number of d for which CPTVj(d) exceeds a desired 
level 100�0% . In our numerical studies, we adopt �0 = 0.95 . Denote also the selected 
smoothing parameters by CPTV as �CPTV = (K1,⋯ ,Kp) . Then as the second step, 
we select � by the EBIC criterion in (9) with �CPTV given. For convenience, we refer 
to this selection method as the C-EBIC criterion.

Despite the simplified tuning parameter selection may not be optimal, the result-
ing estimate of � does guarantee that the tuning parameter for zero coefficient is 
larger than that for nonzero coefficient. Thus, we can consistently estimate the large 
coefficients and shrink the small coefficients toward zero simultaneously. From the 
numerical studies in Sect. 4, we can see that the proposal tuning parameter selection 
performs very well in practice.

𝜆1j =
𝜆

‖𝛽u
j
‖𝜐
2

and 𝜆2,jm =
𝜆

‖�̂�u
jm
‖𝜐
2

,

(9)EBIC(𝜆,�) = log
{
1

n

n∑

i=1

(Yi − Û⊤
i
𝛽 − Ŵ⊤

i
�̂�)2

}
+ df

log n

n
+ 2𝜅

logP

n
,

df =

p�

j=1

I
�
‖𝛽j‖2 > 0

�
+

p�

j=1

‖𝛽j‖2
‖𝛽u

j
‖2

(Kj − 1)

+
�

j<m

I
�
‖�̂�jm‖2 > 0

�
+
�

j<m

‖�̂�jm‖2
‖�̂�u

jm
‖2

(KjKm − 1).

(10)CPTVj(d) =

∑d

l=1
𝜏jl

∑n

l=1
𝜏jl

,
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2.4  Computational algorithm

Because the main effect coefficients � and the interaction coefficients � are con-
trolled at different levels, we apply an iterative algorithm to estimate them alter-
natively. Specifically, we first fix �j and estimate �jm , then fix �jm and estimate �j , 
and finally iterate between these steps until convergence. When � is fixed, the 
optimization in � becomes a group Lasso problem, hence one can use either the 
group LARS algorithm (Yuan and Lin, 2006) or the quadratic programming to 
solve for � efficiently. When � is fixed, we solve for �1,⋯ , �p sequentially. For 
each j = 1,⋯ , p , we fix � and 𝛽[j] = (𝛽⊤

1
,⋯ , 𝛽⊤

j−1
, 𝛽⊤

j+1
,⋯ , 𝛽⊤

p
)⊤ , then (8) becomes 

a simple group Lasso problem with only one coefficient �j.
Specifically, for a fixed � , the proposed iterative algorithm is as follows:
 Step 1. Find the initial estimators 𝛽(0) and �̂�(0) . For example, the unpenalized 

estimators obtained by minimizing (8) with � = 0 can be used.
Step 2. Fixing 𝛽(0) , we update �̂� by

where Ŵ (0)

i
 has the same form as Ŵi except that �jk�ml are replaced by 𝛽(0)

jk
𝛽
(0)

ml
.

 Step 3. Fixing �̂�(1) , we update 𝛽q by

where q = 1, 2,⋯ , p and

Step 4. Setting 𝛽(0) = 𝛽(1) and �̂�(0) = �̂�(1) , we iterate Step 2 and Step 3 until con-
vergence to obtain the final estimator �̂� = (𝛽⊤, �̂�⊤)⊤ , where the convergence criterion 
is set as ‖�̂�(1) − �̂�(0)‖2 < 10−4.

We minimize the objective function L(�, �) with respect to either the set of � ’s 
or the set of � ’s so that the objective function decreases at each step. The value of 
the objective function is then guaranteed to converge to a local minimum since it 
is bounded from below. Similar to many penalized estimation problems, a conver-
gence of the algorithm to the global minimum may not be guaranteed, although 
the simulation results did show that our proposed algorithm can effectively and 
accurately detect the true model structure.

Lastly, for each j,m = 1, 2,⋯ , p with j < m , we estimate �j(t) and �jm(s, t) by

(11)�̂�(1) = argmin
𝛼

� n�

i=1

(Yi − Û⊤
i
𝛽(0) − Ŵ

(0)⊤

i
𝛼)2 + n𝜆

�

j<m

‖𝛼jm‖2
‖�̂�u

jm
‖2

�
,

(12)𝛽(1)
q

= argmin
𝛽q

� n�

i=1

(Ỹi −

Kq�

k=1

𝛽qkŨiqk)
2 + n𝜆

‖𝛽q‖2
‖𝛽u

q
‖2

�
,

Ỹi = Yi −

p∑

j=1,j≠q

Kj∑

k=1

𝛽
(0)

jk
𝜉ijk −

∑

j<m,j,m≠q

Kj∑

k=1

Km∑

l=1

�̂�
(1)

jm,kl
𝛽
(0)

jk
𝛽
(0)

ml
𝜉ijk𝜉iml,

Ũiqk = 𝜉iqk +

q−1∑

j=1

Kj∑

h=1

�̂�
(1)

jq,hk
𝛽
(0)

jh
𝜉ijh𝜉iqk +

p∑

m=q+1

Km∑

h=1

�̂�
(1)

qm,kh
𝛽
(0)

mh
𝜉iqk𝜉imh.
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3  Asymptotic properties

We assume that the true model obeys the strong heredity constraint, and let �∗
j
 and 

�∗
jm

 denote the underlying true values of �j and �jm . It is noted that �∗
j
(t) is zero if and 

only if �∗
j
= 0 , and �∗

jm
(s, t) is nonzero only if �∗

jm
 , �∗

j
 and �∗

m
 are all nonzero vectors. 

We further define

where A1 contains the indices for main terms whose true coefficient functions are 
nonzero, and A2 contains the indices for interaction terms whose true coefficient 
functions are nonzero. Let also

In addition, for convenience and simplicity, we let ‖ ⋅ ‖ represent the L2(T) norm and 
C denote a positive constant that may be different at each appearance throughout 
this paper.

To derive the asymptotic properties of the variable selection procedure and the 
corresponding estimators, we need the following regularity conditions. 

 (A1) Xij(s) has a finite fourth moment such that ∫ E(X4
ij
(s))ds < ∞ for j = 1,⋯ , p.

 (A2) There exist some constants C > 1 , a > 1 and b > a + 1∕2 such that for any 
k ≥ 1 , 

 (A3) Assume that E(�4
jk
) ≤ C�2

jk
 for some constant C > 1 , E(��1

jk
�
�2
jl
) = E(�

�1
jk
)E(�

�2
jl
) 

for �1 + �2 = 3 and 1 ≤ k, l < ∞ , and E(��1
jk
�
�2
jl
) = E(�

�1
jk
)E(�

�2
jl
) for �1 + �2 = 4 

and 1 ≤ k ≠ l < ∞.
 (A4) K1 ≍ K2 ⋯ ≍ Kp ≍ K , and K = O(n1∕(a+2b)) , where a0 ≍ b0 means that the ratio 

a0∕b0 is bounded away from zero and infinity.
 (A5) 

√
nK−1an → 0 and 

√
nK−1bn → ∞ , as n → ∞.

Condition (A1) is an assumption on the moments, and condition (A2) is imposed 
upon the rate of the eigenvalues of the covariance operator of the functional pre-
dictors. Both (A1) and (A2) are commonly assumed in functional linear regres-
sion, see, for example, Hall and Horowitz (2007) and Cai and Hall (2006). Condi-
tion (A3) is similar to that of Yao and Müller (2010), condition (A4) is similar to 

𝛽j(t) =

Kj∑

k=1

𝛽jk�̂�jk(t) and �̂�jm(s, t) =

Kj∑

k=1

Km∑

l=1

�̂�jm𝛽jk𝛽ml�̂�jk(s)�̂�ml(t).

A1 = {j ∶ �∗
j
(t) ≠ 0} and A2 = {(j,m) ∶ �∗

jm
(s, t) ≠ 0},

an =max{�1j, �2,mm� ∶ j ∈ A1, (m,m
�) ∈ A2},

bn =min{�1j, �2,mm� ∶ j ∈ Ac
1
, (m,m�) ∈ Ac

2
,m,m� ∈ A1}.

C−1k−a ≤ �jk ≤ Ck−a, �jk − �j,k+1 ≥ C−1k−a−1 and |�jk| ≤ Ck−b.
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that of Hall and Horowitz (2007), and condition (A5) is similar to that of Choi 
et al. (2010). Note also that conditions (A4) and (A5) are needed for the consist-
ency of the estimators and for the model detection.

Theorem 1 Assume that conditions (A1)–(A4) hold. Then 

 (i)   if 
√
Kan = o(1) as n → ∞ , we have 

 (ii)   if Kan = o(1) as n → ∞ , we have 

The proof of Theorem  1 is given in the supplementary material. Theorem  1 
demonstrates how the rates of convergence of the penalized estimators depend on 
�1j , �2,jm and K. Moreover, if condition (A5) also holds, the rates of convergence 
in Theorem 1 will become

As in Hall and Horowitz (2007) for functional linear regression, the convergence 
rates of 𝛽j(t) and �̂�jm(s, t) are determined by the smoothness levels of the coefficient 
function and the covariance function, respectively.

Theorem 2 Assume that conditions (A1)–(A5) hold. As n → ∞ , we have

The proof of Theorem 2 is given in the supplementary material. Theorem 2 shows 
that our proposed method can consistently remove the noise terms with probability 
tending to 1. That is, as long as the sample size is sufficiently large, our method is 
able to select the true model with a high probability.

4  Simulation studies

In this section, we conduct simulation studies to assess the finite sample perfor-
mance of the proposed variable selection procedure. Specifically for t ∈ [0, 1] , we 
first generate the functional predictors from the following processes:

‖𝛽j(t) − 𝛽∗
j
(t)‖2 = Op(K(

√
K∕n + an)

2 + K−2b+1);

‖�̂�jm(s, t) − 𝛾∗
jm
(s, t)‖2 = Op(K

2(
√
K∕n + an)

2 + K−4b+2).

‖𝛽j(t) − 𝛽∗
j
(t)‖2 = Op(n

−
2b−1

a+2b ) and ‖�̂�jm(s, t) − 𝛾∗
jm
(s, t)‖2 = Op(n

−
a+2b−3

a+2b ).

P(𝛽j(t) = 0 for j ∈ Ac
1
) → 1 and P(�̂�jm(s, t) = 0 for (j,m) ∈ Ac

2
) → 1.
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where �k(t) =
√
2 cos(0.5(k + 1)�t) for k = 1, 3 and 5, �k(t) =

√
2 sin(0.5k�t) for 

k = 2, 4 and 6, and the random coefficients are as follows:

We then generate the response variables Yi from the model:

where �1(t) = −0.5�1(t) + 2�2(t) , �2(t) = −0.75�1(t) + 1.5�2(t) + 0.5�3(t) , 
�3(t) = −0.25�1(t) + 0.5�2(t) + 0.5�3(t) + 0.5�4(t) , �4(t) = 0 , and �i are independ-
ent errors from N(0, 0.25). Finally, we consider two models in our simulations, one 
with interaction effects and one without interaction effect, as follows:

Model (I): �12(s, t) =
1

3
�2(s)�1(t) +

1√
3
�4(s)�3(t) , and �13(s, t) = �14(s, t)

= �23(s, t) = �24(s, t) = �34(s, t) = 0;
Model (II): �12(s, t) = �13(s, t) = �14(s, t) = �23(s, t) = �24(s, t) = �34(s, t) = 0.
Following the above simulation settings, the random samples (Yi,Xij) are obtained 

with each Xij being observed at 100 equally spaced points on [0, 1]. Moreover, we 
assume that the observations of the random trajectory Xij at each point tij,r are con-
taminated with measurement error �ij,r from N(0,  0.04). We compare the perfor-
mance of our model selection procedure with the group SCAD (Lian, 2013) and the 
group Lasso (Gertheiss et al., 2013), which do not guarantee the strong heredity con-
straint. The sample sizes in our simulations are n=100, 200 and 300, respectively. 
Further for model selection, we apply both EBIC(�,K0) and C-EBIC in Sect. 2.3 to 
select the tuning parameter � and the smoothing parameters Kj.

We carried out 500 simulations for each setting and then summarize the results 
in Tables  1 and 2 for model selection by the three methods under the two mod-
els, respectively. The column labeled “ CM ” gives the average number of the nonzero 
main effects that are correctly selected, “ CI ” gives the average number of the 
nonzero interactions that are correctly selected, and the column labeled “ CZ ” gives 
the average number of the six true zeros that are correctly set to zero. The columns 
“UF”, “CF” and “OF” are the proportions of models that are underfitted, correctly 
fitted and overfitted, respectively.

From Table 1, we can see that the proposed method correctly selects the true 
model more frequently than the group SCAD and the group Lasso. Specifically, 
for all scenarios, the group SCAD and the group Lasso perform similar, with the 

Xi1(t) = �i11�1(t) + �i12�2(t),

Xi2(t) = �i21�1(t) + �i22�2(t) + �i23�3(t),

Xi3(t) = �i31�1(t) + �i32�4(t) + �i33�6(t),

Xi4(t) = �i41�5(t) + �i42�6(t),

�i1l ∼ N(0, �1l) with �11 = 4, �12 = 1∕2,

�i2l ∼ N(0, �2l) with �21 = 4, �22 = 1, �23 = 1∕2,

�i3l ∼ N(0, �3l) with �31 = 4, �32 = 2, �33 = 1,

�i4l ∼ N(0, �4l) with �41 = 4, �42 = 1.

Yi =

4∑

j=1
∫

1

0

�j(t)Xij(t)dt +

3∑

j=1

4∑

m=j+1
∫

1

0 ∫
1

0

�jm(s, t)Xij(s)Xim(t)dsdt + �i,
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former slightly better, while our proposed method performs much better than both 
of them. When the sample size increases, the proposed method shows a consistent 
model selection trend. In addition, we note that EBIC(�,K0) and C-EBIC perform 
nearly the same. Lastly, Table 2 indicates that when there is no interaction effect 
(Model (II)), the proposed method performs also comparably to the other two 
methods.

Table 1  Variable selection results of the three methods under Model (I)

Proposed method Group SCAD Group Lasso

n C
M

C
I

C
Z

C
M

C
I

C
Z

C
M

C
I

C
Z

100 2.9740 0.9660 5.9020 2.1160 0.8040 4.2080 1.9820 0.7740 3.8260
EBIC 200 2.9820 0.9880 5.9780 2.0320 0.8180 5.4540 1.9960 0.8120 5.1240

300 3 1 5.9940 2.1020 0.8560 5.7480 2.0140 0.8420 5.5520
100 2.9780 0.9780 5.9400 2.0280 0.7820 4.0880 1.9420 0.7620 3.9280

C-EBIC 200 2.9880 0.9900 5.9760 2.0380 0.8160 5.4760 1.9800 0.8020 5.1460
300 3 1 5.9920 2.0600 0.8600 5.7540 2.0060 0.8340 5.5440

n UF CF OF UF CF OF UF CF OF

100 0.0880 0.8240 0.0880 0.3620 0.2860 0.3520 0.3960 0.0480 0.5560
EBIC 200 0.0460 0.9120 0.0420 0.3660 0.3060 0.3280 0.3760 0.0560 0.5680

300 0.0120 0.9780 0.0100 0.2480 0.3540 0.3980 0.2720 0.0520 0.6760
100 0.0920 0.8260 0.0820 0.3540 0.2840 0.3620 0.3880 0.0360 0.5760

C-EBIC 200 0.0440 0.9060 0.0500 0.3640 0.3100 0.3260 0.3420 0.0420 0.6160
300 0 0.9740 0.0260 0.2540 0.3540 0.3920 0.2380 0.0340 0.7280

Table 2  Variable selection results of the three methods under Model (II)

Proposed method Group SCAD Group Lasso

n C
M

C
I

C
Z

C
M

C
I

C
Z

C
M

C
I

C
Z

100 2.9360 0.1280 6.7820 2.9780 0.0580 6.9780 2.9420 0.0860 6.8120
EBIC 200 2.9760 0.0320 6.9060 2.9920 0.0220 6.9860 2.9720 0.0560 6.9120

300 2.9820 0.0240 6.9540 3 0 6.9920 3 0 6.9580
100 2.9420 0.1320 6.7680 2.9880 0.0520 6.9800 2.9380 0.1020 6.7940

C-EBIC 200 2.9740 0.0480 6.9140 2.9940 0.0160 6.9880 2.9760 0.0540 6.8860
300 2.9880 0.0160 6.9520 3 0 6.9960 2.9860 0 6.9620

n UF CF OF UF CF OF UF CF OF

100 0.0440 0.8540 0.1020 0.0160 0.9180 0.0660 0.0440 0.8760 0.0800
EBIC 200 0.0240 0.9160 0.0600 0.0080 0.9640 0.0280 0.0260 0.9120 0.0620

300 0.0160 0.9680 0.0160 0.0040 0.9940 0.0020 0.0180 0.9740 0.0080
100 0.0420 0.8520 0.1060 0.0120 0.9200 0.0680 0.0420 0.8740 0.0840

C-EBIC 200 0.0220 0.9120 0.0660 0.0060 0.9620 0.0320 0.0180 0.9120 0.0700
300 0.0060 0.9720 0.0220 0 0.9960 0.0040 0.0120 0.9720 0.0160
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To assess the performance of estimators 𝛽1(⋅) , 𝛽2(⋅) , 𝛽3(⋅) and �̂�12(⋅, ⋅) , we apply 
the mean integrated squared errors (MISEs):

Table 3 presents the median of MISE for the coefficient functions 𝛽j(⋅) and �̂�12(⋅, ⋅) 
over the 500 simulations. The column labeled “Oracle” means the oracle estimators 
computed by the true model. From Table 3, we can see that all the estimators of the 
coefficient functions are close to the true curves. As the sample size n increases, the 
MISEs of all the estimators decrease. We also note that the performance of C-EBIC 
is slightly better than EBIC(�,K0) . One possible explanation is that for EBIC(�,K0) , 
the numbers of functional principal components for each predictor are restricted to 
be the same; while for C-EBIC, it allows different predictors to have different num-
bers of functional principal components.

5  Real data application

For illustration purpose, we apply the proposed method to the air pollution data of 
Beijing. The data are freely available on UCI Machine Learning Repository (with 
link https:// archi ve. ics. uci. edu/ ml/ datas ets/ Beiji ng+ Multi- Site+ Air- Quali ty+ Data). 
The data set consists of a collection of hourly measurements of air pollutants and 

MISEj = ∫
1

0

{𝛽j(t) − 𝛽j(t)}
2dt,

MISE12 = ∫
1

0
∫

1

0

{�̂�12(t, s) − 𝛾12(t, s)}
2dtds.

Table 3  Finite sample performance of the estimators under both models

Proposed method Oracle

n = 100 n = 200 n = 300 n = 100 n = 200 n = 300

Model (I) MISE1 0.0171 0.0093 0.0095 0.0093 0.0058 0.0067
MISE2 0.0399 0.0292 0.0341 0.0155 0.0097 0.0084

EBIC MISE3 0.1036 0.1102 0.1029 0.0998 0.0986 0.0974
MISE12 0.2214 0.2324 0.2007 0.1363 0.1077 0.0953
MISE1 0.0128 0.0063 0.0058 0.0074 0.0038 0.0026

C-EBIC MISE2 0.0338 0.0264 0.0235 0.0120 0.0064 0.0047
MISE3 0.0960 0.0939 0.0925 0.0750 0.0727 0.0719
MISE12 0.2188 0.2298 0.1991 0.1316 0.1045 0.0914

Model (II) MISE1 0.0225 0.0158 0.0144 0.0095 0.0092 0.0069
EBIC MISE2 0.0416 0.0314 0.0291 0.0196 0.0188 0.0187

MISE3 0.1037 0.0975 0.0923 0.0842 0.0686 0.0701
MISE1 0.0202 0.0118 0.0113 0.0079 0.0068 0.0034

C-EBIC MISE2 0.0368 0.0297 0.0252 0.0187 0.0157 0.0143
MISE3 0.0973 0.0809 0.0776 0.0728 0.0580 0.0523
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weather factors in Beijing between January 1, 2015 and December 31, 2015, where 
the daily average PM2.5 concentration is of interest and set as the scalar response. 
The eight functional predictors, X1(t) , X2(t) , ⋯ , X8(t) , are, respectively, the hourly 
observed concentration of respirable suspended particulate ( �g/m3 , PM10), sul-
phur dioxide ( �g/m3 , SO2 ), nitrogen dioxide ( �g/m3 , NO2 ), carbon monoxide ( �
g/m3 , CO), and ozone ( �g/m3 , O 3 ), and the hourly observed meteorological vari-
ables including temperature (in Celsius, TEMP), dew point temperature (in Celsius, 
DEWP), and wind speed (m/s, WSPM).

In this section, our aim is to study the relationship of the daily average PM2.5 
concentration to the air pollution and the weather conditions, and select the func-
tional predictors and their interactions that contribute the most to the prediction of 
the daily average PM2.5 concentration. To be more specific, we propose the fol-
lowing functional interaction model with 8 functional predictors and 28 interaction 
terms, which naturally capture the cumulative effects and the interaction effects:

where Y is the logarithm of the daily average PM2.5 concentration. In order to eval-
uate the performance of the proposed method, we use the first 300 observations as 
training sample and the last 65 observations as test sample, where the training sam-
ple is used to select the significant variables and estimate the coefficient functions, 
and the test sample is used to verify the quality of prediction. Finally, we apply the 
following mean squared error of prediction (MSEP) as the criterion for comparison:

Taking into account the computation efficiency of C-EBIC and its good perfor-
mance in simulation studies as shown in Sect.  4, we adopt the C-EBIC criterion 
to select the smoothing parameters Kj and the tuning parameter � . That is, we first 
select Kj by the CPTV criterion in (10), and then select the tuning parameter � by 
the EBIC criterion in (9) with Kj given. The significant variables selected by the 
proposed method and the group Lasso are presented in Table 4. We note that the 
both methods selected the main effects PM10, SO2 , NO2 , O 3 , TEMP and WSPM 
and the interaction effects PM10 × WSPM, SO2 × WSPM and NO2 × WSPM. This 
shows that the formation of PM2.5 is affected by multi-factors. The group Lasso 
also selected interaction effects DEWP × WSPM, DEWP × PM10 and CO × NO2 , 
but they do not obey the heredity constraint; on the other hand, our proposed method 
selected the main effect DEWP but the group Lasso did not. The MSEPs of the 
selected models and the main effect model are displayed in Table 5. Figure 1 pre-
sents the original data and predicted values of the test sample. According to Fig. 1, 
the proposed model and estimation method perform well in predicting the PM2.5 
concentration.

To further assess the stability of model selection, we apply the bootstrap analysis 
on the air pollution data. Based on 300 bootstrap samples of the training sample, 

(13)Y =

8∑

j=1
∫ 𝛽j(t)Xj(t)dt +

∑

l<m
∫ ∫ 𝛾lm(s, t)Xl(s)Xm(t)dsdt + 𝜀,

MSEP =
1

65

365∑

i=301

(Yi − Ŷi)
2.
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the main effects and interactions with selection frequency (denoted briefly as “Fre”) 
higher than 30% are summarized in Table 6. These results indicate that the proposed 
method is fairly stable in terms of selecting terms. The average MSEP (and standard 
deviation) of the bootstrap samples are also displayed in Table 5, and from which 
it is evident that the performance of the proposed method is better than the group 
Lasso, and meanwhile both of them perform much better than the main effect model. 

Table 4  Selected main effects 
and interactions in the air 
pollution data

Proposed method Group Lasso

Main effects Interactions Main effects Interactions

PM10 PM10 × WSPM PM10 PM10 × WSPM
SO2 SO2 × WSPM SO2 SO2 × WSPM
NO2 NO2 × WSPM NO2 NO2 × WSPM
O3 O3 × WSPM O3 DEWP × WSPM
TEMP TEMP × WSPM TEMP DEWP × PM10
DEWP DEWP × WSPM WSPM CO × NO2

WSPM

Table 5  The MSEPs for the air pollution data

Main effect model Interaction model

Proposed method Group Lasso

Training sample 0.2954 0.1621 0.1933
Bootstrap sample 0.3437 0.2731 0.2964
(standard deviations) (0.0816) (0.0752) (0.0808)

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700
sample
predicted value

Fig. 1  The sample observations and predicted values
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To conclude, by using the proposed variable selection procedure with the inclusion 
of possible interaction effects, we can obtain a more interpretable model with a rea-
sonably good prediction performance.

Finally, we use all the 365 observations to conduct the variable selection. The 
final model contains 7 main effects: PM10, SO2 , NO2 , O 3 , TEMP, DEWP and 
WSPM, and 6 interaction effects: PM10 × WSPM, SO2 × WSPM, NO2 × WSPM, O 3 
× WSPM, TEMP × WSPM and DEWP × WSPM. Also for visualization, we display 
the estimated coefficient functions for the main effects in Fig. 2, and the estimated 
coefficient functions for the interaction effects in Fig. 3. From the figures, we have a 
few interesting findings as follows. First, the gaseous pollutants PM10, NO2 , O 3 and 

Table 6  Variable selection results based on the bootstrap samples

Proposed method Group Lasso

Main effects Fre ( %) Interactions Fre ( %) Main effects Fre ( %) Interactions Fre ( %)

PM10 100 PM10 × WSPM 92 PM10 100 PM10 × WSPM 90
SO2 62 SO2 × WSPM 51 SO2 61 SO2 × WSPM 37
NO2 98 NO2 × WSPM 79 NO2 83 NO2 × WSPM 65
O3 92 O3 × WSPM 86 O3 85 DEWP × WSPM 54
TEMP 48 TEMP× WSPM 37 TEMP 38 DEWP × PM10 37
DEWP 37 DEWP × WSPM 31 WSPM 75 CO × NO2 33
WSPM 95 PM10 × DEWP 36 DEWP 33 NO2 × O 3 35

PM10 × NO2 38
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Fig. 2  Estimated coefficient functions for the main effects
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the meteorological variable DEWP have a positive effect on the PM2.5 level. This 
conclusion is similar to the result in Wan et al. (2021). Second, TEMP has a signifi-
cantly negative effect on the PM2.5 level. This finding is consistent with the chemi-
cal transport model sensitivity study in Dawson et al. (2007). Third, WSPM displays 
a more complex relationship with PM2.5, which may depend on other factors such 
as the wind direction (Tai et al., 2010; Wan et al. 2021).

6  Conclusion

In this paper, we extended the adaptive group Lasso method to accommodate the 
multiple functional linear models including the interaction terms. The proposed 
method automatically obeys the strong heredity constraint. With appropriate selec-
tion of the regularization parameters, we established the convergence rates of the 
estimators for the coefficient functions and the consistency of the variable selection 
procedure. Simulation studies indicated that our new method is able to consistently 
select the true model and works efficiently in estimation with finite samples. A real 
data example was also analyzed to illustrate the usefulness of our method in practice.

There are some interesting future directions. In this paper, we only considered the 
strong heredity, that is, an interaction is allowed only if both of the associated main 
effects are present in the model. As mentioned in Sect. 1, however, another common 
heredity can be the weak heredity for which only one of the main effects is required 
to be present in the model for their interaction to be included. As a future work, 
we will extend our new procedure to obey the weak heredity constraint and investi-
gate its statistical properties and applications. Another interesting direction can be to 
extend our new procedure to the generalized functional linear models with strong or 
weak heredity constraint.
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Fig. 3  Estimated coefficient functions for the interaction effects
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7  Supplementary Material

Supplement to “Variable selection for functional linear models with strong 
heredity constraint”. To save space, the proofs of Theorems 1–2, Lemmas 1–2 and 
their proofs, and additional simulation results are provided in the online supplemen-
tary material.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10463- 021- 00798-z.
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This is a supplement to the paper “Variable selection for functional linear models

with strong heredity constraint”, in which it contains the proofs of Theorems 1–2,

and Lemmas 1–2 and their proofs.

S1 Appendix A: Proofs of theorems

We provide the proofs of Theorems 1–2 in Appendix A.

S1.1 Proof of Theorem 1

For part (i), a simple calculation yields

∥β̂j(t)− β∗
j (t)∥2 = ∥

Kj∑
k=1

β̂jkϕ̂jk(t)−
∞∑
k=1

β∗
jkϕjk(t)∥2

≤ 2∥
Kj∑
k=1

β̂jkϕ̂jk(t)−
Kj∑
k=1

β∗
jkϕjk(t)∥2 + 2∥

∞∑
k=Kj+1

β∗
jkϕjk(t)∥2

≤ 4∥
Kj∑
k=1

(β̂jk − β∗
jk)ϕ̂jk(t)∥2 + 4∥

Kj∑
k=1

β∗
jk(ϕ̂jk(t)− ϕjk(t))∥2 + 2

∞∑
k=Kj+1

β∗2
jk

≤ 4

Kj∑
k=1

(β̂jk − β∗
jk)

2 + 8Kj

Kj∑
k=1

β∗2
jk∥ϕ̂jk(t)− ϕjk(t)∥2 + 2

∞∑
k=Kj+1

β∗2
jk .

1



Note that

∞∑
k=Kj+1

β∗2
jk ≤

∞∑
k=Kj+1

k−2b = O(K
−(2b−1)
j ) = O(K−(2b−1)).

Moreover, invoking Lemma 1 and condition (A3), we have

Kj

Kj∑
k=1

β∗2
jk∥ϕ̂jk(t)− ϕjk(t)∥2 ≤ n−1Kj

Kj∑
k=1

j−2b+2 = Op(n
−1Kj) = Op(n

−1K).

Hence, invoking Lemma 2, we complete the proof of part (i).

For part (ii), the proof is similar and so is omitted. 2

S1.2 Proof of Theorem 2

We first consider P (β̂j(t) = 0 for j ∈ Ac
1) → 1. Suppose that there exists a k0 ∈ Ac

1

such that β̂k0(t) ̸= 0, then ∥β̂k0∥2 > 0. For such k0, let β̌ denote the vector whose

entries β̌j equal β̂j except for j = k0 and β̌k0 = 0. Then,

L(β̂, α̂)− L(β̌, α̂)

=
n∑

i=1

(Yi − Û⊤
i β̂ − Ŵ⊤

i α̂)2 −
n∑

i=1

(Yi − Û⊤
i β̌ − Ŵ⊤

i α̂)2 + nλ1k0∥β̂k0∥2

=
n∑

i=1

(β̌ − β̂)⊤ÛiÛ
⊤
i (β̌ − β̂)− 2

n∑
i=1

(Yi − Û⊤
i β̌ − Ŵ⊤

i α̂)Û⊤
i (β̂ − β̌) + nλ1k0∥β̂k0∥2

≥ −2
n∑

i=1

(β∗ − β̌)⊤ÛiÛ
⊤
i (β̂ − β̌)− 2

n∑
i=1

(Yi − Û⊤
i β

∗ − Ŵ⊤
i α̂)Û⊤

i (β̂ − β̌) + nλ1k0∥β̂k0∥2

≡ −2D1 − 2D2 + nλ1k0∥β̂k0∥2.

By Lemma 1, Lemma 2 and the Cauchy-Schwarz inequality, we have

D1 ≤
{ n∑

i=1

(β∗ − β̌)⊤ÛiÛ
⊤
i (β

∗ − β̌)
}1/2{ n∑

i=1

(β̂ − β̌)⊤ÛiÛ
⊤
i (β̂ − β̌)

}1/2

=
{ n∑

i=1

(β∗ − β̂ + β̂ − β̌)⊤(UiU
⊤
i +Op(n

−1/2K1−a/2))(β∗ − β̂ + β̂ − β̌)
}1/2

×
{ n∑

i=1

(β̂ − β̌)⊤(UiU
⊤
i +Op(n

−1/2K1−a/2))(β̂ − β̌)
}1/2

= Op(
√
nK)∥β̂k0∥2.

2



In addition, a simple calculation yields

D2 =
n∑

i=1

(εi + (Ui − Ûi)
⊤β∗ +W⊤

i α− Ŵ⊤
i α̂ +Ri)(Ui + op(1))

⊤(β̂ − β̌)

= Op(n
1/2 + n1/2K1−a/2 + n1/2K1−a/2 + n1/2K1/2)∥β̂k0∥2

= Op(
√
nK)∥β̂k0∥2.

Thus, we have

L(β̂, α̂)− L(β̌, α̂) = Op(
√
nK)∥β̂k0∥2 + nλ1k0∥β̂k0∥2

=
√
nK{Op(1) +

√
n/Kλ1k0}∥β̂k0∥2.

Invoking condition (A5), the second term dominates the first term. Consequently,

we have

L(β̂, α̂)− L(β̌, α̂) > 0

with probability tending to one, which contradicts to the fact that (β̂, α̂) is the

minimizer of L(β, α). This completes the proof of the first part of the theorem.

Next, we prove P (γ̂jm(s, t) = 0 for (j,m) ∈ Ac
2) → 1. For (j,m) where (j,m) ∈

Ac
2 and j, m ∈ A1: we can prove P (γ̂jm(s, t) = 0) → 1 in a similar way. For (j,m)

where (j,m) ∈ Ac
2 and either j or m is in Ac

1: without loss of generality, assume that

∥β∗
j (t)∥ = 0. Notice that ∥β̂j(t)∥ = 0 implies ∥α̂jm∥2 = 0, because if ∥α̂jm∥2 ̸= 0,

then the value of the loss function does not change but the value of the penalty

function will increase. Since we already have P (β̂j(t) = 0) → 1, we can conclude

P (γ̂jm(s, t) = 0) → 1 as well. 2

S2 Appendix B: Some lemmas and their proofs

In order to prove Theorems 1–2, we provide Lemmas 1–2 in Appendix B.

Lemma 1. Assume that conditions (A1)–(A4) hold. Then we have

(i) |ξ̂ijk − ξijk| = Op(n
−1/2k1−a/2),

(ii)
∣∣∣1
n

n∑
i=1

ξ̂ijkξ̂ijl − E(ξijkξijl)
∣∣∣ = Op

(
n−1/2min{k1−a/2, l1−a/2}

)
,

(iii) Ri = Op(K
−(2b+a−1)/2),

3



(iv) ∥ϕ̂jk(t)− ϕjk(t)∥ = O(n−1/2k),

where Ri =
∑p

j=1

∑∞
k=Kj+1 β

∗
jkξijk +

∑
j<m

∑∞
k=Kj+1

∑∞
l=Km+1 γ

∗
jm,klξijkξiml.

Proof. For part (i), by conditions (A1)–(A3) and the similar argument as in the

proof of Proposition 1 in Wong et al. (2019), we can obtain that |ξ̂ijk − ξijk| =
Op(n

−1/2k1−a/2).

For part (ii), it can be observed that

1

n

n∑
i=1

ξ̂ijkξ̂ijl − E(ξijkξijl)

=
( 1
n

n∑
i=1

ξ̂ijkξ̂ijl −
1

n

n∑
i=1

ξijkξijl

)
+
( 1
n

n∑
i=1

ξijkξijl − E(ξijkξijl)
)
.

Invoking part (i), we have

1

n

n∑
i=1

ξ̂ijkξ̂ijl −
1

n

n∑
i=1

ξijkξijl

=
1

n

n∑
i=1

[
(ξ̂ijk − ξijk)ξ̂ijl + ξijk(ξ̂ijl − ξijl)

]
=

1

n

n∑
i=1

[
(ξ̂ijk − ξijk)(ξ̂ijl − ξijl) + ξijk(ξ̂ijl − ξijl) + (ξ̂ijk − ξijk)ξijl

]
= Op

(
min{n−1/2k1−a/2, n−1/2l1−a/2}

)
.

It is obvious that n−1
∑n

i=1 ξijkξijl − E(ξijkξijl) = Op(n
−1/2). Hence, part (ii) holds.

For part (iii), we note that

E(
∞∑

k=Kj+1

β∗
jkξijk) = 0, E

( ∞∑
k=Kj+1

∞∑
l=Km+1

γ∗
jm,klξijkξiml

)
= 0, j < m.

Then by conditions (A1)–(A3), a simple calculation yields

E(
∞∑

k=Kj+1

β∗
jkξijk)

2 =
∞∑

k=Kj+1

β∗2
jkτjk ≤ C

∞∑
k=Kj+1

k−2b−a = O(K
−(2b+a−1)
j ),

E(
∞∑

k=Kj+1

∞∑
l=Km+1

γ∗
jm,klξijkξiml)

2 =
∞∑

k=Kj+1

∞∑
l=Km+1

α∗2
jm,klβ

∗2
jkβ

∗2
mlτjkτml

≤ C
∞∑

k=Kj+1

k−2b−a

∞∑
l=Km+1

l−2b−a = O(K
−(2b+a−1)
j )O(K−(2b+a−1)

m ).
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Further by condition (A4), part (iii) holds.

For part (iv), by formula (5.22) in Hall and Horowitz (2007) we have ∥ϕ̂jk(t) −
ϕjk(t)∥2 = O(n−1k2). This verifies part (iv) and so the proof of Lemma 1 is complete.

2

Lemma 2. Assume that conditions (A1)–(A4) hold and let θ∗ = (β∗⊤, α∗⊤)⊤. Then,

∥θ̂ − θ∗∥2 = Op(
√
K/n+ an).

Proof. Let ρ =
√
K/n + an, θ = θ∗ + ρδ and δ = (u⊤, w⊤)⊤, where u =

(u⊤
1 , · · · , u⊤

p )
⊤, uj = (uj1, · · · , ujKj

)⊤, w = (w⊤
12, · · · , w⊤

(p−1)p)
⊤ and

wjm = (wjm,11, · · · , wjm,1Km , · · · , wjm,KjKm)
⊤.

Let ς̂ijm = (ξ̂ij1ξ̂im1, · · · , ξ̂ij1ξ̂imKm , · · · , ξ̂ijKj
ξ̂imKm)

⊤ and

Ĝ
βjum

ijm = ς̂ijm ⊙ (βj ⊗ 1Km)⊙ (1Kj
⊗ um),

where A⊙B and C⊗D denote the Hadamard product of A and B and the Kronecker

product of C and D, respectively. Let also

Ĝβu
i = ((Ĝβ1u2

i12 )⊤, · · · , (Ĝβp−1up

i(p−1)p)
⊤)⊤.

Thus, we have Ŵi = Ĝββ
i .

In what follows, we show that, for any given ϵ > 0, there exists a large constant

C0 such that

P

{
inf

∥δ∥2=C0

L(θ) > L(θ∗)

}
≥ 1− ϵ. (B.1)
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Denote Q(θ) =
∑n

i=1(Yi − Û⊤
i β − (Ĝββ

i )⊤α)2, then a simple calculation yields

Q(θ)−Q(θ∗)

=
n∑

i=1

(Yi − Û⊤
i β − (Ĝββ

i )⊤α)2 −
n∑

i=1

(Yi − Û⊤
i β

∗ − (Ĝβ∗β∗

i )⊤α∗)2

=
n∑

i=1

(Yi − Û⊤
i β − (Ĝβ∗β∗

i )⊤α)2 −
n∑

i=1

(Yi − Û⊤
i β

∗ − (Ĝβ∗β∗

i )⊤α∗)2

+
n∑

i=1

(Yi − Û⊤
i β − (Ĝββ

i )⊤α)2 −
n∑

i=1

(Yi − Û⊤
i β − (Ĝβ∗β∗

i )⊤α)2

≥
n∑

i=1

(ρÛ⊤
i u+ ρ(Ĝβ∗β∗

i )⊤w)2 − 2ρ
n∑

i=1

(Yi − Û⊤
i β

∗ − (Ĝβ∗β∗

i )⊤α∗)(Û⊤
i u+ (Ĝβ∗β∗

i )⊤w)

+
n∑

i=1

[(Ĝββ
i − Ĝβ∗β∗

i )⊤α]2 − 2
n∑

i=1

(Yi − Û⊤
i β − (Ĝβ∗β∗

i )⊤α)(Ĝββ
i − Ĝβ∗β∗

i )⊤α.

Then let ∆n(θ) = L(θ)− L(θ∗) = L(θ∗ + ρδ)− L(θ∗), we have

∆n(θ) = Q(θ)−Q(θ∗) + n

p∑
j=1

λ1j(∥βj∥2 − ∥β∗
j ∥2) + n

∑
j<m

λ2,jm(∥αjm∥2 − ∥α∗
jm∥2)

≥
n∑

i=1

(ρÛ⊤
i u+ ρ(Ĝβ∗β∗

i )⊤w)2 − 2ρ
n∑

i=1

(Yi − Û⊤
i β

∗ − (Ĝβ∗β∗

i )⊤α∗)(Û⊤
i u+ (Ĝβ∗β∗

i )⊤w)

+
n∑

i=1

[(Ĝββ
i − Ĝβ∗β∗

i )⊤α]2 − 2
n∑

i=1

(Yi − Û⊤
i β − (Ĝβ∗β∗

i )⊤α)(Ĝββ
i − Ĝβ∗β∗

i )⊤α

+n
∑
j∈A1

λ1j(∥βj∥2 − ∥β∗
j ∥2) + n

∑
(j,m)∈A2

λ2,jm(∥αjm∥2 − ∥α∗
jm∥2)

≥
n∑

i=1

(ρÛ⊤
i u+ ρ(Ĝβ∗β∗

i )⊤w)2 − 2ρ
n∑

i=1

(Yi − Û⊤
i β

∗ − (Ĝβ∗β∗

i )⊤α∗)(Û⊤
i u+ (Ĝβ∗β∗

i )⊤w)

+
n∑

i=1

[(Ĝββ
i − Ĝβ∗β∗

i )⊤α]2 − 2
n∑

i=1

(Yi − Û⊤
i β − (Ĝβ∗β∗

i )⊤α)(Ĝββ
i − Ĝβ∗β∗

i )⊤α

−nρ2
{ ∑

j∈A1

∥uj∥2 +
∑

(j,m)∈A2

∥wjm∥2
}

≥
n∑

i=1

(ρÛ⊤
i u+ ρ(Ĝβ∗β∗

i )⊤w)2 − 2ρδ⊤
n∑

i=1

Ω̂i(Yi − Ω̂⊤
i θ

∗) +
n∑

i=1

[(Ĝββ
i − Ĝβ∗β∗

i )⊤α]2

−2
n∑

i=1

(Yi − Û⊤
i β − (Ĝβ∗β∗

i )⊤α)(Ĝββ
i − Ĝβ∗β∗

i )⊤α− nρ2∥δ∥2

≡ B1 −B2 +B3 −B4 −B5,
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where Ω̂i = (Û⊤
i , (Ĝ

β∗β∗

i )⊤)⊤.

For B1, by Lemma 1 we have

B1 = ρ2
n∑

i=1

δ⊤Ω̂iΩ̂
⊤
i δ

= ρ2
n∑

i=1

δ⊤
{
ΩiΩ

⊤
i + (Ω̂i − Ωi)(Ω̂i − Ωi)

⊤ + 2Ωi(Ω̂i − Ωi)
⊤
}
δ

= ρ2δ⊤
{ n∑

i=1

ΩiΩ
⊤
i

}
δ + ρ2Op(n

1/2K1−a/2)∥δ∥22

= Op(nρ
2)∥δ∥22 +Op(ρ

2n1/2K1−a/2)∥δ∥22. (B.2)

For B2, note that

n∑
i=1

δ⊤Ω̂i(Yi − Ω̂⊤
i θ

∗)

=
n∑

i=1

δ⊤(Ω̂i − Ωi)(Yi − Ω̂⊤
i θ

∗) +
n∑

i=1

δ⊤Ωi(Yi − Ω̂⊤
i θ

∗)

=
n∑

i=1

δ⊤(Ω̂i − Ωi)(εi + (Ω̂i − Ωi)
⊤θ∗ +Ri) +

n∑
i=1

δ⊤Ωi(εi + (Ω̂i − Ωi)
⊤θ∗ +Ri)

=
n∑

i=1

δ⊤(Ω̂i − Ωi)εi +
n∑

i=1

δ⊤(Ω̂i − Ωi)(Ω̂i − Ωi)
⊤θ∗ +

n∑
i=1

δ⊤(Ω̂i − Ωi)Ri

+
n∑

i=1

δ⊤Ωiεi +
n∑

i=1

δ⊤Ωi(Ω̂i − Ωi)
⊤θ∗ +

n∑
i=1

δ⊤ΩiRi

≡ B21 +B22 +B23 +B24 +B25 +B26.

According to Lemma 1, it is easy to derive that B21 = Op(K
1−a/2)∥δ∥2, B22 =

Op(K
2−a)∥δ∥2, B23 = Op(n

1/2K−(2b+3a/2−2))∥δ∥2, B24 = Op(n
1/2)∥δ∥2, B25 = Op(n

1/2K1−a/2)∥δ∥2,
and B26 = Op(nK

−(2b+a−1)/2)∥δ∥2. Taken together, we have

B2 = ρOp(n
1/2 + n1/2K1−a/2 + nK−(2b+a−1)/2)∥δ∥2. (B.3)
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For B3, we have

B3 = ρ2α⊤
n∑

i=1

(
Ĝβ∗u

i + Ĝuβ∗

i + ρĜuu
i

)(
Ĝβ∗u

i + Ĝuβ∗

i + ρĜuu
i

)⊤
α

= ρ2
n∑

i=1

α⊤Ĝβ∗u
i (Ĝβ∗u

i )⊤α + 2ρ2
n∑

i=1

α⊤Ĝβ∗u
i (Ĝuβ∗

i )⊤α + 2ρ3
n∑

i=1

α⊤Ĝβ∗u
i (Ĝuu

i )⊤α

ρ2
n∑

i=1

α⊤Ĝuβ∗

i (Ĝuβ∗

i )⊤α + 2ρ3
n∑

i=1

α⊤Ĝuβ∗

i (Ĝuu
i )⊤α + ρ4

n∑
i=1

α⊤Ĝuu
i (Ĝuu

i )⊤α

≡ B31 +B32 +B33 +B34 +B35 +B36.

By conditions (A2)–(A4) and Lemma 1, a simple calculation yields

B31 = ρ2
n∑

i=1

α⊤(Ĝβ∗u
i −Gβ∗u

i +Gβ∗u
i )(Ĝβ∗u

i −Gβ∗u
i +Gβ∗u

i )⊤α

= ρ2
n∑

i=1

α⊤(Ĝβ∗u
i −Gβ∗u

i )(Ĝβ∗u
i −Gβ∗u

i )⊤α

+2ρ2
n∑

i=1

α⊤(Ĝβ∗u
i −Gβ∗u

i )(Gβ∗u
i )⊤α + ρ2

n∑
i=1

α⊤Gβ∗u
i (Gβ∗u

i )⊤α

= Op(ρ
2K2−a)∥u∥22 +Op(n

1/2ρ2K1−a/2)∥u∥22 +Op(nρ
2)∥u∥2 = Op(nρ

2)∥u∥22.

Similarly, we can obtain that B32 = Op(nρ
2)∥u∥22, B33 = Op(nρ

3)∥u∥22, B34 =

Op(nρ
2)∥u∥22, B35 = Op(nρ

3)∥u∥22, and B36 = Op(nρ
4)∥u∥22. Taken together, we

have

B3 = Op(nρ
2)∥u∥22. (B.4)

For B4, by a similar argument we have

B4 = ρ
n∑

i=1

(
εi − (Ω̂i − Ωi)

⊤θ∗ − ρ(Ω̂i − Ωi)
⊤δ − ρΩ⊤

i δ
)(

Ĝβ∗u
i + Ĝuβ∗

i + ρĜuu
i

)⊤
α

= Op(n
1/2ρ)∥u∥2 −Op(n

1/2ρK1−a/2)∥u∥2 −Op(nρ
2)∥δ∥2∥u∥2. (B.5)

Combining (B.2)—(B.5), it is easy to see that B1 dominates the rest terms B2,

B3, B4 and B5 uniformly in ∥δ∥2 = C0. Therefore, by choosing a sufficiently large

C0, (B.1) holds and there exists a local minimizer θ̂ such that ∥θ̂ − θ∗∥2 = Op(ρ).

This completes the proof of Lemma 2. 2
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S3 Appendix C: Simulation studies

In this example, we evaluate the performance of the new procedure when the func-

tional predictors are dependent. We consider

Xi3(t) =

∫
η1(s, t)Xi4(s)ds+ σ0ei1(t)

and

Xi4(t) =

∫
η2(s, t)Xi1(s)ds+ σ0ei2(t),

where σ0 = 0.5, η1(s, t) = 0.6st, η2(s, t) = 0.4st, and ei1(t) and ei2(t) are inde-

pendent Brownian motions on [0, 1]. All other settings remain the same as those

for the independent case. We then repeat the simulations and report the variable

selection results in Table 7. Comparing with the results in Table 1, we can see that,

even though some of the functional predictors are dependent, the proposed variable

selection procedure is still able to identify the true model structure with a higher

probability.
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Table 7: Variable selection results for dependent case.

Proposed method Group SCAD Group Lasso

n CM CI CZ CM CI CZ CM CI CZ

100 2.6920 0.8820 5.7140 2.0120 0.7760 4.1020 1.8960 0.7280 3.8420

EBIC 200 2.7480 0.9140 5.7940 2.0340 0.7920 5.0960 1.9440 0.7780 4.9620

300 2.8220 0.9360 5.8280 2.0880 0.8180 5.2640 2.0320 0.8040 5.2280

100 2.6840 0.8940 5.7420 2.0180 0.7840 4.0980 1.9040 0.7260 3.9060

C-EBIC 200 2.7620 0.9120 5.7960 2.0320 0.8020 5.1040 1.9680 0.7720 5.0140

300 2.8180 0.9380 5.8320 2.0720 0.8220 5.2820 2.0180 0.8060 5.2460

n UF CF OF UF CF OF UF CF OF

100 0.0920 0.8020 0.1060 0.3600 0.2720 0.3680 0.3820 0.0920 0.5260

EBIC 200 0.0620 0.8760 0.0620 0.3340 0.3020 0.3640 0.4180 0.0980 0.4840

300 0.0320 0.9120 0.0560 0.2940 0.3280 0.3780 0.4520 0.1040 0.4440

100 0.0840 0.8040 0.1120 0.3840 0.2680 0.3480 0.3780 0.0740 0.5480

C-EBIC 200 0.0520 0.8720 0.0760 0.3300 0.3040 0.3660 0.4320 0.0940 0.4740

300 0.0280 0.9140 0.0580 0.3660 0.3260 0.3080 0.5160 0.0980 0.3860
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