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Abstract In this paper, two new functions are introduced to depict the Jamison weighted sum of

random variables instead using the common methods, their properties and relationships are system-

atically discussed. We also analysed the implication of the conditions in previous papers. Then we

apply these consequences to B-valued random variables, and greatly improve the original results of the

strong convergence of the general Jamison weighted sum. Furthermore, our discussions are useful to

the corresponding questions of real-valued random variables.
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1 Introduction

There has been much research work (for example, [1, 2] and [3]) about the almost sure conver-
gence of the general Jamison weighted sum of real-valued independent random variables and
negatively associated random variables, while the articles discussing the same problem in Ba-
nach space are very few. Recently, Liu Jingjun and Gan Shixin have done some significant work
in this field (see [4]), but as compared with real-valued random variables, there still remains
much to be desired. The purpose of this article is to make some progress in this situation. And
the concepts in this article are the same as in [4].

In this paper, we let {Ω,F ,P} be a complete probability space and B be a real separable
Banach space with norm ‖ ‖. The Banach space B is called type p (1 ≤ p ≤ 2) if there exists
a c = cp > 0 such that

E

∥∥∥∥ n∑
i=1

Xi

∥∥∥∥p

≤ c

n∑
i=1

E ‖ Xi ‖p, n ≥ 1,

where the independent B-valued random variables X1, ...,Xn have mean zero and E ‖ Xi ‖p<

∞, i = 1, ..., n.
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Also in this paper, c denotes a finite positive constant which may be different at different
places; {Xn} ≺ X means supn P (‖ Xn ‖> x) ≤ cP (X > x), where x > 0 and X is some
real-valued random variable.

Let {ak, k ∈ N} and {bk, k ∈ N} be sequences of real numbers, in which ak �= 0, 0 < bk ↑ ∞.
{Xn, n ∈ N} is a sequence of B -valued random variables. We will discuss the conditions
satisfying

lim
n→∞

1
bn

n∑
i=1

aiXi = 0 a.s.

As compared with [4], there are several differences in our article:

1 We remove the requirement that {ak, k ∈ N} is a sequence of positive numbers.

2 We remove the requirement that {bk/|ak|, k ∈ N} is strictly increasing.

3 We haven’t any additional requirement about the convergence order of
∑∞

k=n 1/αp
k,

where αk = bk/|ak|, p > 0.

First we introduce several notations:

αk =
bk

|ak| for k ∈ N , and N(x) = #{k : αk ≤ x} for x > 0,

where #A denotes the element number of set A, and we suppose N(x) < ∞, ∀x > 0.

Denote x0 = inf{x : N(x) > 0}. Clearly, from N(1) < ∞, we know that there are only finite
elements in {k : αk ≤ 1}. Hence x0 = inf{αk} > 0.

Now we define two other functions:

L(x) =
∫ x

x0

N(t)
t2

dt =
∫ x

0

N(t)
t2

dt, and Rp(x) =
∫ ∞

x

N(t)
tp+1

dt,

for x ≥ x0 and p > 0. The function N(x) is familiar, we can see it in many references (for
example see [4]), but L(x) and Rp(x) are unfamiliar, here we need to introduce their background.

The following condition was used many times in [4]:

max
1≤k≤n

αp
k

∞∑
k=n

1
αp

k

= O(n), (1.1)

where p > 0 and αk = bk/|ak|. Clearly, the necessary condition of (1.1) is
∞∑

k=1

1
αp

k

< ∞. (1.2)

First, we have the following

Lemma 1.1 Condition (1.2) implies that

Rp(x) < ∞, ∀x ≥ x0, (1.3)

where p is the same as that in (1.2).

Proof First we have

∞ >

∞∑
k=1

1
αp

k

≥
∞∑

n=2

∑
k:n−1<αk≤n

1
αp

k

≥
∞∑

n=2

N(n) − N(n − 1)
np
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≥ 2−p
∞∑

n=2

N(n) − N(n − 1)
(n − 1)p

= 2−p
∞∑

n=2

N(n)
(

1
(n − 1)p

− 1
np

)
− 2−pN(1)

≥ p

2p

∞∑
n=2

N(n)
∫ n

n−1

1
yp+1

dy − 2−pN(1) ≥ p

2p

∞∑
n=2

∫ n

n−1

N(y)
yp+1

dy − 2−pN(1)

=
p

2p

∫ ∞

1

N(y)
yp+1

dy − 2−pN(1) =
pRp(1)

2p
− 2−pN(1).

Because N(1) < ∞, we have Rp(1) < ∞. Noting that Rp(x) is a non-increasing function,
Rp(x) < ∞, for all x ≥ 1. Trivially, for 0 < x0 < 1,∫ 1

x0

N(y)
yp+1

dy ≤ N(1)
xp+1

0

< ∞,

which implies Rp(x) < ∞, for all x ∈ (0, 1).

This lemma explains the background of Rp(x) very well. Moreover, we have

Lemma 1.2 Suppose X is a non-negative real-valued random variable such that, for some
p > 0,

EXpRp(X) < ∞. (1.4)

Then we have

EXrRr(X) < ∞, ∀r > p, (1.5)

and

EN(X) < ∞. (1.6)

Proof For x > x0, we have

xrRr(x) = xr

∫ ∞

x

N(y)
yr+1

dy ≤ xp

∫ ∞

x

yr−pN(y)
yr+1

dy = xp

∫ ∞

x

N(y)
yp+1

dy = xpRp(x).

Hence (1.4) implies (1.5) for any r > p. Also

Rp(x) =
∫ ∞

x

N(y)
yp+1

dy ≥ N(x)
∫ ∞

x

dy

yp+1
=

1
p

N(x)
xp

,

so (1.4) implies (1.6).

For L(x), obviously L(x) < ∞,∀x ≥ x0, and if X is a non-negative real-valued random
variable, we have the following lemma:

Lemma 1.3 Suppose X is a non-negative real-valued random variable. Then the next two
conditions are equivalent to each other:

EXL(X) < ∞, (1.7)∫ ∞

1

EN

(
X

t

)
dt < ∞, (1.8)

and each of them implies that EN(X/t) < ∞, a.e. t.

Proof Obviously, ∫ ∞

1

EN

(
X

t

)
dt =

∫ ∞

1

( ∫ ∞

0

N

(
x

t

)
dP (X ≤ x)

)
dt
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=
∫ ∞

0

( ∫ ∞

1

N

(
x

t

)
dt

)
dP (X ≤ x)

=
∫ ∞

0

x

( ∫ x

0

N(y)
y2

dy

)
dP (X ≤ x)(let y = x/t)

= EXL(X).

So we see that (1.7) and (1.8) are equivalent to each other, and each of them implies EN(X/t) <

∞ a.e. t.

2 More Remarks on Condition (1.1)

In order to further our discussion and make comparison with [4], we will make more remarks on
Condition (1.1). For this reason, we denote dn = max1≤k≤n αk. Clearly dn is non-decreasing,
and (1.1) is equivalent to

dp
n

∞∑
k=n

1
αp

k

= O(n), (2.1)

where p > 0. It is easy to see that (2.1) implies
∞∑

k=1

1
αp

k

< ∞, (2.2)

and

dp
n

∞∑
k=n

1
dp

k

= O(n). (2.3)

(2.2) indicates that ∀k ≥ 1, {αk} is not a finite accumulative point, and αk → ∞ as k → ∞.
Hence N(x) is a right continuous ascending step function, and we can construct a continuous
function Ñ(x) that satisfies

Ñ(x) =

{
N(x) if x is a jumping point of N(x) ,

Linear if x lies between two jumping points of N(x).

And let L̃(x) =
∫ x

x0

Ñ(t)
t2 dt, and R̃p(x) =

∫ ∞
x

Ñ(t)
tp+1 dt, for x ≥ x0 and p > 0. Clearly, Ñ(x)

and L̃(x) are strictly increasing, R̃p(x) is strictly decreasing, and N(x) ≤ Ñ(x), L(x) ≤
L̃(x), Rp(x) ≤ R̃p(x).

Now we prove several lemmas.

Lemma 2.1 Suppose there exists some p > 0 such that Rp(x0) < ∞. Then gp(x) = xpR̃p(x),
x ≥ x0 must be a strictly increasing function of x.

Proof By noting that Ñ(x) is continuous, we have

g
′
p(x) = pxp−1R̃p(x) + xp dR̃p(x)

dx
= pxp−1

∫ ∞

x

Ñ(t)
tp+1

dt − 1
x

Ñ(x)

=
1
x

(
pxp

∫ ∞

x

Ñ(t)
tp+1

dt − Ñ(x)
)

>
1
x

(
pxpÑ(x)

∫ ∞

x

1
tp+1

dt − Ñ(x)
)

=
1
x

(Ñ(x) − Ñ(x)) = 0.

So gp(x) is strictly increasing when x ≥ x0.
Next we estimate the order of N(dn).
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Lemma 2.2 If (1.1) holds, then

n ≤ N(dn) ≤ cn, (2.4)

where c > 1.

Proof Because dn = max1≤k≤n αk, we have {1, 2, ..., n} ⊂ {k : αk ≤ dn}. So N(dn) = #{k :
αk ≤ dn} ≥ n. On the other hand, for s > 0, denoting

An(s) = {αk : αk ≤ s, k ≥ n}, Bn(s) = {αk : αk ≤ s, 1 ≤ k < n},
then by (2.1), there must exist c0 > 0 such that

c0n ≥ dp
n

∞∑
k=n

1
αp

k

≥ dp
n

∑
k∈An(dn)

1
αp

k

≥ #An(dn).

Hence

N(dn) = #An(dn) + #Bn(dn) ≤ c0n + n = (c0 + 1)n=̂cn,

where c > 1.

Using Lemmas 2.1 and 2.2, we have:

Lemma 2.3 Suppose X is a non-negative real-valued random variable. If (1.1) holds, then
(1.6) is equivalent to

EXpRp(X) ≤ EXpR̃p(X) < ∞. (2.5)

Proof By Lemma 1.2, we need to prove only that under Condition (1.1), the condition (1.6)
implies (2.5).

From (2.1), we know that (2.3) and (2.4) hold. We notice that dj , j ≥ 1 must be the
jumping points of N(x), and Ñ(x) is a strictly increasing function. ∀n ∈ N , we have

R̃p(dn) =
∫ ∞

dn

Ñ(y)
yp+1

dy =
∞∑

k=n

∫ dn+1

dn

Ñ(y)
yp+1

dy ≤ 1
p

∞∑
k=n

Ñ(dk+1)
[

1
dp

k

− 1
dp

k+1

]

=
1
p

∞∑
k=n

N(dk+1)
[

1
dp

k

− 1
dp

k+1

]
(by definition of Ñ(t))

≤ c
∞∑

k=n

k

[
1
dp

k

− 1
dp

k+1

]
=

cn

dp
n

+ c
∞∑

k=n+1

1
dp

n
. (2.6)

Noting that gp(x) = xpR̃p(x) is a strictly increasing function, we have

EXpRp(X) ≤ EXpR̃p(X) ≤ dp
1R̃(d1) +

∞∑
n=1

EXpR̃p(X)I(dn ≤ X < dn+1)

≤ dp
1R̃(d1) +

∞∑
n=1

dp
n+1R̃p(dn+1)P (dn ≤ X < dn+1)

≤ dp
1R̃(d1) + c

∞∑
n=1

(n + 1)P (dn ≤ X < dn+1)

+ c

∞∑
n=1

P (dn ≤ X < dn+1)d
p
n+1

∞∑
k=n+1

1
dp

k

.
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So by the condition (2.3), we have

EXpRp(X) ≤ EXpR̃p(X) ≤ dp
1R̃(d1) + c

∞∑
n=1

nP (dn ≤ X < dn+1)

= dp
1R̃(d1) + c

∞∑
m=1

P (X ≥ dm) ≤ dp
1R̃(d1) + c

∞∑
m=1

P (N(X) ≥ N(dm))

≤ dp
1R̃(d1) + c

∞∑
m=1

P (N(X) ≥ m) = dp
1R̃(d1) + cEN(X) < ∞.

3 Preliminary Work

In this section, we prove several valuable lemmas. As compared with [2], our method is much
concise.

Lemma 3.1 If X is a non-negative real-valued random variable such that EN(X) < ∞, then∑∞
k=1 P (X ≥ αk) < ∞.

Proof We have
∞∑

k=1

P (X ≥ αk) =
∞∑

k=1

∫ ∞

αk

dP (X ≤ x) =
∞∑

k=1

∫ ∞

0

I(x ≥ αk)dP (X ≤ x)

=
∫ ∞

0

∞∑
k=1

I(αk ≤ x)dP (X ≤ x) =
∫ ∞

0

N(x)dP (X ≤ x)

= EN(X) < ∞.

Lemma 3.2 If X is a non-negative real-valued random variable such that E(XpRp(X)) < ∞,
for some 0 < p ≤ 2, then

∞∑
k=1

1
αp

k

EXpI(X ≤ αk) < ∞.

Proof First, from Lemma 1.2, we know

EN(X) ≤ pEXpRp(X) < ∞.

Because {αk} is not necessarily monotone, we re-align α1, α2, ..., αn as αn,1 ≤ αn,2 ≤ · · · ≤
αn,n, if αi = αj when i < j, then assume αi precedes αj . It is clear that N(αn,k) ≥ k, and
using the inequality

EXpI(X ≤ t) ≤ p

∫ t

0

xp−1P (X > x)dx,

we have, for all n ∈ N ,
n∑

k=1

1
αp

k

EXpI(X ≤ αk) ≤ p
n∑

k=1

1
αp

k

∫ αk

0

xp−1P (X > x)dx

= p

n∑
k=1

∫ 1

0

up−1P

(
X

u
> αk

)
du = p

n∑
k=1

∫ 1

0

up−1P

(
X

u
> αn,k

)
du
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≤ p

n∑
k=1

∫ 1

0

up−1P

(
N

(
X

u

)
≥ N(αn,k)

)
du (since N(x) is non-decreasing)

≤ p
n∑

k=1

∫ 1

0

up−1P

(
N

(
X

u

)
≥ k

)
du ≤ p

∫ 1

0

up−1

( ∞∑
k=1

P

(
N

(
X

u

)
≥ k

))
du

= p

∫ 1

0

up−1EN

(
X

u

)
du = pE

∫ 1

0

up−1N

(
X

u

)
du

= p

∫ ∞

0

( ∫ 1

0

up−1N

(
x

u

)
du

)
dP (X ≤ x)

= p

∫ ∞

0

xp

( ∫ ∞

x

N(t)
tp+1

dt

)
dP (X ≤ x) = pE(XpRp(X)) < ∞.

The right hands of the above inequality is independent of n, so
∞∑

k=1

1
αp

k

EXpI(X ≤ αk) = lim
n→∞

n∑
k=1

1
αp

k

EXpI(X ≤ αk) < ∞.

Lemma 3.3 If X is a non-negative real-valued random variable such that EXL(X) < ∞,

then ∞∑
k=1

1
αk

EXI(X ≥ αk) ≤ EXL(X) < ∞.

Proof Omitted.

Remark 3.1 The method of the proof is similiar to that of Lemma 3.2.

Lemma 3.4 Suppose that X is a B-valued random variable, and

P (‖X‖ ≥ t) ≤ cP (X0 ≥ t), ∀t > 0,

where X0 is a non-negative real-valued random variable. Then ∀q > 0, t > 0, we have

E‖X‖qI(‖X‖ ≤ t) ≤ ctqP (X0 > t) + cEXq
0I(X0 ≤ t),

E‖X‖qI(‖X‖ > t) ≤ cEXq
0I(X0 > t).

Proof Omitted.

4 Main Results

In this section, we suppose that X is a non-negative real-valued random variable, and B is a
Banach space.

On the basis of the results in the above sections, we can improve Theorems 2.1–2.3 in [4]
substantially.

Theorem 4.1 Suppose that {ak, k ∈ N} and {bk, k ∈ N} are sequences of real numbers such
that ak �= 0 and 0 < bk ↑ ∞. Let {Xn, n ∈ N} be a sequence of B-valued random variables with
{Xn} ≺ X. If X satisfies

EXR1(X) < ∞, (4.1)

then

lim
n→∞

1
bn

n∑
k=1

akXk = 0 a.s. (4.2)
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Proof First, from Lemma 1.2, we know that (4.1) implies

EN(X) < ∞. (4.3)

Define

Yn = XnI(‖ Xn ‖≤ αn), Zn = XnI(‖ Xn ‖> αn),

where αn = bn/|an|, n ∈ N . Noting that {Xn} ≺ X, so by (4.3) and Lemma 3.1, we have
∞∑

n=1

P (‖ Zn ‖�= 0) =
∞∑

n=1

P (Xn = Zn) ≤
∞∑

n=1

P (‖ Xn ‖≥ αn) ≤
∞∑

n=1

P (X ≥ αn) < ∞.

By the Borel–Cantelli lemma we get

P (‖ Zn ‖�= 0, i.o.) = 0.

Then ∥∥∥∥ ∞∑
n=1

an

bn
Zn

∥∥∥∥ ≤
∞∑

n=1

‖ Zn ‖
αn

< ∞ a.s.

Hence, by the Kronecher lemma we have
1
bn

n∑
k=1

akZk → 0 a.s. n → ∞. (4.4)

On the other hand, from Lemma 3.4 and {Xn} ≺ X, we know

E ‖ Yn ‖= E ‖ Xn ‖ I(‖ Xn ‖≤ αn) ≤ αnP (X > αn) + EXI(X ≤ αn).

Hence, by Lemmas 3.1 and 3.2 we have
∞∑

n=1

1
αn

E ‖ Yn ‖≤
∞∑

n=1

P (X > αn) +
∞∑

n=1

1
αn

EXI(X ≤ αn) < ∞.

So
∞∑

n=1

1
αn

‖ Yn ‖< ∞ a.s.

By the Kronecker lemma again
1
bn

n∑
k=1

|ak| ‖ Yk ‖→ 0 a.s.,

and using the Cr-inequality, we can get∥∥∥∥ 1
bn

n∑
k=1

akYk

∥∥∥∥ ≤ 1
bn

n∑
k=1

|ak| ‖ Yk ‖ .

So
1
bn

n∑
k=1

akYk → 0 a.s., n → ∞. (4.5)

Then from (4.4) and (4.5), we obtain

1
bn

n∑
k=1

akXk → 0 a.s., n → ∞.

Remark 4.1 Comparing with Theorem 2.1 in [4], we require neither ak > 0 nor αk = bk/|ak|
to be strictly increasing, and Conditions (1) and (2) in Theorem 2.1 [4] implies (4.1), so our
conditions are much weaker than those in Theorem 2.1 [4]. In addition, (4.1) is very concise.
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Theorem 4.2 Suppose that {ak, k ∈ N}, {bk, k ∈ N} are the same as in Theorem 4.1. Let
B be a p-smooth Banach space for some 1 ≤ p ≤ 2, and {Xn, n ∈ N} be a sequence of B-valued
integrable random variables with {Xn} ≺ X. If X satisfies

E(XpRp(X)) < ∞, (4.6)

EXL(X) < ∞, (4.7)

then

lim
n→∞

1
bn

n∑
k=1

ak(Xk − E(Xk|Fk−1)) = 0 a.s.,

where F0 = {φ,Ω}, Fk = σ{X1, ...,Xk}, k ≥ 1.

Proof First we define {Yn}, {Zn} as in Theorem 4.1. To prove the result, we need to prove
only that

lim
n→∞

1
bn

n∑
k=1

ak(Yk − E(Yk|Fk−1)) = 0 a.s., (4.8)

lim
n→∞

1
bn

n∑
k=1

ak(Zk − E(Zk|Fk−1)) = 0 a.s. (4.9)

Noting that {∑m
i=1

ai

bi
(Yi −E(Yi|Fi−1)),Fm,m ≥ 1} is a martingale, we need to prove only∑∞

i=1
ai

bi
Ui converges a.s. in order to prove (4.8), where Ui := Yi−E(Yi|Fi−1), i ≥ 1. And by the

B-valued martingale convergence theorem [5] we need to prove only that {∑m
k=1

ak

bk
Uk,m ≥ 1}

is Lp-bounded.

Using the property of a p-smooth Banach space, we have

E

∥∥∥∥ m∑
k=1

ak

bk
Uk

∥∥∥∥p

≤ c

m∑
k=1

E
1
αp

k

‖ Uk ‖p≤ cp2p
m∑

k=1

E
1
αp

k

‖ Yk ‖p

≤ c
m∑

k=1

1
αp

k

E ‖ Xk ‖p I(‖ Xk ‖≤ αk)

≤ c

∞∑
k=1

1
αp

k

E ‖ Xk ‖p I(‖ Xk ‖≤ αk)

≤ c

∞∑
k=1

P (X > αk) + c

∞∑
k=1

1
αp

k

EXpI(X < αk).

Hence, using the same method as in Theorem 4.1, we can get

sup
n≥1

(
E

∥∥∥∥ m∑
k=1

ak

bk
Uk

∥∥∥∥p) 1
p

< ∞.

Now we prove (4.9). Let Vk = Zk − E(Zk|Fk−1), ∀k ≥ 1. Then

E ‖ Vk ‖≤ E ‖ Zk ‖ +E ‖ E(Zk|Fk−1 ‖≤ 2E ‖ Zk ‖, ∀k ≥ 1.

So by Lemma 3.3 and (4.7),

E

(∥∥∥∥ ∞∑
k=1

ak

bk
Vk

∥∥∥∥)
≤

∞∑
k=1

1
αk

E ‖ Vk ‖≤ 2
∞∑

k=1

1
αk

E ‖ Zk ‖
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≤ 2
∞∑

k=1

1
αk

∫ ∞

αk

P (‖ Xk ‖≥ t)dt ≤ 2
∞∑

k=1

1
αk

∫ ∞

αk

cP (X ≥ t)dt

≤ c
∞∑

k=1

1
αk

EXI(X ≥ αk) ≤ EXL(X) < ∞.

This implies ∥∥∥∥ ∞∑
k=1

ak

bk
Vk

∥∥∥∥ < ∞ a.s.

Hence, by the Kronecher lemma again, (4.9) holds.

Remark 4.2 This is the same as Theorem 4.1, here we remove the requirement that ak > 0
and αk = bk/|ak| is strictly increasing. Conditions (1) and (3) in Theorem 2.2 [4] imply (4.6),
and Condition (2) in Theorem 2.2 [4] is equivalent to (4.7) by Lemma 1.3.

Corollary 4.1 Suppose that {an, n ≥ 1}, {bn, n ≥ 1} are the same as in Theorem 4.1. Let B
be a p-smooth Banach space for some 1 ≤ p ≤ 2, and {Xn,Fn, n ≥ 1} be a martingale difference
sequence with {Xn} ≺ X. If X satisfies E(XpRp(X)) < ∞, and EXL(X) < ∞, then

lim
n→∞

1
bn

n∑
k=1

akXk = 0 a.s.

Theorem 4.3 Suppose that {an, n ≥ 1}, {bn, n ≥ 1} are the same as in Theorem 4.1. Let
B be of type p for some 1 ≤ p ≤ 2, and {Xn, n ≥ 1} be a sequence of B-valued indepen-
dent random variables with EXn = 0, n ≥ 1 and {Xn} ≺ X. If X satisfies E(XpRp(X)) <

∞, and EXL(X) < ∞, then

lim
n→∞

1
bn

n∑
k=1

akXk = 0 a.s.

Proof Omitted.

Remark 4.3 The method of the proof is similar to that of Theorem 4.2.

Corollary 4.2 Suppose that {an, n ≥ 1}, {bn, n ≥ 1} are the same as in Theorem 4.1. Let
B be of type p for some 1 ≤ p ≤ 2, and {Xn, n ≥ 1} be a sequence of B-valued independent
random variables with {Xn} ≺ X. If X satisfies

E(XpRp(X)) < ∞,

then there exists cn ∈ B, n = 1, 2, ..., such that

b−1
n

n∑
k=1

akXk − cn → 0 a.s.

Proof Define Yn and Zn as being the same as in the proof of Theorem 4.1. First it is easy to
know that

b−1
n

n∑
k=1

ak(Yk − EYk) → 0 a.s.

On the other hand, E(XpRp(X)) < ∞ implies EN(X) < ∞ by Lemma 1.2. So by Lemma 3.1
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we can get

b−1
n

n∑
k=1

akZk → 0 a.s.

Then by letting cn = 1
b n

∑n
k=1 akEYk, we have

b−1
n

n∑
k=1

akXk − cn → 0 a.s.

The proof is finished.

Remark 4.4 Howell, Taylor and Woyczynshi [6] (1981) proved that, under the conditions
ai > 0 for i ≥ 1, EN(X) < ∞ and∫ ∞

0

tp−1P (X > t)
∫ ∞

t

N(y)
yp+1

dydt < ∞,

there exists cn ∈ B, n = 1, 2, ..., such that

b−1
n

n∑
k=1

akXk − cn → 0 a.s.

Seeing that we have removed the conditions EN(X) < ∞ and ai > 0 for i ≥ 1, together with
a trivial fact that∫ ∞

0

tp−1P (X > t)
∫ ∞

t

N(y)
yp+1

dydt =
∫ ∞

0

tp−1P (X > t)Rp(t)dt ≥ EXpRp(X),

so we say that Corollary 4.2 improves their result.
Finally, as a supplement to Theorem 4.2, we will offer a result based on

EXL(X) = ∞. (4.10)

Theorem 4.4 Let {an, n ∈ N} and {bn, n ∈ N} be sequences of positive numbers with
0 < bk ↑ ∞ and

n∑
k=1

ak = O(bn), n → ∞. (4.11)

Let B be of type p for some 1 ≤ p ≤ 2, and {Xn, n ∈ N} be a sequence of B-valued independent
random variables with EXn = 0 and {Xn} ≺ X. If X satisfies

EXL(X) = ∞, E(XpRp(X)) < ∞, EX < ∞, (4.12)

then (4.2) holds.

Proof Using the same method as in Theorem 4.2, we can know that (4.4) and (4.5) hold, so it
suffices to show that

1
bn

n∑
k=1

akEYk → 0 a.s. (4.13)

Since EXk = 0, k ∈ N , it suffices to show that
1
bn

n∑
k=1

akEZk → 0 a.s. (4.14)

Noting that ak is non-negative, and

‖ EZk ‖ =‖ EXkI(‖ Xk ‖≥ αk) ‖
≤ E ‖ Xk ‖ I(‖ Xk ‖≥ αk) ≤ cEXI(X ≥ αk),
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hence, it suffices to show that
1
bn

n∑
n=1

akEXI(X ≥ αk) → 0 a.s. (4.15)

By (4.11), there exists c0 such that 0 < c0 < ∞, so that
n∑

k=1

ak ≤ c0bn, (4.16)

for all n ∈ N . From Lemma 1.2, we know that (4.6) implies

EN(X) < ∞.

So it is easy to know that αk → ∞. ∀ε > 0, there exists β > 0 such that

EXI(X ≥ β) <
ε

c0
,

where c0 is the same as in (4.16). Since αk → ∞, there exists n0 ∈ N such that

min
k>n0

αk > β, sup
k>n0

EXI(X ≥ αk) <
ε

c0
.

Hence, ∀n > n0, we have
1
bn

n∑
k=n0+1

akEXI(X ≥ αk) <

(
1
bn

n∑
k=1

ak

)
ε

c0
< ε; (4.17)

on the other hand, clearly we have
1
bn

n0∑
k=1

akEXI(X ≥ αk) → 0, n → ∞.

So (4.14) holds.
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