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Abstract

Motivation: With the development of high-throughput techniques, RNA-sequencing (RNA-seq) is

becoming increasingly popular as an alternative for gene expression analysis, such as RNAs profil-

ing and classification. Identifying which type of diseases a new patient belongs to with RNA-seq

data has been recognized as a vital problem in medical research. As RNA-seq data are discrete,

statistical methods developed for classifying microarray data cannot be readily applied for RNA-

seq data classification. Witten proposed a Poisson linear discriminant analysis (PLDA) to classify

the RNA-seq data in 2011. Note, however, that the count datasets are frequently characterized by

excess zeros in real RNA-seq or microRNA sequence data (i.e. when the sequence depth is not

enough or small RNAs with the length of 18–30 nucleotides). Therefore, it is desired to develop a

new model to analyze RNA-seq data with an excess of zeros.

Results: In this paper, we propose a Zero-Inflated Poisson Logistic Discriminant Analysis (ZIPLDA)

for RNA-seq data with an excess of zeros. The new method assumes that the data are from a mix-

ture of two distributions: one is a point mass at zero, and the other follows a Poisson distribution.

We then consider a logistic relation between the probability of observing zeros and the mean of the

genes and the sequencing depth in the model. Simulation studies show that the proposed method

performs better than, or at least as well as, the existing methods in a wide range of settings. Two

real datasets including a breast cancer RNA-seq dataset and a microRNA-seq dataset are also ana-

lyzed, and they coincide with the simulation results that our proposed method outperforms the

existing competitors.

Availability and implementation: The software is available at http://www.math.hkbu.edu.hk/

�tongt.

Contact: xwan@comp.hkbu.edu.hk or tongt@hkbu.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput techniques have recently emerged as a revolution-

ary technology to replace hybridization-based microarrays for gene

expression analysis (Mardis, 2008; Morozova et al., 2009; Wang

et al., 2009). Due to the increased specificity and sensitivity of gene

expression, next-generation sequencing data has become a popular

choice in biological and medical studies. In particular, RNA-

sequencing (RNA-seq) enables certain applications not achievable

by microarrays, which targets for analyzing much less noisy data,

such as the inference of differential expression (DE) between several
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conditions or tissues. Existing DE analyses include, but not limited

to, edgeR (Robinson and Smyth, 2008; Robinson et al., 2010),

DESeq2 (Love et al., 2014) and LFCseq (Lin et al., 2014). RNA-seq

data have clear advantage over microarray data to identify which

type of diseases a new patient belongs to. With the reduced cost in

sequencing technology, more and more researchers tend to use

RNA-seq data to diagnose diseases (Lorenz et al., 2014). For classifi-

cation of microarray data, many discriminant methods are available

in the literature, such as Diagonal Linear Discriminant Analysis

(DLDA) and Diagonal Quadratic Discriminant Analysis (DQDA) in

Dudoit et al. (2002). Huang et al. (2010) proposed two bias-

corrected rules for DLDA and DQDA. Zhou et al. (2017a,b)

proposed a bias-corrected geometric diagonalization method for

regularized discriminant analysis. Different from microarray data,

the RNA-seq reads are mapped on to the reference genome and are

summarized as ‘counts’. That is, we use a count number to measure

the expression level of each gene in RNA-seq data. Unlike microar-

ray data that follow a Gaussian distribution after normalization,

RNA-seq data follow a discrete distribution, e.g. a Poisson distribu-

tion. As a consequence, the existing classification methods for

microarray data may not provide a satisfactory performance or may

not even be applicable for RNA-seq data.

There are a few discriminant methods developed for classifying

RNA-seq data in the recent literature. Witten (2011) assumed a

Poisson distribution for RNA-seq data and proposed a Poisson lin-

ear discriminant analysis (PLDA) for classification. Tan et al. (2014)

conducted an extensive comparison study and concluded that, for

classifying RNA-seq data, PLDA performed better or much better

than the classification methods for microarray data. Dong et al.

(2016) extended the Poisson model to the negative binomial model

and developed a negative binomial linear discriminant analysis

(NBLDA) in the presence of overdispersion in RNA-seq data. Note,

however, that there may have excess zeros in real RNA-seq datasets,

especially when the sequence depth is not enough or small RNA has

the length of 18–30 nucleotides, such as microRNA. For instance,

the cervical cancer dataset in Witten et al. (2010), which was also

analyzed in Witten (2011) and Dong et al. (2016), contains about

47.6% zeros of all numerical values. Another dataset, the liver and

kidney dataset in Marioni et al. (2008), also contains 45.5% zeros

of all numerical values.

In this paper, we propose a Zero-Inflated Poisson Logistic

Discriminant Analysis (ZIPLDA) for RNA-seq data in the presence

of excess zeros. To model the complex RNA-seq data with an excess

of zeros, we take a two-step procedure to have a new discriminant

classifier. We first address the complexity of the classifier caused by

the mixture model, and then take into account the relation between

the probability of zeros and the mean of the genes and the sequenc-

ing depth in the second step. By the above steps, we build a novel

classifier to improve the class prediction for a future observation

with RNA-seq data.

The remainder of the paper is organized as follows. In Section 2,

we describe the problem of analyzing RNA-seq data with an excess

of zeros, and present the motivation of our research work. In

Section 3, we propose the ZIPLDA for RNA-seq data with an excess

of zeros and also describe the estimation of parameters in details. In

Section 4, simulation studies are provided to evaluate the perform-

ance of the new classifier via the comparison with the existing meth-

ods. In Section 5, we apply the proposed method to analyze two real

next-generation sequencing datasets and compare its performance

with the existing methods. Finally, we conclude the paper with some

discussions and future directions in Section 6.

2 Data description and motivation

We first present our main motivation of the study through two real

datasets as examples for classification.

The first example is the breast cancer RNA-seq dataset from The

Cancer Genome Atlas (TCGA) with the link https://portal.gdc.can

cer.gov/projects/TCGA-BRCA, a project that aims to offer a com-

prehensive overview of genomic changes involved in human cancer.

This dataset includes 112 tumoral and 112 normal samples with

measurements on 60 483 transcripts. The dataset generation and

processing were described in The Cancer Genome Atlas Research

Network (2014). There are about 45.6% zeros of all numerical val-

ues and 3477 out of 60 483 transcripts equal zero for all samples.

After removing the 3477 transcripts, there are still about 42.3%

zeros in the remaining transcripts. For details, one may refer to the

first vertical bar in the left panel of Supplementary Figure S11.

The second example is a microRNA-seq dataset from the Gene

Expression Omnibus (GEO) with access number GSE79017 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE79017). The

dataset was also released in Wolenski et al. (2017). MicroRNAs are

small RNAs, with the length of 18–30 nucleotides, and play impor-

tant regulatory roles in diverse biological processes (Birchler and

Kavi, 2008; Stefani and Slack, 2008). The dataset has three classes,

including 12 samples from liver, 18 samples from urine and 18 sam-

ples from plasma, with measurements on 832 microRNAs. There

are about 66.1% zeros of all numerical values and 127 out of 832

microRNAs equal zero for all samples. Without the 127

microRNAs, there still exist about 59.9% zeros in the remaining

microRNAs. For details, one may refer to the first vertical bar in the

left panel of Figure 1.

For the above two datasets, PLDA may not provide a satisfactory

performance due to the excess zeros. Specifically, since the expecta-

tion of the Poisson distribution for each gene of each sample is

related to class, individual and gene, a direct issue is that there are

many zeros but the expectation of the distribution is not close to

zero and could be a large value in a gene with the PLDA method.

For example, the expected expression of a gene, the red point in the

right panel of Figure 1, is 68.8, and in which about 62.5% of obser-

vations of the gene are zeros. Note, however, that the probability of

zeros in the Poisson distribution with expectation 68.8 is only

1:3 exp ð�30Þ � 0, which is much less likely to occur than a chance

of 62.5%. Hence, it is not suitable to fit the data by a single Poisson
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Fig. 1. The frequency of each observation and empirical probability of zero in

the microRNA-seq dataset. The left panel is the frequency of each observa-

tion value (the last value is the frequency of larger than 50). The right panel is

the empirical probability of zero in each microRNA, which is represented by

one dot in the right panel
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distribution for data with an excess of zeros. Furthermore, from the

right panel of Supplementary Figure S11 and Figure 1, we find that

the experiential probability of observing zeros in a gene is related to

the mean of observation value. This calls for a new model for classi-

fying RNA-seq data with an excess of zeros.

3 Materials and methods

Let K be the number of classes, and Xkikg denote the number of reads

mapped to gene g in sample i of class k, k ¼ 1; . . . ;K; ik ¼ 1; . . . ;nk

and g ¼ 1; . . . ;G. Specifically, there are nk samples in class k. Let

n ¼
PK

k¼1 nk be the total number of samples for all classes. Given a

new sequence observation, x� ¼ ðX�1; . . . ;X�GÞ
T , the goal of classifica-

tion is to predict which class label the observed x� belongs to. Witten

(2011) proposed a PLDA with the Poisson distribution to classify

RNA-seq data. Dong et al. (2016) developed a NBLDA that uses the

negative binomial distribution to count for the overdispersion in the

data. In this section, we propose a new discriminant analysis for RNA-

seq data by assuming that the data follow a mixture distribution.

3.1 Zero-inflated Poisson logistic discriminant analysis
For excess zeros in a sample, it is not suitable to assume Xkig follows

a Poisson or negative binomial distribution. In such situations, we

consider the following zero-inflated Poisson distribution for RNA-

seq data. That is,

Xkikg �
df0g pkikg

PoissonðlkikgÞ ð1� pkikgÞ;

(
(1)

where df0g denotes the point mass at zero, lkikg is the expectation

for gene g in sample ik in class k and pkikg is the probability of df0g in

gene g of sample ik in class k. Since lkikg is related to class, individual

and gene, we assume lkikg ¼ dkgsik kg, where dkg allows the gth gene

to be differentially expressed between classes, sik is used to identify

individual in the kth class and kg ¼
PK

k¼1

Pnk

ik¼1 Xikg is the total

count of short reads of gene g. We know that the expectation of

Xkikg should be zero if it follows df0g distribution, but the reverse

statement is not true. When we observe Xkikg ¼ 0, we have consid-

ered two scenarios: (i) there is no expression in the gth gene; (ii) the

gene is expressed but we cannot observe the signal. Therefore, the

probability of Xkikg can be written as

PðXkikgÞ ¼

pkikg þ ð1� pkikgÞe�lkikg Xkikg ¼ 0

ð1� pkikgÞ
l

Xkikg

kikg

ðXkikgÞ!
e�lkikg Xkikg > 0:

8>><
>>: (2)

We have EðXkikgÞ ¼ ð1� pkikgÞlkikg and VarðXkikgÞ ¼ lkikg

ð1� pkikgÞð1þ pkikglkikgÞ. Lambert (1992) introduced the zero-

inflated Poisson regression to model count data with an excess of

zeros. This model assumes that the outcomes are generated from

two processes, where the first process is to model the zero inflation

by including a proportion 1� p of excess zeros and a proportion

p exp ð�kÞ of zeros coming from the Poisson distribution, and the

second process models the nonzero counts using the zero-truncated

Poisson model. We also note that there are similar models for ana-

lyzing the zero-inflated data in the literature, such as Ridout et al.

(1998) and Mouatassim and Ezzahid (2012). Recently, Liu et al.

(2016) also proposed a zero-inflated Poisson model for analyzing

the transposon sequencing (Tn seq) data with an excess of zeros.

They modeled the probability of the insertion at the location of the

gene with independent Bernoulli distributions, and this probability

may vary across different locations depending on the genomic

sequence or other potential covariates that may affect the chance of

insertion with a logistic regression. In this paper, we consider a simi-

lar logistic relation between the probability of zeros and the mean of

the genes with the sequencing depth. That is,

log
PðXkikg ¼ 0Þ

1� PðXkikg ¼ 0Þ

� �
¼ aþ b1

Nkik

N1i1

� �
þ b2lkikg: (3)

Note that PðXkikg ¼ 0Þ in model (3) can be replaced with

pkikg þ ð1� pkikgÞe�lkikg . Then with some simplifications, we have

1� pkikg ¼
1

ð1� e�lkikg Þð1þ e
aþb1

Nkik
N1i1

� �
þb2lkikg Þ

; (4)

where Nkik is the total sequencing depth of the ikth sample in class k

and a, b1 and b2 are the intercept and coefficients of Nkik=N1i1 and

lkikg.

Given a new observation x� ¼ ðX�1; . . . ;X�GÞ
T , we hope to iden-

tify which class label the observed x� belongs to. Let pk be the pro-

portion of observing a sample from the kth class. Throughout the

paper, we set pk ¼ nk=n so that
PK

k¼1 pk ¼ 1. Here, we propose a

Zero-Inflated Poisson Logistic Discriminant Analysis (ZIPLDA) to

assign x� to the class with label argminkdkðx�Þ, where dkðx�Þ is the

discriminant score defined as

dkðx�Þ ¼
XG
g¼1

Iðx�g¼0Þ log p̂
�
kg þ ð1� p̂

�
kgÞeð�dkgs�kgÞ

� �

�
XG
g¼1

Iðx�g>0Þdkgs�kg þ
XG
g¼1

Iðx�g>0Þ log ð1� p̂
�
kgÞ

þ
XG
g¼1

Iðx�g>0Þx
�
g log ðdkgÞ þ log pk þC;

(5)

where p̂
�
kg and s� are related to x�g and C is a constant independent

of k. Our proposed discriminant score dkðx�Þ is derived from the

Bayes rule, that is,

Pðy� ¼ k jx�Þ / fkðx�Þpk; (6)

where y� indicates the class of x�, fk is the probability density func-

tion of the sample in class k, and pk is the prior probability that one

sample comes from class k. Under the condition y� ¼ k, the zero-

inflated Poisson density of X�g ¼ x�g is

PðX�g ¼ x�g j y� ¼ kÞ ¼ p̂
�
kg þ ð1� p̂

�
kgÞe

�l�
kg

� �Iðx�g¼0Þ

ð1� p̂
�
kgÞ
ðl�kgÞ

x�g

ðx�gÞ!
e�l�

kg

 !Iðx�g>0Þ

;

(7)

where l�kg ¼ dkgs�kg. Then, we take dkðx�Þ ¼ log ðPðX�g ¼ x�g j y� ¼ kÞÞ
as the discriminant score.

From formula (5), when p̂
�
kg ! 0, it follows that

log p̂
�
kg þ ð1� p̂

�
kgÞeð�dkgs�kgÞ

� �
! dkgs�kg:

Therefore, when p̂
�
kg ! 0, the ZIPLDA score reduces to the PLDA

score as

log Pðy� ¼ k j x�Þ �
XG
g¼1

x�g log dkg �
XG
g¼1

s�kgdkg

þlog pk þ C:

(8)

And accordingly, the ZIPLDA classifier reduces to the PLDA classi-

fier when there are no zero values.
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3.2 Parameter estimation
There are several unknown parameters in (5), including p̂

�
kg; s� and

dkg. In this section, we describe the procedures of estimating those

parameters for practical use.

3.2.1 Zero distribution probability estimation

As specified in (1) and (5), the probability of the zero distribution is

a very important parameter in the ZIPLDA method. In order to esti-

mate p̂
�
kg, we first estimate a, b1 and b2. Liu et al. (2016) proposed

an EM algorithm (Dempster et al., 1977) to estimate the parameters

a, b1 and b2. In this paper, we choose to maximize the log-likelihood

to estimate the parameters directly with the relationship of formula

(4). Given the estimation of a, b1 and b2, pkikg can be estimated with

formula (4). For a new sequence observation, we can obtain the zero

distribution probability in every gene of each class.

3.2.2 Size factor estimation

Due to the characteristics of next-generation sequencing technology,

different experiments may have different total reads, i.e. the

sequencing depths. To make the gene expression levels comparable,

we perform a normalization step first. The normalization step aims

to adjust the systematic technical effects and reduce the noise in the

data as well. For the size factor s�, various methods have been pro-

posed in the literature (Anders and Huber, 2010; Bullard et al.,

2010; Dillies et al., 2013; Robinson and Oshlack, 2010; Zhou et al.,

2017a,b). We consider to estimate the size factor sik for the training

data and the size factor s� for the test data using three different

methods: total count, DESeq2 and Upper quartile. These methods

were first introduced in the PLDA method by Witten (2011). In our

simulation studies, we note that there is little difference in the per-

formance of classification among the three methods. Therefore, we

simply choose the total count method, in which the size factor sik for

the training data is estimated by

ŝ ik ¼
PG

g¼1 XikgPK
k¼1

Pnk

ik¼1

PG
g¼1 Xikg

;

and the estimation of size factor s� for the test data is

ŝ� ¼
PG

g¼1 X�gPK
k¼1

Pnk

ik¼1

PG
g¼1

Xikg

:

3.2.3 Class differences estimation

As in Witten (2011), d̂kg ¼ ð
Pnk

ik¼1 XikgÞ=ð
Pnk

ik¼1 sik kgÞ is used to dis-

tinguish the different classes. Here, d̂kg indicates the under or over-

expressed degree relative to the baseline for gene g in class k. To

handle the small signals such as
Pnk

ik¼1 Xikg ¼ 0, we put a Gammaðb;
bÞ prior on d̂kg in the above formula. This results in the posterior

mean as d̂kg ¼ ð
Pnk

ik¼1 Xikg þ bÞ=ð
Pnk

ik¼1 sik kg þ bÞ. Generally,
Pnk

ik¼1

Xikg and
Pnk

ik¼1 sik kg are much larger than 1. Therefore, the parame-

ter b is not sensitive in our study. In our model, we consider b¼1

throughout the simulations.

4 Simulation studies

4.1 Simulation design
In this section, we assess the performance of the proposed ZIPLDA

via a number of simulation studies. We compare our method with

PLDA in Witten (2011) and other popular classification methods for

high-dimensional data, including NBLDA in Dong et al. (2016), the

support vector machines (SVM) classifier in Meyer et al. (2014) and

the k nearest neighbors (kNN) classifier in Ripley (1996). In our

experiments, we use the R packages ‘PoiClaClu’ for PLDA and

‘e1071’ for SVM, where the latter one can be downloaded from

https://cran.r-project.org/web/packages/e1071/index.html. We also

consider the number of nearest neighbors as 1, 3 or 5 for kNN.

We first generate the data from the negative binomial

distribution:

Xkikg � NBðdkgsik kg;/Þ; (9)

and then set Xkikg ¼ 0 with probability pkikg, which is related to

dkgsik kg and the sequence depth. In each simulation study, we com-

pare the misclassification rates by changing one parameter and fix-

ing the others.

In the simulation studies, we consider both the binary classifica-

tion with K¼2, and the multiple classification with K¼3. For a fair

comparison with PLDA, the parameters sik , kg and dkg are set as the

same as those in Witten (2011). Specifically, the size factors sik are

from the uniform distribution on [0.2, 2.2], the kg values are from

the exponential distribution with expectation 25, and the log dkg val-

ues are from Nð0;r2Þ. We also set pkikg as a random variable follow-

ing a uniform distribution on [0, 1] for each sample. In each

experiment, we generate n (the summation of all classes) samples as

the training set and generate another n samples as the test set.

We first consider the binary classification with K¼2. In Study 1,

we fix /¼0.001 and r¼0.2 and consider the case that the number

of features p¼100 or 1000, 20% or 40% of which are differentially

expressed (DE) between the two classes. Then we compare the mis-

classification rates of all methods with different sample sizes, n¼8,

16, 24, 40 and 64, for two classes. In Study 2, we investigate the per-

formance of the methods when the proportions of differentially

expressed genes are 0.2, 0.4, 0.6, 0.8 and 1.0 with fixed sample size

n¼8 or 20. In this study, we also set / ¼ 0:001; r ¼ 0:2 and

p¼100 or 1000. In Study 3, we test the performance of all methods

with the different numbers of features, including p¼20, 40, 60,

100, 200, 500 and 1000. We fix /¼0.001 and r¼0.2, and consider

the case that the sample size n¼8 or 40, and 40 or 80% of features

are differentially expressed. In Studies 4 and 5, we compare all the

methods with different settings of / and r. The dispersion parameter

r ranges from 0.001 to 1 in Study 4, which represents the overdis-

persion from very slight to very high. In Study 5, the parameter /

changes from 0.05 to 0.65, in which a larger / means a larger

difference.

Next, we consider the multiple classification with K¼3. Studies

6 to 10 are conducted to investigate the performance of the methods.

All parameters are kept the same as those in the binary classification

except for the sample sizes. Considering at least four samples in

each class, we set n¼12, 24, 36, 60 and 96 in these studies,

respectively.

Our last study is to investigate the robustness of the proposed

method when the data include no excess of zeros, that is, when the

data follow exactly the Poisson distribution. Studies 11 to 13 are

designed to assess the performance of the methods. The settings of

the three studies are kept the same as the first three studies of the

binary classification with K¼2, except for the distribution of the

data.

4.2 Simulation results
For each simulated data, we use the misclassification rate for evalua-

tion, which is computed by repeating the simulation 1000 times and
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taking an average over all the simulations. We report the misclassifi-

cation rates along with various parameters in Figures 3–5. More

simulation results can be seen in Supplementary Figures S1 and S2

for the binary classification, in Supplementary Figures S3–S7 for

the multiple classification with K¼3, and in Supplementary Figures

S8–S10 for the Poisson distribution, respectively.

Study 1 investigates the effect of different sample sizes for the

binary classification. Figure 2 shows that the misclassification rates

of all methods have decreased with an increasing number of sample

sizes. ZIPLDA performs significantly better than the other methods

in all settings, especially for small number of genes. Figure 3 shows

that the misclassification rates of all methods are decreased with an

increasing number of differentially expressed genes. ZIPLDA shows

its superiority over the other methods in Study 2. Study 3 shows the

impact of the number of genes on the misclassification rate. From

Figure 4, we note that an increasing number of genes will lead to a

lower misclassification rate and the proposed method again outper-

forms the other methods, especially for small sample size.

Supplementary Figure S1 investigates the misclassification rate of

different overdispersion /. In this study, ZIPLDA is again better

than PLDA, NBLDA, SVM and kNN. Supplementary Figure S2

shows the performance of all methods with different r for two

classes. From the results, it is evident that an increasing r will lead

to a lower misclassification rate and ZIPLDA is the best classifier.

Supplementary Figures S3–S7 also display the similar results for

multiple classification with K¼3. In summary, the experimental

results show that ZIPLDA performs significantly better than the

other methods in all settings. We also note that, among PLDA,

NBLDA, SVM and kNN, PLDA often performs better than SVM,

NBLDA and kNN in most settings. Supplementary Figures S8–S10

show that ZIPLDA performs nearly the same as PLDA when the

data follow the Poisson distribution without excess zeros. This dem-

onstrates that our proposed ZIPLDA is a robust method for

classification.

5 Application to real data

Now we apply the proposed ZIPLDA to analyze the two datasets in

Section 2, the breast cancer dataset and the microRNA-seq dataset,

and compare its performance with the existing methods.

Note that the majority of genes are not differentially expressed

and they are irrelevant for class distinction. As one example, we
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Fig. 4. The misclassification rates of all methods with different gene numbers

for two classes (Study 3). Here, /¼0.001 and r¼ 0.2 for all plots. The top pan-

els have a same DE rate 0.4 with different sample sizes. The bottom panels
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Fig. 3. The misclassification rates of all methods with different DE rates for

two classes (Study 2). Here, /¼ 0.001 and r¼0.2 for all plots. The left panels

have 100 features with different sample sizes. The right panels have 1000 fea-
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observe in Figure 3 that the large rate of irrelevant genes for class

distinction will reduce the accuracy of the classifiers. To improve

the classification performance and save the computation time, we

conduct a gene selection to remove the irrelevant genes as the first

step. There are two common approaches to remove the irrelevant

genes for class distinction. The first one is based on the test method,

such as edgeR (Robinson and Smyth, 2007; Robinson et al., 2010),

to select differentially expressed genes. The second one is to select

the top differential genes by computing the ratio of the sum of

squares between groups to within groups for each gene (Dudoit

et al., 2002). These two ways are comparable for the binary classifi-

cation. But for the multiple classification, the first one needs the

pairwise comparison and a new criterion to choose the top differen-

tially expressed genes while the second one can be easily imple-

mented by calculating the ratio for gene j using the following

formula:

BWðjÞ ¼

P2
k¼1

Pnk

i¼1

ð�xk:j � �x ::jÞ2

P2
k¼1

Pnk

i¼1

ðxkij � �x ::jÞ2
;

where �x : :j is the averaged expression values across all samples and

�xk:j is the averaged expression value across samples belonging to

class k. The top p genes are selected with the largest BW ratios.

Therefore, we use the ratio of the sum of squares between groups to

that of within groups to select top differentially expressed genes in

this paper.

To compare the performance of all classification methods, we ran-

domly draw one half of the samples from each class to build the train-

ing set, and regard the other half as the test set. We repeat this

procedure 1000 times and report the average misclassification rates

for each method. We select the top 50 microRNAs from the

microRNA-seq dataset and the top 200 transcripts from the breast

cancer dataset (the dimensionality of the breast cancer dataset is much

higher than that of the microRNA-seq dataset) and show the results in

Figure 5. From the figure, it is clear that the performance of ZIPLDA

is consistently better than those of the other methods for different

sample sizes. Among them, NBLDA performs the best in the breast

cancer dataset and PLDA performs the best in the microRNA-seq

dataset. kNN performs the worst in the two datasets.

We further compare these five methods with respect to the differ-

ent number (P) of selected genes using the two datasets and display

the results in Supplementary Tables S1 and S2. From the results, we

note that ZIPLDA outperforms the other methods for different P

values. The misclassification rates of kNN are higher than all other

methods for different P values. From the real data analysis, we con-

clude that ZIPLDA is a robust method and performs better than

other methods in the presence of excess zeros.

6 Discussion

Classification of different disease types with RNA-seq data is of

great importance in medical research, such as disease diagnosis and

drug discovery. In this paper, we propose a zero-inflated Poisson

logistic discriminant analysis (ZIPLDA) for RNA-seq data in the

presence of excess zeros. Our proposed work has two main contri-

butions: (i) addressing the case of excess zeros in the classifier and

(ii) modeling the relation between the probability of zeros and the

mean of the genes and the sequencing depth. In detail, we consider a

mixture distribution with a point mass at zero and a Poisson distri-

bution for the remaining data, and a logistic regression for fitting

the relation between the probability of zeros and the mean of the

genes and the sequencing depth.

In simulation studies, we consider both the binary classification

and the multiple classification. For a fair comparison with PLDA,

we essentially follow the simulation settings in Witten (2011) except

for the probability of zeros. Simulation results show that our pro-

posed method performs much better than, or at least as well as, the

existing competitors in most cases. In real data analysis, we analyze

two real next-generation sequencing datasets with an excess of

zeros. The results indicate that ZIPLDA performed well in a wide

range of settings in comparison with the existing methods.

Considering the abundant study of classification for microarray

data, our study is just a pilot work on the study of classification for

RNA-seq data. Although the proposed method has largely improved

the existing literature for the classification of RNA-seq data, many

problems remain to be solved, such as very high overdispersion in

RNA-seq data, e.g. when / is larger than 5. In such situations, the

proposed classification method may not provide the optimal per-

formance in practice. In view of this, we plan to develop new classi-

fication methods, including a mixture distribution with a point mass

at zero and a negative binomial distribution, for analyzing RNA-seq

data to further improve our current work.
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