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S

We propose a new estimator for the error variance in a nonparametric regression model.
We estimate the error variance as the intercept in a simple linear regression model with
squared differences of paired observations as the dependent variable and squared distances
between the paired covariates as the regressor. For the special case of a one-dimensional
domain with equally spaced design points, we show that our method reaches an asymptotic
optimal rate which is not achieved by some existing methods. We conduct extensive
simulations to evaluate finite-sample performance of our method and compare it with
existing methods. Our method can be extended to nonparametric regression models with
multivariate functions defined on arbitrary subsets of normed spaces, possibly observed
on unequally spaced or clustered designed points.

Some key words: Bandwidth; Difference-based estimator; Least squares; Nonparametric regression; Quadratic
form; Residual variance.

1. I

Consider a nonparametric regression model

y
i
=g(x

i
)+e
i
(1∏ i∏n),

where the y
i
’s are observations, g is an unknown mean function, and the e

i
’s are

independent and identically distributed random errors with zero mean and variance s2.
Usually one fits the mean function g first and then estimates the variance s2 from

residual sum of squares (Wahba, 1990; Müller & Stadtmüller, 1987; Hall & Carroll, 1989;
Carter & Eagleson, 1992; Neumann, 1994). However, it is often desirable to have an
accurate estimator of s2, independent of that obtained by curve fitting, for the purpose of
testing the goodness of fit or choosing the amount of smoothing (Eubank & Spiegelman,
1990; Rice, 1984; Gasser et al., 1991; Kulasekera & Gallagher, 2002). An accurate estimator
of s2 can also be used to estimate the detection limits of immunoassay (Carroll, 1987;
Carroll & Ruppert, 1988).
Most estimators of s2 proposed in the literature are quadratic forms of the response

vector y= (y1 , . . . , yn )T,

s@2
D
=yTDy/tr(D). (1)
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These estimators usually fall into two classes. The first class of estimators are based on
the residual sum of squares from some nonparametric fit to g (Wahba, 1990; Hastie &
Tibshirani, 1990). For linear smoothers the fitted values are y@=Ay, where A is a smoother
matrix. Then an estimator of variance has the form (1) with D= (I−A)T (I−A) (Hastie
& Tibshirani, 1990). We refer to estimators in the first class as residual-based estimators.
Residual-based estimators depend critically on the amount of smoothing (Dette et al.,
1998). Some methods require knowledge about some unknown quantity such as
∆1
0
{g∞(t)}2dt (Hall & Marron, 1990) or ∆1

0
{g◊(t)}2dt (Buckley et al., 1988).

The second class of estimators use differences that aim to remove trend in the mean
function, an idea originating in time series analysis. Such methods do not require an
estimator of the mean function and are often called difference-based estimators. Assume
that x is univariate and 0∏x1∏ . . .∏xn∏1. Rice (1984) proposed the first-order
difference-based estimator

s@2R=
1

2(n−1)
∑
n

i=2
(y
i
−y
i−1
)2. (2)

Gasser et al. (1986) proposed the second-order difference-based estimator

s@2GSJ=
1

n−2
∑
n−1

i=2
c2
i
e@2
i
,

where e@
i
is the difference between y

i
and the value at x

i
of the line joining (x

i−1
, y
i−1
) and

(x
i+1
, y
i+1
). The coefficients c

i
are chosen such that Ec2

i
e@2
i
=s2 for all i when g is linear.

For equidistant design points, s@2GSJ reduces to

s@2GSJ=
2

3(n−2)
∑
n−1

i=2
(1
2
y
i−1
−y
i
+1
2
y
i+1
)2.

Hall et al. (1990) introduced the estimator

s@2HKT (m)=
1

n−m
∑
n−m
2

i=m
1
+1
A ∑m2
k=−m

1

d
k
y
k+iB2 ,

where m1 and m2 are nonnegative integers, m=m1+m2 is referred to as the order,
and the difference sequence {d

i
}
i=−m

1
,...,m
2

satisfies Wm2j=−m
1

d
j
=0, Wm2j=−m

1

d2
j
=1 and

d
−m
1

d
m
2

N0.
None of the above difference-based estimators achieves the asymptotic optimal rate for
the mean squared error (Dette et al., 1998), namely

 (s@2 )=E(s@2−s2 )2=n−1 var(e2 )+o(n−1 ). (3)

In practice, the choice of the order m and an appropriate difference sequence which
minimises the finite-sample mean squared error is rather complicated. Dette et al. (1998)
showed that, for a finite sample size, a proper choice of the order m depends sensitively
on the oscillation of the mean function g and the sample size n; that is, the order m acts
as a tuning parameter.
Müller et al. (2003) proposed the class of difference-based estimators

s@2MSW=
1

2 W
iNj
W
ij
∑
iNj
W
ij
(y
i
−y
j
)2,
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where W
ij
are weights depending on x only. For the random design, s@2MSW achieves the

asymptotic optimal rate (3) under certain assumptions for the weights; Müller et al. (2003)
constructed weights based on a kernel density estimate for the variable x.
In this paper we propose a new estimator which is the estimated intercept of a linear

model. When the design points are equally spaced in [0, 1], using the optimal bandwidth,
we can reduce the asymptotic rate of mean squared error to

 (s@2 )=n−1 var(e2 )+O(n−3/2 ). (4)

2. M 

2·1. Motivation

We assume that x
i
= i/n for 1∏ i∏n. Taking expectation of the Rice estimator, we have

E(s@2R )=
1

2(n−1)
∑
n

i=2
E(y
i
−y
i−1
)2=s2+

1

2(n−1)
∑
n

i=2
{g(x
i
)−g(x

i−1
)}2, (5)

indicating that Rice’s estimator is always positively biased. Suppose that g has a bounded
first derivative. Then, from (5), we have

E(s@2R )=s2+
1

n2
J+oA 1n2B , (6)

where J=∆1
0
{g∞(x)}2dx/2. Rice’s estimator uses differences of all consecutive observations.

We define a lag-k Rice estimator s@2R (k) as

s@2R (k)=
1

2(n−k)
∑
n

i=k+1
(y
i
−y
i−k
)2 (k=1, . . . , n−1).

Similar calculations give

E{s@2R (k)}=s2+
k2

n2
J+Oq k3

n2 (n−k)r+oA 1n2B .
Thus, for any fixed m=o(n), we have

E{s@2R (k)}js2+Jdk (1∏k∏m), (7)

where d
k
=k2/n2. Throughout this paper, we take the integer part of m whenever necessary.

Treating (7) as a simple linear regression model with d
k
as the independent variable, we

can estimate s2 as the intercept.
In being based on a simple parametric model, our method is similar in spirit to

the simulation-extrapolation method of Cook & Stefanski (1994) and the empirical-bias
bandwidth selection method of Ruppert (1997). For measurement error models, the
simulation-extrapolation method adds additional measurement error to establish a trend
of measurement-error-induced bias versus the variance of the added measurement error,
and extrapolates this trend back to the case of no measurement error. For local polynomial
nonparametric regression, Ruppert’s method uses estimates at several bandwidths to fit a
polynomial model and estimate the bias at a particular bandwidth as the intercept.
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2·2. Methodology

Let d
k
=k2/n2 and s

k
=Wn
i=k+1

(y
i
−y
i−k
)2/{2(n−k)}, where 1∏k∏m. As discussed

in § 2·1, we regress s
k
on d

k
to estimate s2 as the intercept. We will discuss the choice

of m in §§ 2·3 and 3·1. Since s
k
is the average of (n−k) lag-k differences, we assign

weight w
k
= (n−k)/N to the observation s

k
, where N= (n−1)+ (n−2)+ . . .+ (n−m)=

nm−m(m+1)/2. To be specific, we fit the linear model

s
k
=a+bd

k
+e
k
(k=1, . . . , m)

using the weighted sum of squares Wm
k=1
w
k
(s
k
−a−bd

k
)2.

Let s:w=W
m
k=1
w
k
s
k
and d:

w
=Wm
k=1
w
k
d
k
. Then

s@2=a@=s:w−b
@d:
w
, (8)

where

b@=
Wm
k=1
w
k
s
k
(d
k
−d:
w
)

Wm
k=1
w
k
(d
k
−d:
w
)2
.

When necessary, the dependence of s@2 on m, s@2 (m), will be expressed explicitly.

T 1. For the equally spaced design, we have the following:
(i ) s@2 is unbiased when g is a linear function regardless of the choice of m;
(ii ) s@2 can be written as a quadratic form s@2=yTDy/tr (D) as in (1), where D is an n×n
matrix with elements

d
ij
=GWmk=1 bk+Wmin{i−1,n−i,m}k=0

b
k
(1∏ i= j∏n),

−b
|i−j|

(0<|i− j|∏m),

0 otherwise,

where

b
0
=0, b

k
=1−

d:
w
(d
k
−d:
w
)

Wm
k=1
w
k
(d
k
−d:
w
)2
(k=1, . . . , m).

The proof of Theorem 1 is omitted as it is straightforward. Note that D is a symmetric
matrix with both row and column sums equal to zero. Since D is not guaranteed to be
positive definite, s@2 may take a negative value and we recommend replacing such a value
by zero. Our experience indicates that a negative estimate occurs very rarely; it never
occurred in our extensive simulations. However, negative estimates could happen for other
functions.

2·3. Asymptotic results

Using the fact that s@2 has a quadratic-form representation, we have the following
formula for the mean squared error (Dette et al., 1998):

 (s@2 )=[(gTDg)2+4s2gTD2g+4gT{D diag(D)u}s3c
3

+s4 tr{diag(D)2}(c
4
−3)+2s4 tr(D2 )]/tr(D)2, (9)

where g= (g(x
1
), . . . , g(x

n
))T , diag(D) denotes the diagonal matrix of the diagonal elements

of D, u= (1, . . . , 1)T and c
i
=E{(e/s)i}, for i=3, 4. The first term in (9) is the squared bias
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and the last four terms make up the variance. When the random errors are normally
distributed, the second and the third terms are both equal to zero. In the Appendix we
will prove the following theorem.

T 2. Assume that g has a bounded second derivative. For the equally spaced design
with m�2 and m/n� 0, we obtain

 (s@2 )=
1

n
var(e2 )+

9

4nm
s4+

9m

112n2
var(e2 )+oA 1nmB+oAmn2B+OAm6n6 B . (10)

The last term in (10) comes from the bias and the remaining terms come from the
variance. Theorem 2 indicates that s@2 is a consistent estimator of s2. The asymptotically
optimal bandwidth is mopt={28ns4/var(e2 )}D. It is obvious that {s@2 (mopt )} satisfies (4).

3. S     

3·1. Finite-sample choice of the bandwidth

In our comparisons, we evaluate the performance of the Rice, Gasser et al., Hall et al.,
Müller et al. and our estimators. For simplicity of notation, we assume that random
errors are normally distributed with mean zero and variance s2. Then var(e2 )=2s4 and
mopt= (14n)D. This optimal bandwidth is obtained under the conditions that g has a
bounded second derivative, m�2 and m/n� 0. Note that mopt does not depend on g.
However, some terms of slightly higher order ignored in the mean squared error (10) do
depend on the smoothness of the function, and therefore the asymptotic optimal bandwidth
applies for very large n only. For small to moderate n, we find that mopt= (14n)D is too
large, and we now discuss three strategies for selecting m in these situations.
Note that the dominant term in (10), var(e2 )/n, cannot be reduced. Let h(m)=
9s4/(4nm)+9ms4/(56n2 ) be the two higher-order terms. Our first strategy is to select the
smallest m=cnD such that h(m)/h(mopt )∏1+l, where 100l% is the percentage of increase
in the higher-order terms. It is easy to check that m={1+l− (l2+2l)D}(14n)D. Note
that the convergence rate of mean squared error remains the same. Our simulations in
§ 3·2 indicate that m=nD with lj1 works very well. Let ms=nD. The increases in mean
squared error are in the higher-order terms, and therefore the overall increase is usually
not large.
Simulations in § 3·2 indicate that ms=nD is still too large when n is small and g is
rough. The poor performance in these situations is usually caused by large bias. Our
second strategy for selecting m is to control bias such that bias(s@2 )=O(n−2 ). If we
take m=cnt, then bias(s@2 )=O(n−3+3t ). It is easy to see that the largest t such that
bias(s@2 )=O(n−2 ) is t=13 . This suggests choosing m=mt=n1/3. Simulations in § 3·2
indicate that mt performs well when n is small and g is rough. For mt=n1/3, {s@2 (mt )}=
2s4/n+9n−4/3s4/4+o(n−4/3 ), which still satisfies (3).
An alternative approach is to use a data-driven method such as V -fold crossvalidation
(Müller et al., 2003). We split the whole dataset into V disjoint subsamples, S1 , . . . , SV ,
we let s@2

v
(m) be the estimate of s2 based on the subsample

îNv
S
i
with bandwidth m, and

we select m=mCV to minimise

 (m)= ∑
V

v=1
{s@2 (m)−s@2

v
(m)}2. (11)

Note that the design points in
îNv
S
i
are usually not equally spaced, and the s@2

v
(m) are

computed using (12), see § 4, for the general design.
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3·2. Simulation results

As in Seifert et al. (1993) and Dette et al. (1998), our simulations are based on
g(x)=5 sin(vpx), with design points x

i
= i/n and independent and identically distributed

Gaussian random errors e
i
with mean zero and variance s2. We consider v=1, 2 and 4,

corresponding to low, moderate and high oscillations respectively, three standard
deviations, s=0·5, 1·5, 4, and three sample sizes, n=15, 100, 500.
For each simulation setting, we generate observations and compute the estimators s@2R ,
s@2GSJ , s@2HKT (m), s@2MSW , s@2 (ms ), s@2 (mt ) and s@2 (mCV ). We repeat this process 10 000 times and
compute mean squared errors for each method. The order m in s@2HKT (m) acts as a tuning
parameter which depends on the unknown function g. We set m=2 in our simulations,
so that

s@2HKT (2)=
1

n−2
∑
n−2

i=1
(0·8090y

i
−0·5y

i+1
−0·3090y

i+2
)2.

As in Müller et al. (2003), we compute the weights in s@2MSW using a kernel density estimate
for the variable x and select the bandwidth b for the kernel density estimate by cross-
validation using (11). We also compute mCV for our estimator, based on leave-one-out
crossvalidation for n=15 and n=100, and 10-fold crossvalidation for n=500. For
s@2MSW , we take bµ{0·08k, k=1, . . . , 5} for n=15, bµ{0·012k, k=1, . . . , 10} for n=100
and bµ{0·0025k, k=1, . . . , 30} for n=500. For our method, we take mµ{1, . . . , 5} for
n=15, mµ{1, . . . , 10} for n=100 and mµ{1, . . . , 30} for n=500.
Table 1 lists relative mean squared errors, n/(2s4 ), for all methods for n=100 and

n=500. In general, 
s@2(m
CV
)
j

s@2(m
s
)
<

s@2
HKT
(2)
<

s@2
R

<
s@2
GSJ

for most cases. We
find that s@2 (mCV ) and s@2 (ms ) have smaller mean squared errors than s@2MSW in most
settings. The comparative performance of s@2 (ms ), s@2 (mt ) and s@2 (mCV ) depends on the

Table 1: Simulation study. Relative mean squared errors of various
estimators.

n v s s@2R s@2GSJ s@2HKT (2) s@2MSW s@2 (ms ) s@2 (mt ) s@2 (mCV )

100 1 0·5 1·56 1·98 1·43 6·06 1·19 1·36 1·18
1·5 1·51 2·03 1·22 1·31 1·12 1·35 1·14
4 1·53 2·00 1·24 1·09 1·14 1·34 1·19

2 0·5 2·00 2·01 4·09 15·11 1·81 1·38 1·30
1·5 1·52 2·02 1·30 2·95 1·14 1·36 1·15
4 1·45 1·95 1·31 1·15 1·15 1·36 1·19

4 0·5 9·06 1·96 48·24 50·63 26·77 1·52 5·51
1·5 1·54 2·01 1·84 6·67 1·46 1·36 1·28
4 1·58 1·98 1·24 1·68 1·15 1·35 1·20

500 1 0·5 1·48 1·94 1·24 1·96 1·06 1·21 1·14
1·5 1·48 1·94 1·23 1·14 1·05 1·18 1·15
4 1·52 1·96 1·28 1·09 1·05 1·18 1·12

2 0·5 1·49 1·93 1·27 2·48 1·06 1·16 1·16
1·5 1·53 1·98 1·29 1·63 1·05 1·17 1·17
4 1·48 1·94 1·23 1·12 1·06 1·18 1·11

4 0·5 1·58 1·97 1·65 4·04 1·51 1·18 1·24
1·5 1·50 1·95 1·26 2·43 1·07 1·17 1·18
4 1·51 1·96 1·26 1·36 1·04 1·16 1·11
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smoothness of g, the sample size and the signal-to-noise ratio: s@2 (mCV ) and s@2 (ms )
have slightly smaller mean squared errors than that of s@2 (mt ) except for the cases
(n, v, s)= (100, 2, 0·5), (100, 4, 0·5), (500, 4, 0·5), in which g is rough and s is small.
Performance when n is small is illustrated in Table 2 for n=15, with squared biases
and variances rescaled by multiplying by n/(2s4 ). Mean squared errors of s@2 (ms ) and
s@2HKT (2) are dominated by biases when g is rough, and s@2GSJ has much smaller biases, and
thus much smaller mean squared errors, in these situations. Similar comparative results
were reported in Seifert et al. (1993) and Dette et al. (1998): s@2HKT (2) performs better when
g is flat and/or n is large, while s@2GSJ performs better when the opposite is true. As discussed
in § 3·1, the approximate optimal rate of m, nD, requires a large n or a smooth g. When g
is rough and n is small, ms=nD is too large and this leads to large biases. One option is
to control bias using mt=n1/3, as discussed in § 3·1. As expected, s@2 (mt ) reduces the bias
with small increase in the variance. Though the performance of s@2 (mt ) is a little worse
than that of s@2 (ms ) for other cases, it performs well when s@2 (ms ) fails, and we therefore
recommend s@2 (mt ) when the sample size is small and either g is rough or little is known
about g.

Table 2: Simulation study. Relative mean squared errors, , squared
biases, Bias2, and variances, Var, for n=15.

v s s@2R s@2GSJ s@2HKT (2) s@2MSW s@2 (ms ) s@2 (mt ) s@2 (mCV )

1 0·5  9·68 2·15 42·68 32·16 2·93 2·44 7·51
Bias2 7·73 0·00 39·67 25·33 0·87 0·11 4·12
Var 1·95 2·15 3·01 6·83 2·06 2·33 3·39

1·5  1·73 2·17 2·08 2·53 1·67 2·13 1·38
Bias2 0·10 0·00 0·50 0·66 0·01 0·00 0·01
Var 1·63 2·17 1·58 1·87 1·66 2·13 1·37

4  1·57 2·16 1·43 1·25 1·60 2·07 1·29
Bias2 0·00 0·00 0·01 0·00 0·00 0·00 0·02
Var 1·57 2·16 1·42 1·25 1·60 2·07 1·27

2 0·5  125·88 2·78 616·81 230·15 20·09 5·67 66·83
Bias2 122·39 0·62 607·19 206·58 16·67 2·51 33·72
Var 3·49 2·16 9·62 23·57 3·42 3·16 33·11

1·5  3·34 2·20 9·84 9·48 1·98 2·21 2·65
Bias2 1·55 0·01 7·54 5·75 0·20 0·03 0·93
Var 1·79 2·19 2·30 3·73 1·78 2·18 1·72

4  1·66 2·18 1·71 1·66 1·63 2·11 1·32
Bias2 0·03 0·00 0·15 0·16 0·01 0·00 0·00
Var 1·63 2·18 1·56 1·50 1·62 2·11 1·32

4 0·5  1876·20 117·49 8006·20 5222·90 848·50 118·42 1890·30
Bias2 1860·60 114·01 7949·80 4928·50 836·00 111·90 1868·00
Var 15·60 3·48 56·40 294·40 12·50 6·52 22·30

1·5  26·35 3·72 105·72 70·88 13·08 3·82 35·64
Bias2 23·22 1·41 98·16 60·10 10·25 1·33 28·32
Var 3·13 2·31 7·56 10·78 2·83 2·49 7·32

4  2·25 2·18 4·24 3·62 1·96 2·16 2·45
Bias2 0·47 0·03 1·97 1·37 0·22 0·03 0·53
Var 1·78 2·15 2·27 2·25 1·74 2·13 1·92
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For the equally spaced design, it is clear that s@2 (1)=s@2R ; that is, the Rice estimator is
a special case of our estimator with m=1. One interesting observation from simulations
is that s@2 (2)js@2GSJ when s2 is not very small. In theory it is easy to show that the dominant
term of {s@2 (2)} is 35s4/(9n), which is exactly the same as that of s@2GSJ . We have
performed many more simulations with different mean functions, signal-to-noise ratios
and sample sizes; the comparative conclusions remain the same.

4. D

Most difference-based methods in the literature focus on univariate x, although
some extensions to multivariate x have recently been developed (Kulasekera & Gallagher,
2002; Müller et al., 2003): Kulasekera & Gallagher (2002) required an artificial ordering
of the design points in xµ[0, 1]d; Müller et al. (2003) required weights to satisfy certain
conditions and specific weights based on kernel density estimation were constructed
for univariate x only; and Spokoiny (2002) proposed a residual-based estimator for
multivariate x.
Our estimator is different from existing residual-based and difference-based estimators.

Most existing difference-based estimators require the design points to be ordered. It is
thus difficult to extend these methods to high-dimensional or general domains since there
is no clear ordering in these scenarios. In addition, for asymptotic theory, design points
are assumed to satisfy max |x

i
−x
i−1
|=O(n−1+d ), where 0<d<1

2
for s@2HKT and d=0 for

s@2R and s@2GSJ . In practice, unequally spaced designs may have clusters, tied design points
and/or large gaps between neighbouring design points, so that it may not hold that
max |x

i
−x
i−1
|=O(n−1+d ).

We now provide an alternative derivation of our estimator which extends naturally to
a general domain. The basic idea is to collect squared distances, d

ij
= (x
i
−x
j
)2, for all

pairs {x
i
, x
j
}, and half squared differences, s

ij
= (y
i
−y
j
)2/2, for all pairs {y

i
, y
j
}, and then

regress s
ij
on d
ij
using paired design points which are close to each other. To be specific,

we fit the following simple linear model,

s
ij
=a+bd

ij
+e
ij
(d
ij
∏M), (12)

by least squares, where M>0 is the bandwidth. The estimator of s2 is s@2=a@ . For uni-
variate x with x

i
= i/n and M= (m/n)2, it is not difficult to check that s@2 reduces to the

weighted least squares estimator proposed in § 2·2. Note that the above derivation only
needs the distances between design points; no ordering is required. Therefore, to extend
our method to a general domain T, where T is an arbitrary subset of a normed space,
we let d

ij
=dx

i
−x
j
d2 and proceed as above. Interesting examples of T are Rd, the unit

circle and the unit sphere. Since we use pairs of points which are close together, our
method does not require dense design points in the whole domain, thus avoiding the curse
of dimensionality problem in high-dimensional space and allowing sizeable gaps between
some design points. Further research is necessary to investigate the properties of our
estimator for a general domain and to develop methods for selecting the bandwidth M.
One simple approach is to plot d

ij
against s

ij
and determine an appropriate range for the

approximate linear relationship, or to suggest a different parametric relationship. Another
future research topic is to fit (12) using weighted least squares with weights that decrease
as distances increase. This might improve the performance and make our estimator less
sensitive to the choice of the bandwidth.
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A

Proof of T heorem 2

We provide a sketch of the proof only. Details of the proof and the proof of Theorem 1 can be
found in a technical report available at http://www.pstat.ucsb.edu/faculty/yuedong/research.

Asymptotic bias. Instead of using the formula bias(s@2 )=gTDg/tr(D), we calculate this quantity
directly from (8), thereby obtaining a more accurate approximation. Let I

t
=Wm
k=1
kt , for

t=1, 2, . . . . It is not difficult to check that

E(s:w )=s2+{I2/(Nn)−I3/(Nn2 )}J+O(m3/n3 ), d
:
w
=I
2
/(Nn)−I

3
/(Nn2 )=m2/(3n2 )+o(m2/n2 ),

∑
m

k=1
w
k
(d
k
−d:
w
)2=I

4
/(Nn3 )−I

5
/(Nn4 )−{I

2
/(Nn)−I

3
/(Nn2 )}2=4m4/(45n4 )+o(m4/n4 ),

∑
m

k=1
w
k
(d
k
−d:
w
)Es
k
=J[I

4
/(Nn3 )−I

5
/(Nn4 )−{I

2
/(Nn)−I

3
/(Nn2 )}2]+O(m5/n5 ).

Therefore,

E(s@2 )=E(s:w )−
d:
w

Wm
k=1
w
k
(d
k
−d:
w
)2
∑
m

k=1
w
k
(d
k
−d:
w
)Es
k
=s2+OAm3n3 B .

Asymptotic variance. It can be shown that gTD2g=O(m5/n2 ), gT{D diag(D)u}=O(m4/n),
tr{diag(D)2}=4nm2−103m3/28+o(m3 ) and tr(D2 )=4nm2−103m3/28+9nm/2+o(m3 )+o(nm).
Together with the fact that s4 (c4−3)=var(e2 )−2s4, we have

var(s@2 )=
1

{tr(D)}2
[4s2gTD2g+4gT{D diag(D)u}s3c

3
+s4tr{diag(D)2}(c

4
−3)+2s4tr(D2 )]

=
1

n
var(e2 )+

9

4nm
s4+

9m

112n2
var (e2 )+oA 1nmB+oAmn2B .

Asymptotic mean squared error. The proof of (10) can be obtained immediately from the
asymptotic bias and variance.
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