
Biostatistics (2015), 16, 1, pp. 189–204
doi:10.1093/biostatistics/kxu029
Advance Access publication on June 23, 2014

Bias and variance reduction in estimating the proportion
of true-null hypotheses

YEBIN CHENG

School of Statistics and Management, Shanghai University of Finance and Economics,
Shanghai, PR China

DEXIANG GAO

Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA

TIEJUN TONG∗

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong

tongt@hkbu.edu.hk

SUMMARY

When testing a large number of hypotheses, estimating the proportion of true nulls, denoted by π0, becomes
increasingly important. This quantity has many applications in practice. For instance, a reliable estimate
of π0 can eliminate the conservative bias of the Benjamini–Hochberg procedure on controlling the false
discovery rate. It is known that most methods in the literature for estimating π0 are conservative. Recently,
some attempts have been paid to reduce such estimation bias. Nevertheless, they are either over bias cor-
rected or suffering from an unacceptably large estimation variance. In this paper, we propose a new method
for estimating π0 that aims to reduce the bias and variance of the estimation simultaneously. To achieve this,
we first utilize the probability density functions of false-null p-values and then propose a novel algorithm
to estimate the quantity of π0. The statistical behavior of the proposed estimator is also investigated. Finally,
we carry out extensive simulation studies and several real data analysis to evaluate the performance of the
proposed estimator. Both simulated and real data demonstrate that the proposed method may improve the
existing literature significantly.

Keywords: Effect size; False-null p-value; Microarray data; Multiple testing; Probability density function; Upper tail
probability.

1. INTRODUCTION

When testing a large number of hypotheses, estimating the proportion of true nulls, denoted by π0, becomes
increasingly important. Studies using high-throughput techniques and microarray experiments that identify
genes expressed differentially across groups, often involve testing hundreds or thousands of hypotheses
simultaneously. In addition to identifying differentially expressed genes, we may also want to know the
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proportion of genes that are truly differentially expressed, i.e., the value of π0. This quantity has many
applications in practice. For instance, a reliable estimate of π0 can eliminate the conservative bias of the
Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995) on controlling the false discovery rate,
and therefore increase the average power (Storey, 2002; Nguyen, 2004). A good estimate of π0 can also
sharpen the Bonferroni-type family-wise error controlling procedures to improve the power and reduce
the false negative rate (Hochberg and Benjamini, 1990; Finner and Gontscharuk, 2009). Besides the broad
applications, π0 is also a quantity of interest that has its own right (Langaas and others, 2005).

The estimation of π0 was pioneered in Schweder and Spjøtvoll (1982), where a graphical method was
applied to evaluate a large number of tests on a plot of cumulative p-values using the observed significance
probabilities. They claimed that the points on the graph corresponding to the true-null hypotheses should
fall on a straight line and that this line can then be used to estimate π0. Their method was further studied
in Storey (2002) and Storey and others (2004). Since then, there is a rich body of literature on the estima-
tion of π0. For instance, Langaas and others (2005) proposed a new method for estimating π0 based on
a nonparametric maximum likelihood estimation of the p-value density, subject to the restriction that the
density is decreasing or convex decreasing. In general, their convex density estimator based on a convex
decreasing density estimation outperforms other estimators with respect to the mean squared error (MSE).
Other significant works in estimating π0 include: the smoothing spline method in Storey and Tibshirani
(2003), the moment-based methods in Dalmasso and others (2005) and Lai (2007), the histogram methods
in Nettleton and others (2006) and Tong and others (2013), the nonparametric method in Wu and others
(2006), the average estimate method in Jiang and Doerge (2008), and the sliding linear model method in
Wang and others (2011), among many others.

Assume that the test statistics are independent of each other. A straightforward model for the p-values
is a two-component mixture model,

f (p) = π0 + (1 − π0)h(p), 0 � p � 1, (1.1)

where the p-values under the null hypotheses follow the uniform distribution on [0, 1], and the p-values
under the false-null hypotheses follow the distribution h(p). Due to the unidentifiability problem
(Genovese and Wasserman, 2002, 2004), most existing methods aforementioned have targeted to estimate
an identifiable upper bound of π0, that is π̄0 = π0 + inf ph(p). As a consequence, those estimators always
overestimate π0 and we refer to them as conservative estimators. To obtain the identifiability in model
(1.1), we need to make some assumptions on the density h(p). For instance, if inf ph(p) = 0 or if h(p) has
a parametric form, the model will be identifiable and so we can estimate π0 directly rather than the upper
bound. Recently, some attempts have been made to the estimation of π0, with a main focus on reducing
the estimation bias (Pawitan and others, 2005; McLachlan and others, 2006; Ruppert and others, 2007;
Qu and others, 2012). In particular, by assuming that absolute values of the noncentrality parameters
(NCPs) from the false-null hypotheses follow a smooth distribution with density g, Ruppert and others
(2007) developed a new methodology that combines a parametric model for the p-values given the NCPs
and a nonparametric spline model for the NCPs. The quantity π0 and the coefficients in the spline model
were then estimated by penalized least squares. In simulation studies, the authors demonstrated that their
proposed estimator has the ability to reduce the bias in estimating π0. More recently, their method was
improved by Qu and others (2012) where the authors applied some new nonparametric and semipara-
metric methods to the estimation of the NCPs distribution. We refer to these estimators as bias-reduced
estimators.

Though the existing bias-reduced estimators have significant merit in reducing the estimation bias, we
note that the variations of these estimators are usually considerably enlarged. As reported in Tables 1 and 2
in Qu and others (2012), the interquartile ranges of their estimators are often more than twice as large
as the other competitors. In addition, we observe that their estimators only perform well when the NCPs
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are concentrated around 0, i.e., when a majority of false nulls have very weak signals. In the situation of
microarray data analysis, to make their estimators work a large proportion of false-null genes need to be
weakly differentially expressed. Otherwise, their estimators tend to be over bias corrected (see Section 5
for more detail). In this paper, we propose a new method for estimating π0 that aims to reduce the bias and
variance of the estimation simultaneously. To achieve this, we first utilize the probability density functions
of false-null p-values and then propose a novel algorithm to estimate the quantity of π0. Simulation studies
will show that the proposed method may improve the existing literature significantly.

The rest of the paper is organized as follows. In Section 2, we introduce a bias-corrected method for
estimating π0 that aims to reduce the bias and variance simultaneously. In Section 3, we derive the prob-
ability density functions of false-null p-values for testing two-sided hypotheses with unknown variances.
In Section 4, we propose an algorithm for estimating π0 and investigate the behavior of the proposed esti-
mator. We then evaluate the performance of the proposed estimator via extensive simulation studies in
Section 5 and several microarray data sets in Section 6. Finally, we conclude the paper in Section 7 and
provide the technical proofs in Appendices of supplementary material available at Biostatistics online.

2. MAIN RESULTS

Let p1, . . . , pm be the p-values corresponding to each of m total hypothesis tests. Let M0 (size m0) denote
the set of true-null hypotheses and M1 (size m1) denote the set of false-null hypotheses. Then m = m0 +
m1 and π0 = m0/m. To avoid confusion, we define the “true-null p-values” as p-values from hypothesis
tests in which the null was correct, and the “false-null p-values” as p-values from hypothesis tests in
which the null was false. For a given λ ∈ (0, 1), define W (λ) = #{pi > λ} to be the total number of p-
values on (λ, 1], W0(λ) = #{true-null pi > λ} to be the total number of true-null p-values on (λ, 1], and
W1(λ) = #{false-null pi > λ} to be the total number of false-null p-values on (λ, 1]. By definition, we
have W (λ) = W0(λ) + W1(λ). In addition, we have E[W0(λ)] = mπ0(1 − λ) since the true-null p-values
are uniformly distributed in [0, 1]. This suggests we estimate π0 by

π̂0(λ) = W0(λ)

m(1 − λ)
. (2.1)

However, (2.1) is not a valid estimator as W0(λ) is unobservable in practice.
Note that the false-null p-values are more likely to be small. Thus for a reasonably large λ, the majority

of p-values on (λ, 1] should correspond to true-null p-values and so W0(λ) ≈ W (λ). By this, Storey (2002)
proposed to estimate π0 by

π̂ S
0 (λ) = W (λ)

m(1 − λ)
, (2.2)

where λ is the tuning parameter. We refer to π̂ S
0 (λ) as the Storey estimator. For any 0 < λ < 1, it is easy to

verify that

E[π̂ S
0 (λ)] = E(W0(λ))

m(1 − λ)
+ E(W1(λ))

m(1 − λ)
= π0 + E(W1(λ))

m(1 − λ)
� π0.

This shows that π̂ S
0 (λ) always overestimates π0, and therefore, is a conservative estimator of π0. The con-

servativeness of π̂ S
0 (λ) can be rather significant when the sample size and/or the effect sizes of false-null

hypotheses are small.
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192 Y. CHENG AND OTHERS

2.1 New methodology

We now propose a bias-corrected method for estimating π0. For each false-null p-value with effect size
δi , let fδi (p) be the probability density function and Qδi (λ) = P(pi > λ) = ∫ 1

λ
fδi (p) dp be the upper tail

probability on (λ, 1]. By the definition of W1(λ), we have

E[W1(λ)] =
∑

i∈M1

Qδi (λ) = m(1 − π0)Q(λ), (2.3)

where Q(λ) = ∑
i∈M1

Qδi (λ)/m1 = ∑
i∈M1

Qδi (λ)/[m(1 − π0)] is the average upper tail probability
for all false-null p-values. By (2.3) and the fact that E[W0(λ)] = mπ0(1 − λ), we have E[W (λ)] =
E[W0(λ)] + E[W1(λ)] = mπ0(1 − λ) + m(1 − π0)Q(λ). This leads to

π0 = E[W (λ)] − m Q(λ)

m(1 − λ) − m Q(λ)
. (2.4)

Let Q̂(λ) be an estimate of Q(λ). By (2.4), we propose a new estimator of π0 as

π̂U
0 (λ) = W (λ) − m Q̂(λ)

m(1 − λ) − m Q̂(λ)
. (2.5)

Note that π̂U
0 (λ) is not guaranteed to be within [0, 1] in practice. As in Storey (2002), we truncate

π̂U
0 (λ) to 1 if π̂U

0 (λ) > 1, and round π̂U
0 (λ) to 0 if π̂U

0 (λ) < 0. This leads to the estimator to be
min{1, max{0, π̂U

0 (λ)}}.
The term Q̂(λ) serves as a regularization parameter of the proposed estimator. When Q̂(λ) = 0, π̂U

0 (λ)

reduces to π̂ S
0 (λ). When Q̂(λ) > 0, in Appendix C of supplementary material available at Biostatistics

online we show that

min

{
1, max

{
0,

W (λ) − m Q̂(λ)

m(1 − λ) − m Q̂(λ)

}}
< min

{
1,

W (λ)

m(1 − λ)

}

for any λ ∈ (0, 1). That is, the proposed estimator is always less conservative than Storey’s estimator for
any λ. More discussion on Q̂(λ) is given in Sections 3 and 4.

Finally, in addition to the bias elimination, we apply the average estimate method in Jiang and Doerge
(2008) to further reduce the estimation variance. Specifically, let � = {a + k(b − a)/τ, k = 0, . . . , τ }
where 0 < a < b < 1 and τ is an integer value. We then compute π̂U

0 (λ) for each λ ∈ � and take their
average as the final estimate,

π̂U
0 = 1

J

∑
λ j ∈�

min{1, max{0, π̂U
0 (λ j )}}, (2.6)

where J = τ + 1 is the number of λ contained in the set �. We note that the average estimate method is
very robust when the independence assumption is violated.

2.2 Choice of the set �

Needless to say, the set � may play an important role for the proposed estimator. In what follows we
investigate the choice of an appropriate set � in practice. Recall that for the estimator π̂ S

0 (λ) in (2.2), there
is a severe bias-variance trade-off on the tuning parameter λ. Specifically, (i) when λ → 0, the variance of
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π̂ S
0 (λ) is smaller but the bias increases; and (ii) when λ → 1, the bias of π̂ S

0 (λ) is smaller but the variance
increases. In practice, the optimal λ is suggested to be the one that minimizes the MSE and is implemented
by a bootstrap procedure in Storey and others (2004).

We note that, unlike the Storey estimator π̂ S
0 (λ), the proposed estimator π̂U

0 (λ) in (2.5) has little bias and
does not suffer a severe bias-variance trade-off along with the choice of λ. Thus, to choose an appropriate
λ value, we can aim to minimize the variance of the estimator only. Simulations (not shown) indicate that
the variance of π̂U

0 (λ) is usually larger when λ is near 0 or 1 than when it is near the middle of the range.
In addition, from a theoretical point of view, we found that limλ→0[m(1 − λ) − m Q̂(λ)] = limλ→1[m(1 −
λ) − m Q̂(λ)] = 0 for the proposed Q̂(λ) in Section 4.1. Recall that m(1 − λ) − m Q̂(λ) is the denominator
of (2.5). This implies that π̂U

0 (λ) may not be stable and may have a large variation when λ is near 0 or 1.
That is, to make π̂U

0 (λ) a good estimate the λ value should not be too small or large. In Appendix D of
supplementary material available at Biostatistics online, a simulation study is conducted that investigates
how sensitive the method is to the choice of boundaries a, b and τ . According to the simulation results,
we apply the set � = {0.20, 0.25, . . . , 0.50} throughout the paper.

3. PROBABILITY DENSITY FUNCTION OF FALSE-NULL p-VALUES

Given the set �, to implement the estimator (2.6) we need to have an appropriate estimate for the unknown
quantity Q(λ). To achieve this, we need to have the probability density functions fδi (p) for each false-null
p-value with effect size δi , where i ∈M1. For ease of notation, in this section we will not specify the
subscript i in effect sizes unless otherwise specified. Our aim is then to determine the probability density
function fδ(p) of a false-null p-value with effect size δ.

For the one-sample comparison, let X1, . . . , Xn be a random sample of size n from a normal distribution
with mean μ and variance σ 2. Let X̄ = ∑n

i=1 Xi/n be the sample mean, S2 = ∑n
i=1(Xi − X̄)2/(n − 1) be

the sample variance, and δ = μ/σ be the effect size. For testing the one-sided hypothesis

H0 : μ = 0 versus H1 : μ > 0, (3.1)

Hung and others (1997) assumed a known σ 2 and considered the test statistic T = √
n X̄/σ . Under H0, the

test statistic T follows a standard normal distribution. This yields a p-value of p = 1 − �(t), where t is
the realization of T and �(·) is the probability function of the standard normal distribution. Under H1, T
is normally distributed with mean

√
nδ and variance 1. Then, by Jacobian transformation, for given n and

δ the probability density function of p is

fδ(p) = φ(z p − √
nδ)

φ(z p)
, 0 < p < 1, (3.2)

where z p is the (1 − p)th percentile of the standard normal distribution. Further, we have

Qδ(λ) =
∫ 1

λ

φ(z p − √
nδ)

φ(z p)
dp = �(zλ − √

nδ), 0 < λ < 1. (3.3)

Needless to say, the assumption of known variances and also the restriction to one-sided tests in
Hung and others (1997) limited its application in testing the differential expression of genes. The small
sample size in such studies can be another concern. Hence, to accommodate the needs of microarray stud-
ies, we extend their method to the two-sided testing problems with unknown variances.
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194 Y. CHENG AND OTHERS

3.1 Two-sided tests with unknown variances

We first consider the one-sample, two-sided comparison. For testing the hypothesis

H0 : μ = 0 versus H1 : μ �= 0. (3.4)

We consider the test statistic T = √
n X̄/S, where X̄ = ∑n

i=1 Xi/n and S2 = ∑n
i=1(Xi − X̄)2/(n − 1) are

the sample mean and sample variance, respectively. Let δ = μ/σ be the effect size. Under H0, the test
statistic T follows a Student’s t distribution with ν = n − 1 degrees of freedom.

The p-value for testing (3.4) is given as p = 2 − 2Fν(|t |), where t is the realization of T , ν = n − 1
and Fν(·) is the probability function of Student’s t distribution with ν degrees of freedom. Under H1, it
is easy to verify that T follows a non-central t distribution with ν degrees of freedom and NCP

√
nδ. Let

tν(p) be the (1 − p)th percentile of Student’s t distribution with ν degrees of freedom. In Appendix B of
supplementary material available at Biostatistics online, for any given n and δ, we show that the probability
density function of p is

fδ(p) = fν,
√

nδ(tν(p/2))

2 fν(tν(p/2))
+ fν,

√
nδ(−tν(p/2))

2 fν(tν(p/2))
, 0 < p < 1. (3.5)

where fν(·) is the probability density function of Student’s t distribution with ν degrees of freedom, and
fν,

√
nδ(·) is the probability density function of the non-central t distribution with ν degrees of freedom

and NCP
√

nδ. When δ = 0, both fν,
√

nδ(tν(p)) and fν,
√

nδ(−tν(p)) reduce to fν(tν(p)) so that p follows
a uniform distribution in [0, 1]. When δ �= 0, we have

Qδ(λ) = Fν,
√

nδ(tν(λ/2)) − Fν,
√

nδ(−tν(λ/2)), 0 < λ < 1, (3.6)

where Fν,
√

nδ(·) is the probability function of the non-central t distribution with ν degrees of freedom and
NCP

√
nδ.

Now we consider the two-sample, two-sided comparison. Let X11, . . . , X1n1 be a random sample of size
n1 from the normal distribution with mean μ1 and variance σ 2

1 , and X21, . . . , X2n2 be a random sample
of size n2 from the normal distribution with mean μ2 and variance σ 2

2 . Let also X̄1 = ∑n1
i=1 X1i/n1 and

X̄2 = ∑n2
i=1 X2i/n2 be the sample means for the two samples, respectively. For testing the hypothesis

H0 : μ1 = μ2 versus H1 : μ1 �= μ2, (3.7)

we consider the test statistic T = (X̄1 − X̄2)/
√

S2
pool(1/n1 + 1/n2), where S2

pool = [(n1 − 1)S2
1 + (n2 −

1)S2
2 ]/(n1 + n2 − 2) is the pooled sample variance with S2

1 = ∑n1
i=1(X1i − X̄1)

2/(n1 − 1) and S2
2 =∑n2

i=1(X2i − X̄2)
2/(n2 − 1). Under H0, T follows a Student’s t distribution with n1 + n2 − 2 degrees

of freedom. Under H1, T follows a non-central t distribution with n1 + n2 − 2 degrees of freedom and
NCP (μ1 − μ2)σ

−1√n1n2/(n1 + n2). Thus to make formulas (3.5) and (3.6) applicable to the two-sample
comparison, we only need to redefine ν, n and δ as follows: ν = n1 + n2 − 2, n = n1n2/(n1 + n2) and
δ = (μ1 − μ2)/σ . Finally, if a common variance in (3.7) is not assumed, we may apply Welch’s t-test
statistic and it follows an approximate t distribution.

4. THE PROPOSED ALGORITHM FOR ESTIMATING π0

For the one-sample comparison, an intuitive estimator of δi = μi/σi is given as δ̃i = X̄i/Si , where X̄i

is the sample mean and Si is the sample standard deviation. However, δ̃i is suboptimal as it is biased.

 at H
ong K

ong B
aptist U

niversity on January 27, 2015
http://biostatistics.oxfordjournals.org/

D
ow

nloaded from
 

http://biostatistics.oxfordjournals.org/
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Alternatively, because X̄i and Si are independent of each other, we have

E(δ̃i ) =
√

n − 1

σi
E(X̄i )E(U 1/2

i ) =
√

n − 1√
2

�(n/2 − 1)

�((n − 1)/2)
δi , (4.1)

where Ui = σ 2
i /[(n − 1)S2

i ] follows an inverse-χ2 distribution with n − 1 degrees of freedom, E(U 1/2
i ) =

�[n/2 − 1]/[
√

2 �((n − 1)/2)], and �(·) is the gamma function. By (4.1), an unbiased estimator of
δi = μi/σi is given as

δ̂i =
√

2√
n − 1

�((n − 1)/2)

�(n/2 − 1)

X̄i

Si
. (4.2)

Similarly, for the two-sample comparison, an unbiased estimator of δi = (μi1 − μi2)/σi is

δ̂i =
√

2√
n1 + n2 − 2

�((n1 + n2 − 2)/2)

�((n1 + n2 − 3)/2)

X̄i − Ȳi

Si,pool
, (4.3)

where S2
i,pool = [(n1 − 1)S2

i1 + (n2 − 1)S2
i2]/(n1 + n2 − 2) is the pooled sample variance.

4.1 Algorithm for estimating π0

For the sake of brevity, we present in this section the estimation procedure for the one-sample, two-sided
comparison only. Note that the procedure is generally applicable when estimating π0 in other settings. The
proposed algorithm for estimating π0 is as follows.

(i) For each i = 1, . . . , m, we estimate δi by the unbiased estimator δ̂i in (4.2).
(ii) For each i = 1, . . . , m and λ j ∈ �, we estimate the upper tail probability Qδi (λ j ) by

Q̂δi (λ j ) = Fν,
√

nδ̂i
(tν(λ j/2)) − Fν,

√
nδ̂i

(−tν(λ j/2)), ν = n − 1. (4.4)

We then order the values of Q̂δ1(λ j ), . . . , Q̂δm (λ j ) for each λ j such that

Q̂(1)(λ j ) � · · · � Q̂(m)(λ j ).

(iii) Let d = [m ∗ (1 − π̂ I
0 )], where π̂ I

0 is an initial estimate of π0 and [x] is the integral part of x . Then
for each λ j ∈ �, we estimate the average upper tail probability Q(λ j ) by

Q̂(λ j ) = 1

d

d∑
i=1

Q̂(i)(λ j ), (4.5)

(iv) Given the estimates Q̂(λ j ) for all λ j ∈ �, we estimate π0 by

π̂U
0 = 1

#(�)

∑
λ j ∈�

min

{
1, max

{
0,

W (λ j ) − m Q̂(λ j )

m(1 − λ j ) − m Q̂(λ j )

}}
. (4.6)
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196 Y. CHENG AND OTHERS

We note that the initial estimate of π0 may play an important role for the proposed estimation procedure.
When the initial estimate π̂ I

0 is too large, d = [m ∗ (1 − π̂ I
0 )] tends to be small and so is Q̂(λ j ). As a

consequence, the bias correction of π̂U
0 (λ j ) over π̂ I

0 (λ j ) may not be observable. On the other hand, when
the initial estimate π̂ I

0 is too small, it may result in an over bias-corrected estimate. In Appendix E of
supplementary material available at Biostatistics online, a simulation study is conducted that investigates
how sensitive the method is to the choice of the initial estimator of π0. According to the simulation results,
we adopt the bootstrap estimator π̂ B

0 in Storey and others (2004) as the initial estimate of π0 in the proposed
algorithm.

4.2 Behavior of the proposed estimator

The following result shows that the proposed estimator is always less conservative than the estimator of
Jiang and Doerge (2008).

THEOREM 1 For any given λ set �, the proposed π̂U
0 in (4.6) is a less conservative estimator of π0 than

the average estimate π̂ A
0 in Jiang and Doerge (2008), where

π̂ A
0 = 1

#(�)

∑
λ j ∈�

min

{
1,

W (λ j )

m(1 − λ j )

}
. (4.7)

The proof of Theorem 1 is given in Appendix C of supplementary material available at Biostatistics
online. In addition, under certain conditions we can show that E(π̂U

0 ) is asymptotically larger than π0 so
that the bias of π̂U

0 is not over corrected. Specifically, we assume that (i) the initial estimate π̂U
0 > π0; and

(ii) {δ̂i , i ∈M1} is a random sample from a certain distribution with a finite second moment. By (i), we
have d = [m ∗ (1 − π̂U

0 )] � m ∗ (1 − π0) = m1 and so

Q̂(λ j ) = 1

d

d∑
i=1

Q̂(i)(λ j ) � 1

m1

m1∑
i=1

Q̂(i)(λ j ) � 1

m1

∑
i∈M1

Q̂δi (λ j ).

By (ii) and by the strong law of large numbers, we have
∑

i∈M1
Q̂δi (λ j )/m1

a.s.→ Q(λ j ) as m1 → ∞. Alter-

natively if the sample size n → ∞, by (4.2) we have δ̂i
a.s.→ δi and Q̂δi (λ j )

a.s.→ Qδi (λ j ). Then for any fixed

m1,
∑

i∈M1
Q̂δi (λ j )/m1

a.s.→ Q(λ j ) as n → ∞. This shows that the proposed estimator protects from over
bias correction and so is an asymptotically conservative estimator. In this sense, the proposed estimator
improved the bias-reduced estimators in Ruppert and others (2007) and Qu and others (2012). Finally, we
hope to clarify that the assumptions made above are very strong and may not hold in practice. Further
research is warranted to investigate the statistical properties of the proposed estimator.

5. SIMULATION STUDIES

In this section, we conduct simulation studies to assess the performance of the proposed estimator under
various simulation settings. The five estimators we adopt for comparison are (i) the bootstrap estimator
π̂ B

0 in Storey and others (2004), (ii) the average estimate estimator π̂ A
0 in Jiang and Doerge (2008), (iii)

the convex estimator π̂C
0 in Langaas and others (2005), (iv) the parametric estimator π̂ P

0 in Qu and others
(2012) and (v) the proposed estimator π̂U

0 .
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5.1 Simulation setup

Consider a microarray experiment with m genes and n arrays. In this study, we set m = 1000 and consider
n = 5 and 10. The m-dimensional arrays are generated from a multivariate normal distribution with mean
vector µ = (μ1, . . . , μm)T and covariance matrix . To mimic a realistic scenario, we assume that the
covariance matrix is a block diagonal matrix such that

 =

⎛
⎜⎜⎜⎝

σ 2
1 ρ 0 · · · 0
0 σ 2

2 ρ · · · 0
...

...
. . .

...

0 0 · · · σ 2
r ρ

⎞
⎟⎟⎟⎠

m×m

,

where r = m/b and ρ = (ρ|i− j |)b×b follows an auto-regressive structure. Let b = 50 throughout the sim-
ulation studies. We consider four different values of ρ, ranging from 0, 0.4 to 0.8, to represent dif-
ferent levels of dependence. Note that ρ = 0 corresponds to a diagonal matrix and so is the situation
where all the genes are independent of each other. Finally, we simulate σ 2

1 , . . . , σ 2
r independent and

identically distributed (i.i.d) from the distribution χ2
10/10 to account for the heterogeneity of variance

in genes.
The next step is to split the m genes with m0 = mπ0 constant genes corresponding to the true-null

hypotheses, and m1 = m(1 − π0) differential expressed genes corresponding to the false-null hypotheses.
To achieve this, we first randomly sample a set of m0 numbers, denoted by I0, from the integer set S =
{1, . . . , m}. Let I1 be the complement set so that I0 ∪ I1 = S. We then assign μi = 0 for each i ∈ I0, and
simulate μi i.i.d. from the uniform distribution on the interval [0.5, 1.5] for each i ∈ I1. In other words, we
specify the mean vector as µ = {μi = 0 : i ∈ I0} ∪ {μi �= 0 : i ∈ I1}. For a complete comparison, we
consider 9 values of π0, ranging from 0.1, 0.2 to 0.9, to represent different levels of proportion of true-null
hypotheses.

For each combination of ρ and π0, we first generate µ and  using the algorithm specified above.
We then simulate the n arrays X i = (X1i , . . . , Xmi )

T, i = 1, . . . , n, independently from the multivari-
ate normal distribution with the generated mean µ and covariance matrix . To test the hypotheses
H0 : μi = 0 versus H1 : μi �= 0, we let Ti = √

n X̄i/Si , where X̄i and Si are the sample mean and sam-
ple standard deviation of gene i = 1, . . . , m, respectively. We then compute the p-values as pi = 2 −
2Fn−1(|ti |), with ti the realization of Ti , and estimate the estimators π̂ B

0 , π̂C
0 , π̂ A

0 and π̂U
0 using the

computed p-values.

5.2 Simulation results

Following the above procedure, we simulate N = 1000 sets of independent data for each combination
setting of (n, ρ, π0). For each method, we compute the MSE as

MSE(π̂0) = (π̂0̄ − π0)
2 + 1

N

N∑
i=1

(π̂
(i)
0 − π̂0̄)

2,

where π̂
(i)
0 is the estimated π0 for the i th simulated data set and π̂0̄ = ∑N

i=1 π̂
(i)
0 /N is the sample average.

We report the MSEs of the five estimators as functions of the true π0 in Figure 1 for n = 5 and 10 and ρ = 0,
0.4 and 0.8, respectively. It is evident that the proposed π̂U

0 provides a smaller MSE than the other four
estimators in most settings. Specifically, we note that (i) for small and moderate π0 values, the proposed π̂U

0
is always the best estimator and (ii) for large π0 values, the proposed π̂U

0 is in a league with π̂ A
0 and π̂C

0 that
provide the best performance. We note that the comparison results among π̂ B

0 , π̂ A
0 , and π̂C

0 remain similar
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Fig. 1. Plots of MSEs as functions of π0 for various n and ρ values, where “1” represents the bootstrap estimator
π̂ B

0 , “2” represents the average estimate estimator π̂ A
0 , “3” represents the convex estimator π̂C

0 , “4” represents the
parametric estimator π̂ P

0 , and “5” represents the proposed new estimator π̂U
0 .
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to those reported in Langaas and others (2005) and Jiang and Doerge (2008). In addition, the estimator
π̂ P

0 is always suboptimal throughout the simulations.
To visualize how the proposed method improves the existing methods, we plot the density estimates

of the distributions of the estimators in Figure 2 for n = 5 and in Figure 3 for n = 10. To save space, we
only present the results for π0 = 0.3, 0.6 and 0.9 and ρ = 0 and 0.8; the comparison patterns for other
combination settings remain similar. From the densities, we note that (i) for small π0 values such as π0 =
0.3, the proposed π̂U

0 provides to be an unbiased estimator or a slightly underestimated estimator, whereas
π̂ P

0 underestimates π0 and the other three overestimate π0; (ii) for moderate π0 values such as π0 = 0.6,
the proposed π̂U

0 proves to be an unbiased estimator or slightly overestimates π0, whereas the other four
estimators keep the pattern as that for π0 = 0.3; and (iii) for large π0 values such as π0 = 0.9, all five
estimators tend to have a small bias, whereas π̂ B

0 and π̂ P
0 perform worst due to the large variability in the

estimation. In addition, π̂U
0 and π̂C

0 perform very similarly for π = 0.9 no matter what values of n and ρ

are used. Finally, it is noteworthy that we have also conducted simulation studies for larger n values and the
comparison results remain similar. For more details, please refer to Appendix F of supplementary material
available at Biostatistics online.

6. APPLICATIONS TO MICROARRAY DATA

In this section, we apply the proposed estimator to several microarray data sets for estimating π0. The
first data set is from the experiment described by Kuo and others (2003). The objective of the exper-
iment was to identify the targets of the Arf gene on the Arf-Mdm2-p53 tumor suppressor pathway.
In this study, the cDNA microarrays were printed from a murine clone library available at St. Jude
Children’s Research Hospital. Samples from reference and Arf-induced cell lines were taken at 0, 2, 4
and 8 h. At each time point, three independent replicates of cDNA microarray were generated. There
were 5776 probe spots on each array. Only 2936 spots that passed a quality control of image analy-
sis were used for differential expression analysis. The p-values used in the study were generated by
Pounds and Cheng (2004) where p-values were computed by permutation tests (see Figure 4A for the
histogram of the p-values). The second data set is the Estrogen data and is described in the “Estrogen
2x2 Factorial Design” vignette by Scholtens and others (2004). The objective of the study was to inves-
tigate the effect of estrogen on the genes in ER+ breast cancer cells over time. The p-values of test-
ing null hypothesis of no differential expression in the presence and absence of estrogen were used in
our study (see Figure 4B for the histogram of the p-values). The third data set is the cancer cell line
experiment described by Cui and others (2005). The data set is from a cDNA microarray experiment and
the objective is to identify differentially expressed genes in two human colon cancer cell lines, CACO2
and HCT116, and three human ovarian cancer cell lines, ES2, MDAH2774 and OV1063. In total, there
were 9600 genes tested on each array. The p-values of testing differential expression among these cell
lines were then generated by fitting an analysis of variance model to each gene to account for the multi-
ple sources of variation including array, dye and sample effects (see Figure 4C for the histogram of the
p-values).

Table 1 reports the estimated values of π0 for the three data sets using the bootstrap estimator π̂ B
0 , the

average estimate estimator π̂ A
0 , the convex estimator π̂C

0 and the proposed estimator π̂U
0 , respectively. Note

that the parametric estimator π̂ P
0 in Qu and others (2012) is not reported because the two-sided t-statistics

are not available for these data sets. Among the four estimators, we observe that π̂U
0 is smaller than the

other three estimators in most cases, especially for π̂ A
0 . This is consistent with the conclusion in Theorem 1.

For the first data set, π̂U
0 is the smallest and is followed by π̂ B

0 and π̂C
0 , whereas π̂ A

0 is far above them.
For the second data set, there is a high degree of agreement among the estimators except for π̂ B

0 which
is much larger. For the third data set, π̂U

0 is similar to π̂ B
0 and π̂C

0 and is less conservative compared
with π̂ A

0 .
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Fig. 2. Density estimates of π̂0 for n = 5, where the short dashed line represents the bootstrap estimator π̂ B
0 , the dash-

dotted line represents the average estimate estimator π̂ A
0 , the dotted line represents the convex estimator π̂C

0 , the long
dashed line represents the parametric estimator π̂ P

0 , and the solid line represents the proposed new estimator π̂U
0 .
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Fig. 3. Density estimates of π̂0 for n = 10, where the short dashed line represents the bootstrap estimator π̂ B
0 , the

dash-dotted line represents the average estimate estimator π̂ A
0 , the dotted line represents the convex estimator π̂C

0 , the
long dashed line represents the parametric estimator π̂ P

0 , and the solid line represents the proposed new estimator π̂U
0 .
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Fig. 4. Histograms of p-values for the three data sets, where (A), (B), and (C) correspond to the p-values for the first,
second, and third data set, respectively.

Table 1. Estimation of π0 for the three data sets using the bootstrap estimator π̂ B
0 , the

average estimate estimator π̂ A
0 , the convex estimator π̂C

0 and the proposed estimator
π̂U

0 , respectively.

Data Set 1 Data Set 2 Data Set 3

π̂ B
0 0.447 0.944 0.486

π̂ A
0 0.658 0.884 0.583

π̂C
0 0.463 0.875 0.501

π̂U
0 0.431 0.877 0.498

7. CONCLUSION

The proportion of true-null hypotheses, π0, is an important quantity in multiple testing and has attracted a
lot of attention in the recent literature. It is known that most existing methods for estimating π0 are either
too conservative or suffering from an unacceptably large estimation variance. In this paper, we propose
a new method for estimating π0 that reduces the bias and variance of the estimation simultaneously. To
achieve this, we first utilize the probability density functions of false-null p-values and then propose a
novel algorithm to estimate the quantity of π0. The statistical behavior of the proposed estimator is also
investigated. Through extensive simulation studies and real data analysis, we demonstrated that the pro-
posed estimator may substantially decrease the bias and variance compared to most existing competitors,
and therefore, improve the existing literature significantly. Finally, we note that the paper has focused on
the estimation of π0 only. Some related questions, such as the behavior of false discovery rate using the
proposed estimator, may warrant further studies.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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Appendix A: Derivation of (14)

Note that under H1, the test statistic T follows a normal distribution with mean
√
nδ

and variance 1, where δ = µ/σ. We have

P (P ≤ p) = P (|T | ≥ zp/2)

= P (T ≥ zp/2) + P (T ≤ −zp/2)

= P (T −
√
nδ ≥ zp/2 −

√
nδ) + P (T −

√
nδ ≤ −zp/2 −

√
nδ)

= 1− Φ(zp/2 −
√
nδ) + Φ(−zp/2 −

√
nδ).

This leads to the following probability density function of p,

fδ(p) =
d

dp
P (P ≤ p)

=
ϕ(zp/2 −

√
nδ)

2ϕ(zp/2)
+

ϕ(zp/2 +
√
nδ)

2ϕ(zp/2)
.

1



Appendix B: Derivation of (17)

Note that under H1, the test statistic T follows a non-central t distribution with ν degrees

of freedom and non-centrality parameter
√
nδ, where δ = µ/σ. For the two-sided test (13),

We have

P (P ≤ p) = P (|T | ≥ tν(p/2))

= P (T ≥ tν(p/2)) + P (T ≤ −tν(p/2))

= 1− Fν,
√
nδ(tν(p/2)) + Fν,

√
nδ(−tν(p/2)).

This leads to (17) by noting that

fδ(p) =
d

dp
P (P ≤ p) =

fν,√nδ(tν(p/2))

2fν(tν(p/2))
+

fν,√nδ(−tν(p/2))

2fν(tν(p/2))
.

Appendix C: Proof of Theorem 1

To show that π̂U
0 is less conservative than π̂A

0 , it suffices to show that for each λj ∈ Λ,

min

{
1,max

{
0,

W (λj)−mQ̂(λj)

m(1− λj)−mQ̂(λj)

}}
≤ min

{
1,

W (λj)

m(1− λj)

}
.

Noting that W (λj)/[m(1− λj)] ≥ 0, to show the above inequality it suffices to show that

min

{
1,

W (λj)−mQ̂(λj)

m(1− λj)−mQ̂(λj)

}
≤ min

{
1,

W (λj)

m(1− λj)

}
. (1)

By the definition of tν(·), it is easy to see that tν(λj/2) > 0 for any 0 < λj < 1.

Thus by (22), we have Q̂δi(λj) ≥ 0 for any i and λj ∈ Λ (This can also be seen from the

definition of Qδ(λ) as the upper tail probability can not be negative). In addition, noting

that the probability density function of false-null p-value is a monotonically decreasing

function in [0, 1], we have Q̂δi(λj) < 1 − λj. Now since 0 ≤ Q̂δi(λj) < 1 − λj for each i,

by (23) we have 0 ≤ Q̂(λj) < 1 − λj. Further, we have m(1 − λj) −mQ̂(λj) > 0 which

indicates that the denominator of the estimator π̂U
0 (λj) is always positive.

Finally, to validate (1), we consider the following two cases. (a) When W (λj) ≥
m(1− λj), it is easy to see that both the left and right hand sides of (1) is 1 so that the

inequality holds. (b) When W (λj) < m(1− λj), to show (1) it suffices to show that

W (λj)−mQ̂(λj)

m(1− λj)−mQ̂(λj)
≤ W (λj)

m(1− λj)
,

which holds under the condition that m(1− λj)−mQ̂(λj) > 0.
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Appendix D

To investigate how sensitive the method is to the choice of boundaries a, b and τ , we have

conducted a new simulation study that considers the following sets of Λ:

(1) Λ1 = {0.05, 0.1, . . . , 0.5} with a = 0.05, b = 0.5 and τ = 9

(2) Λ2 = {0.1, 0.15, . . . , 0.5} with a = 0.1, b = 0.5 and τ = 8

(3) Λ3 = {0.2, 0.25, . . . , 0.5} with a = 0.2, b = 0.5 and τ = 6

(4) Λ4 = {0.2, 0.25, . . . , 0.6} with a = 0.2, b = 0.6 and τ = 8

(5) Λ5 = {0.2, 0.25, . . . , 0.7} with a = 0.2, b = 0.7 and τ = 10

(6) Λ6 = {0.2, 0.21, 0.22, . . . , 0.5} with a = 0.2, b = 0.5 and τ = 30

where Λ3 is the lambda set used in the proposed algorithm. Note also that Λ6 is a more

dense version of Λ3 with the same values of a and b, which is used to investigate whether

τ is also sensitive to the performance of the method.

With N = 1000 simulations, we report the MSEs of the estimators with the six sets of

Λ in Figure 4, and the density estimates of the distribution of the estimators in Figure 5

for π0 = 0.3, 0.6 and 0.9 and ρ = 0 and 0.8. From the simulated results, we observe that

(1) the method is not sensitive to the boundaries a and b, as long as b is not too large

(preferably not larger than 0.5); (2) the choice of τ has little effect on the performance

of the method; and (3) the set Λ used in the manuscript, i.e. Λ3, is not the best one in

terms of the MSE. Nevertheless, we decide to keep it in the paper to avoid over-rating

the proposed method.

In addition, for illustration we have also plotted the new estimator π̂U
0 with the sets

Λ3, Λ1, Λ2, Λ4 and Λ5 together with the existing methods in Figure 6. We note that no

matter which Λ set is used, the performance of the new estimator performs comparably

to most existing methods. It is also noteworthy that we have conducted simulations for

n = 5 and also for larger n values. The comparison results remain the same.

Appendix E

To investigate how sensitive the method is to the choice of the initial estimator of π0, we

have conducted a new simulation study that considers the following initial estimates of

π0:

(1) π̂I1
0 = π̂B

0 − 0.05

(2) π̂I2
0 = π̂B

0 − 0.025

3



(3) π̂I3
0 = π̂B

0

(4) π̂I4
0 = π̂B

0 + 0.025

(5) π̂I5
0 = π̂B

0 + 0.05

(6) π̂I6
0 = π0

where π̂B
0 is the bootstrap estimator in Storey et al. (2004). Note that π̂I3

0 is the initial

estimate of π0 adopted in the proposed algorithm. The initial value π̂I6
0 is added as a

reference for comparison, where the true π0 value is used as the initial estimate of π0. We

also note that the range of the selected initial values is π̂I5
0 − π̂I1

0 = 0.1. That covers a

wide range of initial estimates with most existing estimators falling in the interval.

With N = 1000 simulations, we report the MSEs of the estimators with the six initial

estimates in Figure 1, and the density estimates of the distribution of the estimators

in Figure 2 for π0 = 0.3, 0.6 and 0.9 and ρ = 0 and 0.8. From the simulated results,

we observe that (1) the choice of the initial estimator of π0 is not very sensitive to the

performance of the method, as long as the initial estimate is not too small to avoid the

over bias-correction (preferably the initial estimate is a conservative estimator); (2) the

initial estimator used in the manuscript, i.e. π̂I3
0 = π̂B

0 , is not the best one in terms of the

MSE. Nevertheless, we decided to keep it in the paper to avoid over-rating the proposed

method.

In addition, for illustration we have also plotted the new estimator π̂U
0 with the initial

estimates π̂I3
0 , π̂I2

0 , π̂I4
0 and π̂I5

0 together with the existing methods in Figure 3. We note

that no matter which initial estimate of π0 is used, the performance of the new estimator

performs at least comparably to the convex estimator π̂C
0 and is better than the others.

It is also noteworthy that we have conducted simulations for n = 5 and also for larger n

values. The comparison results remain the same.

Appendix F

In this appendix, simulation studies are conducted for larger sample sizes. Specifically,

we have reported here the result for n = 30 with two different settings of effect sizes:

(S1) simulate µi i.i.d. from U [0.5, 1.5] for each false null hypothesis,

(S2) simulate µi i.i.d. from U [0.2, 1] for each false null hypothesis,

where (S1) is the simulation setting used in the manuscript. For a larger sample size such

as n = 30, the effect sizes in (S1) may be too large so that the true null p-values and the

false-null p-values are too separated. (S2) is used to have a more reasonable setting on

the effect sizes.
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With N = 1000 simulations, we report the MSEs of the estimators in Figures 7 and

8 for the settings (S1) and (S2), respectively. We also report the density estimates of

the distribution of the estimators in Figures 9 and 10 for the settings (S1) and (S2),

respectively. From the simulated results, we note that the proposed method also perform

well under the larger sample size setting.
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Figure 1: Plots of MSEs as functions of π0 for n = 10 and three ρ values, where “1”
represents the estimator with the set Λ1, “2” represents the estimator with the set Λ2,
“3” represents the estimator with the set Λ3, “4” represents the estimator with the set
Λ4, “5” represents the estimator with the set Λ5, and “6” represents the estimator with
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