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Abstract: Nonparametric regression has been widely used to deal with nonlinearity and heteroscedasticity
in financial time series. As the ratio of the mean and standard deviation functions, the Sharpe ratio function
is one of the most commonly used risk/return measures in financial econometrics. Most existing methods
take an indirect procedure, which first estimates the mean and variance functions and then applies these two
functions to estimate the Sharpe ratio function. In practice, however, such an indirect procedure can often
be less efficient. In this article, we propose a direct method to estimate the Sharpe ratio function by local
linear regression. We further establish the asymptotic normality of the proposed estimator, apply Monte
Carlo simulations to evaluate its finite sample performance, and compare it with the indirect method. The
usefulness of our new method is also illustrated through a real data analysis. The Canadian Journal of
Statistics 50: 36–58; 2022 © 2021 Statistical Society of Canada
Résumé: La régression non paramétrique est communément utilisée pour traiter la non-linéarité et
l’hétéroscédasticité dans les séries chronologiques financières. Par ailleurs, le ratio de Sharpe est l’une
des mesures de risque/rendement les plus couramment utilisées en économétrie financière, et ce en raison
de son expression comme rapport de fonctions moyenne et écart-type. L’estimation de ce ratio se fait,
généralement, en deux temps. Les fonctions moyenne et écart-type sont d’abord évaluées, ensuite, elles
sont appliquées pour estimer le ratio de Sharpe. Mais, une telle procédure indirecte peut s’avérer moins
efficace en pratique. Comme alternative, les auteurs de cet article font appel à la régression linéaire locale
pour une estimation directe du ratio de Sharpe. En plus d’établir la normalité asymptotique de l’estimateur
proposé, ils procèdent à des études de simulation Monte Carlo afin d’examiner les performances à
distance finie de cette méthode directe, et la comparer à la méthode indirecte. Enfin, ils illustrent l’utilité
de la nouvelle méthode par le biais d’une véritable analyse de données. La revue canadienne de statistique
50: 36–58; 2022 © 2021 Société statistique du Canada
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1. INTRODUCTION

Consider a heteroscedastic nonparametric regression model

yi = 𝜇(xi) + 𝜎(xi)𝜀i, i = 1,… , n, (1)

where yi and xi are the ith observations of a response variable and an explanatory variable,
respectively, 𝜇(x) is the mean function, 𝜎(x) is the standard deviation (or volatility) function
and bounded away from zero, and 𝜀i’s are independent and identically distributed (i.i.d.) normal
errors with zero mean and unit variance. Estimation of the mean function has been extensively
studied for several decades, with the existing methods including, for example, kernel smoothing
(Härdle, 1990; Wand & Jones, 1995), smoothing splines (Wahba, 1990; Wang, 2011) and local
polynomial regression (Fan & Gijbels, 1996). The variance function is of nearly equal importance
in practice and has also been well studied in the literature (Hall & Carroll, 1989; Ruppert et al.,
1997; Fan & Yao, 1998; Yu & Jones, 2004; Yuan & Wahba, 2004; Liu, Tong & Wang, 2007;
Cai & Wang, 2008; Zhang et al., 2020).

The ratio between the mean and standard deviation functions, 𝜇(x)∕𝜎(x), is referred to as the
Sharpe ratio function. In financial econometrics, the Sharpe ratio is one of the most commonly
used statistics, expressing the ratio of the excess expected return of an investment to its return
volatility. The Sharpe ratio is also used in many other contexts, including performance attribution,
test of market efficiency and risk management. The Sharpe ratio is one of the most popular
measures of the risk-adjusted return and is often regarded as a gold standard for comparison
between different assets or trading strategies. There is a vast literature on the estimation of the
Sharpe ratio, e.g., Sharpe (1994), Lo (2002), Tang & Whitelaw (2011) and Leung, Song &
Yang (2013). On the other hand, a static Sharpe ratio with a constant standard deviation usually
oversimplifies the risk. This motivates us to consider the covariate-dependent Sharpe ratio
function, which may provide evidence of the fundamental economics underlying the economy
and asset pricing.

The Sharpe ratio function may be modelled as a linear function of time-varying market
variables such as credit spreads and yields (Mario & Santa-Clara, 2012). Existing methods for
estimating the Sharpe ratio function often follow an indirect procedure (Sharpe, 1994; Lo, 2002),
in which the mean and variance functions are estimated separately and then a ratio is applied to
estimate the Sharpe ratio function. As a consequence, such an indirect approach can often be less
efficient because the smoothing parameters are selected individually for the mean and variance
functions. To our knowledge, the only exception was the paper by Kim, Lim & Won (2018)
where the nonparametric functions were modelled using cubic splines. Specifically, by solving
a sequence of finite-dimensional convex programs with increasing dimensions, Kim, Lim &
Won (2018) concentrated only on the computational method but did not study the theoretical
properties of their proposed estimators. In this article, we propose a direct method for estimating
the Sharpe ratio function based on the local likelihood estimation, and we also develop a novel
data-driven method to select the smoothing parameters.

The rest of the article is organized as follows. In Section 2, we propose the new estimation
method for the Sharpe ratio function, together with a specific computational procedure. In
Section 3, we investigate the statistical properties of the proposed estimators and establish their
asymptotic normality. In Section 4, we conduct extensive simulations to evaluate the finite
sample performance of our new method and also compare it with the indirect method and the
method in Kim, Lim & Won (2018). In Section 5, we apply the proposed method to analyze
Treasury bill data, demonstrating that our new method is able to identify the underlying stochastic
process in terms of the Sharpe ratio and can also capture the well-known empirical evidence that
low-priced assets will always outperform high-priced ones. Finally, we conclude the paper with
a future direction in Section 6. We provide the proofs of the theoretical results in the Appendix.
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2. LOCAL LINEAR ESTIMATION

2.1. Methodology
Suppose that {(xi, yi), i = 1,… , n} are n independent realizations of (X,Y) that follow the
heteroscedastic nonparametric regression model (1). Ignoring the additive constant, the negative
log-likelihood function is given by

l(𝜇, 𝜎) =
n∑

i=1

{
1
2

[
yi − 𝜇(xi)
𝜎(xi)

]2

+ log 𝜎(xi)

}
. (2)

Let 𝑓 (x) = 𝜇(x)∕𝜎(x) be the Sharpe ratio function, and denote g(x) = −log(𝜎(x)). Thus, the
negative log-likelihood function in (2) can be represented as

l(𝑓, g) =
n∑

i=1

{1
2
[
yi exp(g(xi)) − 𝑓 (xi)

]2 − g(xi)
}
. (3)

Note that by the logarithmic transformation we have removed the positive constraint on the
standard deviation function.

With (3), our main objective is then to estimate the Sharpe ratio as the function 𝑓

that minimizes the negative log-likelihood function l(𝑓, g), where g is treated as a nuisance
function. Suppose that 𝑓 and g have continuous second derivatives. For ease of notation,
let Kh(⋅) = K(⋅∕h)∕h, where K(⋅) is a kernel function, with h > 0 being a bandwidth. Let
𝜇𝑗 = ∫ u𝑗K(u) du and 𝜈𝑗 = ∫ u𝑗K2(u) du for 𝑗 = 0, 1 and 2. In what follows, we propose to
estimate 𝑓 and g nonparametrically by the local linear estimation and apply the backfitting
method (Hastie & Tibshirani, 1990; Ansley & Kohn, 1994) for the iterative estimation. With the
current estimate 𝑓_(⋅), we minimize the negative local log-likelihood function

n∑
i=1

{1
2
[
yi exp(zT

i 𝜸) − 𝑓_(xi)
]2 − zT

i 𝜸
}

Kh2
(xi − x) (4)

with respect to 𝜸 = (𝛾0, 𝛾1)T , where zi = (1, (xi − x)∕h2)T . We then assign the minimizer of 𝛾0
as the updated estimate of g(x). With the updated estimate g_(⋅), we minimize the following
objective function:

n∑
i=1

1
2
[
yi exp(g_(xi)) − wT

i 𝜷
]2

Kh1
(xi − x) (5)

with respect to 𝜷 = (𝛽0, 𝛽1)T , where wi = (1, (xi − x)∕h1)T . Note that the term g_(x) has been
removed from (5) because of its independence of 𝜷. We update the estimate of 𝑓 (x) as the
minimizer of 𝛽0.

Note that the objective function (4) is not quadratic and there is no closed-form solution. We
will derive the Hessian matrix of (4) and show that it is positive definite in the neighbourhood
of the true value. That is, the objective function (4) is strictly convex in expectation and so a
minimizer exists. We propose to compute it by the one-step Newton–Raphson estimator (Cai,
Fan & Li, 2000), which is known to be both statistically and computationally efficient when
given a good initial estimate.

In addition, we note that the selection of the two bandwidths, h1 and h2, is crucial for the
performance of the proposed method. In this article, we apply the leave-one-out cross-validation
(LOO-CV) method to select the bandwidths separately at each iteration (Mammen & Park, 2005).
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For example, at the estimation step that solves Equation (5) for an estimate of 𝑓 , the LOO-CV
bandwidth is

h1 = arg min
h1

n∑
i=1

1
2
[yi exp(g_(xi)) − 𝑓 (−i)(xi)]2,

where 𝑓 (−i)(xi) is the updated estimate of 𝑓 based on data with the ith observation excluded.

2.2. Algorithm
To summarize the estimation procedure in Section 2.1, we have a two-step algorithm as follows:

1. Initialize: Derive an initial estimate of 𝑓 .
2. Cycle: Alternate between (a) and (b) until convergence.

(a) Conditional on the current estimate of 𝑓 , update g by minimizing the objective function
(4), in which the bandwidth h2 is selected by the LOO-CV method.

(b) Conditional on the current estimate of g, update 𝑓 by minimizing the objective function
(5), in which the bandwidth h1 is selected by the LOO-CV method.

We denote the estimates of 𝑓 and g at convergence as 𝑓 and ĝ, respectively. Moreover, for
the initial estimate of 𝑓 , we first compute the local linear estimate of 𝜇 under the homoscedastic
model where 𝜎(x) = 𝜎 is a constant function, and then set the initial estimate of 𝑓 as the ratio of
the estimated 𝜇 and residual standard deviation. We use the current estimate of g as the initial
value in the one-step Newton–Raphson procedure for updating g. This simple approach works
very well in our simulations.

3. ASYMPTOTIC PROPERTIES

In this section we study the asymptotic properties of the proposed estimators. Some regularity
conditions are needed as follows, where (C1) and (C2) are routinely assumed in the literature of
nonparametric regression and (C3) and (C4) are needed when deriving the asymptotic normality
for the proposed estimators.

(C1) The random variable X has a bounded support, and its density function 𝜑(x) is
Lipschitz-continuous and is bounded away from 0 on the support.

(C2) The kernel function K(⋅) is a symmetric density function with bounded support and satisfies
the Lipschitz condition.

(C3) Suppose that 𝑓 (⋅) and g(⋅) have a continuous third derivative.
(C4) Suppose that nh6

2 → 0, nh1h4
2 → 0 and h1∕h2 → 0.

Theorem 1. Suppose that conditions (C1)–(C4) hold and nh1h2 → ∞ as n → ∞. Then for the
Sharpe ratio function√

nh1

(
𝑓 (x) − 𝑓 (x) − 1

2
𝑓

′′ (x)𝜇2h2
1

) D
−→ N

(
0,

𝜈0

𝜑(x)

)
,

and for the nuisance function√
nh2

(
ĝ(x) − g(x) − 1

2
g′′(x)𝜇2h2

2

) D
−→ N

(
0,

𝜛(x)𝜈0

{𝑓 2(x) + 1}2𝜑(x)

)
,

where 𝜛(x) = E(𝜀4 − 2𝜀2 + 1) + 𝑓 2(x), and
D
−→ denotes convergence in distribution.
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It immediately follows from Theorem 1 that 𝑓 (x) and ĝ(x) are consistent estimators of 𝑓 (x)
and g(x), respectively. We also note that the asymptotic distribution of the estimated Sharpe
ratio function, 𝑓 (x), has the same structure as that for the local linear estimator of the mean
function. Furthermore, the asymptotic bias and variance of 𝑓 (x) are independent of the nuisance
function g(x), which results from the smoothness assumption on the Sharpe ratio function and
the approximation error from the local linear regression. For more details, see the proof of
Theorem 1 in the Appendix.

4. SIMULATION STUDY

In this section, we investigate the finite-sample performance of our proposed estimator for the
Sharpe ratio function by Monte Carlo simulations. We also compare our proposed direct method
with the indirect method, which estimates the mean and variance functions separately and then
uses the ratio to estimate the Sharpe ratio function, and with the existing direct method in
Kim, Lim & Won (2018) where the nonparametric functions were modelled using cubic splines.
As a benchmark for comparison, the oracle estimate of the Sharpe ratio function, obtained by
assuming the variance function is known, is also included in the simulations.

To assess the estimation accuracy of different methods, we compute the root integrated
squared error (RISE):

RISE(𝑓 (⋅)) =
[
∫

1

0

(
𝑓 (t) − 𝑓 (t)

)2
dt
] 1

2

.

Example 1: We generate 500 random samples from the following model as in Wang et al.
(2008) and Kim, Lim & Won (2018):

yi = 0.75 sin(b𝜋xi) + 𝜎(xi)𝜀i, i = 1,… , n,

where xi
i.i.d.∼ Uniform(0,1) and 𝜀i

i.i.d.∼ N(0, 1). We consider a factorial design with five sample
sizes: n = 25, 50, 100, 200, and 400, two different frequencies: b = 1 and 10 and two differ-
ent standard deviation functions: 𝜎1(x) = 0.5 and 𝜎2(x) =

√
(x − 1∕2)2 + 1∕2. With the above

settings, we compute the direct estimate of the Sharpe ratio function, 𝑓 (x), by the proposed
algorithm in Section 2.2. We also compute the indirect estimates as 𝑓 (x) = �̌�(x)∕

√
�̌�2(x) and

ǧ(x) = − log
(√

�̌�2(x)
)
, where �̌� and �̌�2 are estimated separately using the local linear method

and the residual-based method (Fan & Gijbels, 1996; Yu & Jones, 2004). To be more specific,
we first compute the local linear estimate �̌�(x) based on the original observations; and then
with the squared residuals ri = (yi − �̌�(xi))2 for i = 1,… , n, we estimate �̌�2(x) at the intercept
�̌�1, where

(�̌�1, �̌�2) = arg min
𝛼1,𝛼2

n∑
i=1

(ri − 𝛼1 − 𝛼2(xi − x))2Kh(xi − x),

and the bandwidth h is selected using the cross-validation method. For the oracle estimate of the
Sharpe ratio function, we first standardize model (1) as y∗ = y∕𝜎(x) = 𝑓 (x) + 𝜀, which assumes
𝜎(x) is known, and then apply the local linear method to estimate 𝑓 directly as the Sharpe ratio
function, denoted by 𝑓 ∗(x).

With 500 simulations, we compute the RISE, and present the boxplots of these RISEs in
Figure 1 for 𝜎(x) = 𝜎1(x) and in Figure 2 for 𝜎(x) = 𝜎2(x). From the boxplots in Figures 1 and 2,
it is evident that the direct method has smaller RISE than the indirect method in all settings.
The direct estimate performs nearly as well as the oracle estimate with 𝜎 known. Specifically,
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FIGURE 1: Boxplots of the root integrated squared errors (RISEs) from the estimation of
the Sharpe ratio function 𝑓 (x) when 𝜎1(x) = 0.5 in Example 1. Top: b = 1; bottom: b = 10.

Left: n = 100; middle: n = 200; right: n = 400.

for small sample sizes, our direct method still performs well compared to the indirect method.
However, there are some discarded values (NaNs) in computing RISE for the indirect method
when the sample size is smaller than 100. This is because the indirect method produced negative
variance estimates, which led to NaNs in computing 𝑓 (⋅) for x with negative variance. On
average, the indirect method has 9 out of 500 samples with negative variance estimates. It is
also noteworthy that the overall performance improves as the sample size increases. Finally,
to visualize the curve fitting, we plot in Figure 3 the true curve of the Sharpe ratio function
together with the estimated curves corresponding to the minimum, the first quartile, the median,
the third quartile and the maximum RISEs for the setting with b = 10, n = 200 and 𝜎(x) = 𝜎2(x).
It is evident that our proposed direct method is able to provide a reasonable fit for the Sharpe
ratio function. In our algorithm, we set the maximum number of iterations to be 20 and the
convergence criterion to be that the difference between the two estimates is less than 0.001. The
average number of iterations in this example is 7.4.

Example 2: This simulation example is designed to compare our method with the direct
method in Kim, Lim & Won (2018) where the nonparametric functions were modelled using
cubic splines. Following their simulation study scenario, we simulate 500 random samples from
the following model:

yi = a(xi + 2 exp(−16x2
i )) + (0.4 exp(−2x2

i ) + 0.2)𝜀i,

where xi
i.i.d.∼ Uniform(−2,2) and 𝜀i

i.i.d.∼ N(0, 1). We consider a factorial design with four sample
sizes: n = 50, 100, 200, and 400, and four different amplitudes: a = 0.5, 1, 2, and 4. Thus the
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FIGURE 2: Boxplots of the root integrated squared errors (RISEs) from the estimation of
the Sharpe ratio function 𝑓 (x) when 𝜎2(x) =

√
(x − 1∕2)2 + 1∕2 in Example 1. Top: b = 1;

bottom: b = 10. Left: n = 100; middle: n = 200; right: n = 400.

Sharpe ratio function is given by

𝑓 (x) =
a
(

xi + 2e−16x2
i

)
0.4 exp(−2x2

i ) + 0.2
.

We compare our estimator 𝑓 (⋅) with the estimate by Kim, Lim & Won (2018), denoted by 𝑓kim.
The boxplots in Figures 4 and 5 indicate that the proposed method has a smaller RISE than the
method in Kim, Lim & Won (2018) when the sample size is larger than 100. Kim, Lim & Won’s
(2018) method performs better when n = 50. It is also noteworthy that the overall performance
improves as the sample size increases. Finally, to visualize the curve-fitting, we plot in Figure 6
the true curve of the Sharpe ratio function 𝑓 (⋅) and g(⋅) with the estimated curves for the setting
with a = 0.5 and n = 200.

Overall, our proposed estimation method has a satisfactory performance in many settings.
We also note that the average number of non-convergence cases in our algorithm is 5.6 out of
500 simulations. The non-convergence cases are mainly caused by the near-singular Hessian
matrix of the objective function in (4) due to data sparsity in certain local regions or the small
bandwidth, especially when the sample size is small.

5. APPLICATION TO TREASURY BILL DATA

In this section, we apply our proposed method to analyze the 3-month US Treasury bill (T-bill)
from the secondary market rates. The 3-month T-bill rate is the yield received for investing in
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FIGURE 4: Boxplots of the root integrated squared errors (RISEs) from the estimation of the
Sharpe ratio function 𝑓 (x) in Example 2. Top: a = 0.5; bottom: a = 1. Four panels from left to

right correspond to sample size n = 50, 100, 200 and 400, respectively.
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FIGURE 5: Boxplots of the root integrated squared errors (RISEs) from the estimation of the
Sharpe ratio function 𝑓 (x) in Example 2. Top: a = 2; bottom: a = 4. Four panels from left to

right correspond to sample size n = 50, 100, 200 and 400, respectively.

a government-issued treasury security that has a maturity of 3 months. The 3-month Treasury
yield is included on the shorter end of the yield curve and is important when looking at the
overall US economy. The secondary market rates are annualized using a 360-day year of bank
interest and quoted on a discount basis. In what follows, we analyze two datasets where 𝜇 and 𝜎

represent the instantaneous expected rate of return and the volatility, respectively.
The first dataset consists of 398 monthly observations, from January 1962 to February 1995,

of the yields of the 3-month US T-bill from the secondary market rates. The data are presented in
the left panel of Figure 7, where zt denote the time series of the yields. As analyzed in Andersen
& Lund (1997), Fan & Yao (1998) and Kim, Lim & Won (2018), we first fit an autoregressive
(AR) model with the order selected by the Akaike information criterion (AIC). This leads to the
AR(3) model as

zt = 1.3869zt−1 − 0.6306zt−2 + 0.2210zt−3 + yt,

where the residuals yt are plotted against xt ≡ zt−1 in the right panel of Figure 7. We then
consider the following heteroscedastic nonparametric regression model, which is a discrete-time
approximation to a continuous-time diffusion process model (Kim, Lim & Won, 2018):

yt = 𝜇(xt) + 𝜎(xt)𝜀t,

where 𝜀t
i.i.d.∼ N(0, 1). Then, to estimate the Sharpe ratio function 𝑓 (x) = 𝜇(x)∕𝜎(x), we apply the

proposed direct method and plot in Figure 8 the estimated Sharpe ratio function and its 95%
point-wise confidence intervals obtained by the bootstrap method. From the estimated curve, the
nonlinearity with a slightly increasing trend (up to xt = 11) and then a decreasing trend can be
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FIGURE 6: Simulation results for the estimation methods in Example 2 (a = 0.5, n = 200). Top:
Kim, Lim & Won’s (2018) method; bottom: our proposed method. Left: the true Sharpe ratio
function (solid lines) together with the estimated regression curves (dotted lines); right: the true

function g(x) (solid lines) together with the estimated regression curves (dotted lines).

observed. This shows that our proposed method can capture the well-known empirical evidence
that low-priced assets always outperform high-priced ones.

The second dataset, presented in the left panel of Figure 9, consists of the yields of the
3-month US T-bill from the secondary market rates between January 2000 and July 2019.
The data can be downloaded from the webpage with the link https://fred.stlouisfed.org/series/
TB3MS, with the length of 235 for this time series {zt}. Similarly as in the first study, we also fit
an AR model with the order selected by AIC, and regressed the residuals, denoted by yt, against
xt ≡ zt−1. The residuals yt are then plotted against xt ≡ zt−1 in the right panel of Figure 9. Thus
the model that we estimate is

zt − 1.4783zt−1 + 0.5846zt−2 − 0.3552zt−3 + 0.2633zt−4 = yt = 𝜇(xt) + 𝜎(xt)𝜀t,

where E(𝜀t|xt) = 0 and Var(𝜀t|xt) = 1. To check the effectiveness of our estimation procedure,
we also plot the estimated Sharpe ratio function and its 95% point-wise confidence intervals in
Figure 10. From the fitted curve, it is clear that the Sharpe ratio function for the T-bill has a
nonlinear trend. Ignoring the damping on the left edge, which is possibly due to the boundary
effect, we obtain a similar conclusion that low-priced assets will always outperform high-priced
ones.

In order to make a more comprehensive comparison with the estimation method in Kim, Lim
& Won (2018) and evaluate the performance of the proposed method for a much shorter time
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FIGURE 7: The 3-month US Treasury bill data from January 1962 to February 1995. Left: raw
data; right: residuals after an AR(3) fit is plotted against xt = zt−1.
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FIGURE 8: The direct estimate of the Sharpe ratio function from the 3-month US Treasury bill
data (solid curve) and its 95% confidence intervals (dashed curves).

period, we select the yields of the 3-month US T-bill data from the past 5 years. This dataset
consists of 67 monthly observations, from January 2015 to July 2020. The data are presented in
the left panel of Figure 11, where zt denote the time series of the yields. Similarly, after fitting
an AR model with the order selected by AIC and regressing the residuals yt against xt ≡ zt−1, we
obtain the model

zt − 1.209zt−1 + 0.2371zt−2 = yt = 𝜇(xt) + 𝜎(xt)𝜀t,

where 𝜀t
i.i.d.∼ N(0, 1). The residuals yt are plotted against xt ≡ zt−1 in the right panel of Figure 11.

Then we apply the proposed method and Kim, Lim & Won’s (2018) method to estimate the
Sharpe ratio function, and plot the estimated Sharpe ratio function and its 95% point-wise
confidence intervals obtained by the bootstrap method in Figure 12. From the fitted curves, the
results of the two methods for analyzing T-bill data show the same trend: that is, low-priced
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FIGURE 9: The 3-month US Treasury bill data from January 2000 to July 2020. Left: raw data;
right: residuals after an AR(2) fit is plotted against xt = zt−1.
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FIGURE 10: The direct estimate of the Sharpe ratio function from the 3-month US Treasury bill
data (solid curve) and its 95% confidence intervals (dashed curves).

assets always outperform high-priced ones. Note also that our proposed method has narrower
confidence intervals, indicating that our method is more stable. Moreover, our newly proposed
method is simple to understand, easy to implement and fast to calculate.
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FIGURE 11: The 3-month US Treasury bill data from January 2015 to July 2020. Left: raw data;
right: residuals after an AR(2) fit is plotted against xt = zt−1.

0 1 2 3 4

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

x

f(x
)

0 1 2 3 4

−0
.1

0
−0

.0
5

0.
00

0.
05

0.
10

x

f(x
)

FIGURE 12: The direct estimate of the Sharpe ratio function from the 3-month US Treasury bill
data (solid curve) and its 95% confidence intervals (dashed curves). Left: our proposed method;

right: Kim, Lim & Won’s (2018) method.

6. CONCLUSION

In this article, we have proposed a direct method for estimating the Sharpe ratio function in
heteroscedastic models by local linear regression. We developed a backfitting algorithm to
compute the estimate. Extensive simulations showed that the algorithm would converge in most
cases, but exceptions occur because of the near-singular Hessian matrix of (4) caused by data
sparsity in certain local regions or by small bandwidth, especially when the sample size is small.
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Under mild conditions, we established the asymptotic normality of the proposed estimators.
Simulation results also showed that the direct method is superior to the indirect method, which
combines the separate estimates of the mean and variance functions. Moreover, our proposed
method performs better than Kim, Lim & Won’s (2018) method when the sample size is large, for
which we have the theoretical guarantee. The analysis of the 3-month US T-bill data also showed
that our proposed method can be potentially applied to identify the underlying stochastic process
in terms of the Sharpe ratio and capture the well-known empirical evidence. Finally, we note
that, for real-data analysis under the AR model, the residuals are fitted using a heteroscedastic
nonparametric regression model to estimate the Sharpe ratio function. In future research, we
will also investigate whether a more general model, e.g., a semiparametric model, is needed to
estimate the AR coefficient and the Sharpe ratio function simultaneously.
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APPENDIX

This section outlines the main steps for proving Theorem 1. Let 𝜸 = (𝛾0, h2𝛾1)T , 𝜏n = (nh2)−1∕2,
𝝃(x) = (g(x), h2g′(x))T , and 𝜸∗ = 𝜏−1

n

(
𝛾0 − g(x), h2(𝛾1 − g′(x))

)T .
If �̂� = (�̂�0, h2�̂�1)T minimizes (4), then �̂�∗ minimizes

h2

n∑
i=1

(1
2
[
yi exp(𝜏nzT

i 𝜸
∗ + zT

i 𝝃(x)) − 𝑓 (xi)
]2 − 𝜏nzT

i 𝜸
∗
)

Kh2
(xi − x)

− h2

n∑
i=1

zT
i 𝝃(x)Kh2

(xi − x)

with respect to 𝜸∗. Since the second term does not depend on 𝜸∗, it is then equivalent to saying
that �̂�∗ minimizes

𝓁n(𝜸∗) = h2

n∑
i=1

(1
2
[
yi exp(𝜏nzT

i 𝜸
∗ + zT

i 𝝃(x)) − 𝑓 (xi)
]2 − 𝜏nzT

i 𝜸
∗
)

Kh2
(xi − x). (A.1)

Note also that

yi exp(𝜏nzT
i 𝜸

∗ + zT
i 𝝃(x)) − 𝑓 (xi)

= yi exp(g(xi))
[
𝜏nzT

i 𝜸
∗ − 1

2
g′′(x)(xi − x)2 + rn(xi, 𝜸

∗)
]
+ 𝑓 (xi) − 𝑓 (xi) + 𝜀i, (A.2)

where

rn(xi, 𝜸
∗) = exp(𝜏nzT

i 𝜸
∗ + zT

i 𝝃(x) − g(xi)) − 1 − 𝜏nzT
i 𝜸

∗ + 1
2

g′′(x)(xi − x)2.

Substituting (A.2) into (A.1), 𝓁n(𝜸∗) can be decomposed as

𝓁n(𝜸∗) =
1
2
𝜸∗TAn𝜸

∗ − WT
n𝜸

∗ +
6∑

𝑗=1

Rn𝑗(𝜸∗) + Rn7,
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where

An = h2𝜏
2
n

n∑
i=1

y2
i exp(2g(xi))Kh2

(xi − x)ziz
T
i ,

Wn = h2𝜏n

n∑
i=1

[
1 − yi exp(g(xi))𝜀i +

1
2

y2
i exp(2g(xi))g′′(x)(xi − x)2

]
ziKh2

(xi − x),

Rn1(𝜸∗) =
1
2

h2

n∑
i=1

y2
i exp(2g(xi))r2

n(xi, 𝜸
∗)Kh2

(xi − x),

Rn2(𝜸∗) = 𝜏nh2

n∑
i=1

y2
i exp(2g(xi))rn(xi, 𝜸

∗)zT
i 𝜸

∗Kh2
(xi − x),

Rn3(𝜸∗) = −g′′(x)1
2

h2

n∑
i=1

y2
i exp(2g(xi))rn(xi, 𝜸

∗)(xi − x)2Kh2
(xi − x),

Rn4(𝜸∗) = h2

n∑
i=1

yi exp(g(xi))𝜀irn(xi, 𝜸
∗)Kh2

(xi − x),

Rn5(𝜸∗) = h2

n∑
i=1

yi exp{g(xi)}𝜏nzT
i 𝜸

∗{𝑓 (xi) − 𝑓 (xi)}Kh2
(xi − x),

Rn6(𝜸∗) = h2

n∑
i=1

yi exp{g(xi)}rn(xi, 𝜸
∗){𝑓 (xi) − 𝑓 (xi)}Kh2

(xi − x),

and Rn7 is a term that does not depend on 𝜸∗. This shows that �̂�∗ minimizes

𝓁n(𝜸∗) =
1
2
𝜸∗TAn𝜸

∗ − WT
n 𝜸

∗ +
6∑

𝑗=1

Rn𝑗(𝜸∗).

For An, noting that

E
[
𝜏2

n h2

n∑
i=1

y2
i exp(2g(xi))Kh2

(xi − x)
(xi − x

h2

)𝑗]
= [𝑓 2(x) + 1]𝜑(x)𝜇𝑗 + o(1),

we have

An = A + op(1), where A = [𝑓 2(x) + 1]𝜑(x)
(

1 0
0 𝜇2

)
.

Furthermore, if we can prove that Rn𝑗(𝜸∗) = oP(1) for each 𝜸∗ and 𝑗 = 1,… , 6, then

𝓁n(𝜸∗) =
1
2
𝜸∗TA𝜸∗ − WT

n 𝜸
∗ + op(1).

By the quadratic approximation theorem, we obtain

�̂�∗ = A−1Wn + op(1).
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This yields

√
nh2(�̂�0 − g(x)) =

𝜏nh2

[𝑓 2(x) + 1]𝜑(x)

n∑
i=1

[
1 − yi exp(g(xi))𝜀i +

1
2

y2
i exp(2g(xi))g′′(x)(xi − x)2

]
× Kh2

(xi − x) + op(1).

Note that

1
2

g′′(x)𝜏nh2

n∑
i=1

y2
i exp(2g(xi))(xi − x)2Kh2

(xi − x)

= 1
2
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(xi − x)
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n∑
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𝑓 (xi)𝜀i(xi − x)2Kh2
(xi − x).

By Fan & Gijbels (1996), we have

n∑
i=1

[𝑓 2(xi) + 𝜀2
i ](xi − x)2Kh2

(xi − x) = nh2
2𝜇2[𝑓 2(x) + 1]𝜑(x) + op(nh2

2),

n∑
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𝑓 (xi)𝜀i(xi − x)2Kh2
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(√
nh3

2
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.

Therefore, we have
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n∑
i=1

y2
i exp(2g(xi))(xi − x)2Kh2

(xi − x)

= 𝜏−1
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1
2
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n h2
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2
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n h2
2).

Then

1
2
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n∑
i=1

y2
i exp(2g(xi))(xi − x)2Kh2

(xi − x)

=
√

nh2
1
2

g′′(x)[𝑓 2(x) + 1]𝜑(x)𝜇2h2
2 + op

(√
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2

)
and

E
{
𝜏nh2
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i=1

[
1 − yi exp(g(xi))𝜀i
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}
= 0,

Var
{
𝜏nh2
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i=1

[
1 − yi exp(g(xi))𝜀i
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Kh2
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}
= 𝜛(x)𝜑(x)𝜈0 + o(1),
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where 𝜛(x) = E[(𝜀2 − 1)2] + 𝑓 2(x). This establishes the asymptotic distribution of the estimator
ĝ(x).

Next we shall verify that Rn𝑗(𝜸∗) = op(1) for each 𝜸∗ and 𝑗 = 1,… , 6. By the Taylor expansion

rn(xi, 𝜸
∗) = zT

i 𝝃(x) − g(xi) +
1
2

g′′(x)(xi − x)2 + 1
2

exp(𝜁i1)
[
𝜏nzT

i 𝜸
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]2
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2
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i 𝜸
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]2
,

where 𝜁i1 lies between 0 and 𝜏nzT
i 𝜸

∗ + zT
i 𝝃(x) − g(xi), and 𝜁i2, 𝜁i3 lie between x and xi.

Since K(⋅) has a bounded support, there exists a constant C1 > 0 such that K(u) = 0 for any|u| > C1. Let Nx = {i ∶ |xi − x| ≤ C1h2}. Since g′′′(⋅) is continuous in a neighbourhood of x,
when n is sufficiently large, there exists a constant C2 > 0 such that
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We can prove that
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we have Rn4(𝜸∗) = Op
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1√
nh2
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. Based on the conditions that h2 → 0, nh2 → ∞ and

nh6
2 → 0, we conclude that Rn𝑗(𝜸∗) = op(1) for each 𝜸∗ and 𝑗 = 1, 2, 3, 4. Next, we observe that
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and

|Rn6(𝜸∗)| ≤ max
i∈Nx
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∗)| sup
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|𝑓 (x) − 𝑓 (x)| = Op(nh4

2 + 1) sup
x
|𝑓 (x) − 𝑓 (x)|.

When supx |𝑓 (x) − 𝑓 (x)| = op

(
min

{
1√
nh2

,
1

nh4
2

})
, we have Rn5(𝜸∗) = Rn6(𝜸∗) = op(1).

Note that

𝑓 (x) = [1, 0](AT
x WxAx)−1AT

x WxŶ ,

where

Ax =
⎛⎜⎜⎜⎝

1 x1−x
h1

⋮ ⋮

1 xn−x
h1

⎞⎟⎟⎟⎠ , Wx =
⎛⎜⎜⎝

Kh1
(x1 − x)

⋱
Kh1

(xn − x)

⎞⎟⎟⎠ , Ŷ =
⎛⎜⎜⎝

y1 exp(ĝ(x1))
⋮

yn exp(ĝ(xn))

⎞⎟⎟⎠ ,
and 𝜷 = (𝑓 (x), h1𝑓

′ (x))T . Then

𝑓 (x) − 𝑓 (x) = [1, 0](AT
x WxAx)−1AT

x Wx(Ŷ − Ax𝛽)

=∶ n1 +n2 +n3,

where

n1 = [1, 0](AT
x WxAx)−1AT

x Wx
[
𝑓 (xi) − 𝑓 (x) − 𝑓 ′(x)(xi − x)

]
1≤i≤n ,

n2 = [1, 0](AT
x WxAx)−1AT

x Wx(𝜀i)1≤i≤n,

n3 = [1, 0](AT
x WxAx)−1AT

x Wx
{

yi[exp(ĝ(xi)) − exp(g(xi))]
}

1≤i≤n .

In addition, note that

[1, 0](AT
x WxAx)−1AT

x Wx =
1

n𝜑(x)
[Kh1

(x1 − x),… ,Kh1
(xn − x)].

Hence

n1 =
1 + op(1)

n𝜑(x)

n∑
i=1

Kh(Xi − x)
[
𝑓 (xi) − 𝑓 (x) − 𝑓 ′(x)(xi − x)

]
=

1 + op(1)
n𝜑(x)

n∑
i=1

Kh(Xi − x)
[1

2
𝑓 ′′(x)(xi − x)2 + op((xi − x)2)

]
= 1

2
𝑓 ′′(x) 1

n𝜑(x)

n∑
i=1

Kh(Xi − x)(xi − x)2(1 + op(1))

= 1
2
𝑓 ′′(x)𝜇2h2

1 + op(h2
1),
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n2 = 1
n𝜑(x)

n∑
i=1

Kh(Xi − x)𝜀i(1 + op(1))

= 1
n𝜑(x)

n∑
i=1

Kh(Xi − x)𝜀i + op(1)
1

n𝜑(x)

n∑
i=1

Kh(Xi − x)𝜀i

= 1
n𝜑(x)

n∑
i=1

Kh(Xi − x)𝜀i + op(1)

√√√√√E

[
1

n𝜑(x)

n∑
i=1

Kh(Xi − x)𝜀i

]2

= 1
n𝜑(x)

n∑
i=1

Kh(Xi − x)𝜀i + op

(
1√
nh1

)
and

n3 =
1 + op(1)

n𝜑(x)

n∑
i=1

Kh1
(xi − x)yi

[
exp(ĝ(xi)) − exp(g(xi))

]
=

1 + op(1)
n𝜑(x)

n∑
i=1

Kh1
(xi − x)yi exp(g(xi))

[
exp(ĝ(xi) − g(xi)) − 1

]
= 1

n𝜑(x)

n∑
i=1

Kh1
(xi − x)yi exp(g(xi))[ĝ(xi) − g(xi)](1 + op(1)). (A.3)

By the proof of the estimator ĝ(x), ĝ(xi) − g(xi) can be approximated by

1
n[𝑓 2(xi) + 1]𝜑(xi)

n∑
𝑗=1

[
1 − y𝑗 exp(g(x𝑗))𝜀𝑗 +

1
2

y2
𝑗

exp(2g(x𝑗))g′′(xi)(x𝑗 − xi)2
]

× Kh2
(x𝑗 − xi) + op(1). (A.4)

Substituting (A.4) into (A.3), we have

n3 ≈ 1
2n2𝜑(x)

n∑
i=1

∑
𝑗∶𝑗≠i

yi exp(g(xi))g′′(xi)
[𝑓 2(xi) + 1]𝜑(xi)

y2
𝑗

exp(2g(x𝑗))(x𝑗 − xi)2Kh1
(xi − x)Kh2

(x𝑗 − xi)

+ 1
n2𝜑(x)

n∑
i=1

n∑
𝑗=1

yi exp(g(xi))
[𝑓 2(xi) + 1]𝜑(xi)

[1 − y𝑗 exp(g(x𝑗))𝜀𝑗]Kh1
(xi − x)Kh2

(x𝑗 − xi)

=∶ 𝑗1 +𝑗2.

Since xi and x𝑗 (i ≠ 𝑗) are independent, and yi exp{g(xi)} = 𝑓 (xi) + 𝜀i, we have

E(𝑗1) =
n(n − 1)
2n2𝜑(x)

E
{

yi exp(g(xi))g′′(xi)
[𝑓 2(xi) + 1]𝜑(xi)

y2
𝑗

exp(2g(x𝑗))(x𝑗 − xi)2Kh1
(xi − x)Kh2

(x𝑗 − xi)
}

= n − 1
2n𝜑(x)

E
{

𝑓 (xi)g′′(xi)
[𝑓 2(xi) + 1]𝜑(xi)

[𝑓 2(x𝑗) + 𝜀2
𝑗
](x𝑗 − xi)2Kh1

(xi − x)Kh2
(x𝑗 − xi)

}
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= n − 1
2n𝜑(x) ∫∫

𝑓 (t1)g′′(t1)
[𝑓 2(t1) + 1]𝜑(t1)

[𝑓 2(t2) + 1](t2 − t1)2Kh1
(t1 − x)Kh2

(t2 − t1)

× 𝜑(t1)𝜑(t2) dt1dt2

= n − 1
2n𝜑(x) ∫∫ F(t1)G(t2)(t2 − t1)2Kh1

(t1 − x)Kh2
(t2 − t1) dt1dt2,

where

F(t1) =
𝑓 (t1)g′′(t1)𝜑(t1)
[𝑓 2(t1) + 1]𝜑(t1)

, G(t2) = [𝑓 2(t2) + 1]𝜑(t2).

Let u1 = (t1 − x)∕h1 and u2 = (t2 − t1)∕h2; then, t1 = x + u1h1 and t2 = x + u1h1 + u2h2.
Therefore

∫∫ F(t1)G(t2)(t2 − t1)2Kh1
(t1 − x)Kh2

(t2 − t1) dt1dt2

= h2
2 ∫∫ F(x + u1h1)G(x + u1h1 + u2h2)u2K(u1)K(u2) du1du2

= h2
2F(x)G(x)𝜇2 + o(h2

2)

= 𝑓 (x)g′′(x)𝜑(x)𝜇2h2
2 + o(h2

2).

It follows that

E(𝑗1) =
n − 1

2n
𝑓 (x)g′′(x)𝜇2h2

2 + o(h2
2) =

1
2
𝑓 (x)g′′(x)𝜇2h2

2 + o(h2
2).

On the other hand

𝑗2 = K(0)
n2h2𝜑(x)

n∑
i=1

yi exp(g(xi))
[𝑓 2(xi) + 1]𝜑(xi)

[1 − yi exp(g(xi))𝜀i]Kh1
(xi − x)

+ 1
n2𝜑(x)

n∑
i=1

∑
𝑗∶𝑗≠i

yig(xi)
[𝑓 2(xi) + 1]𝜑(xi)

[1 − y𝑗 exp(g(x𝑗))𝜀𝑗]Kh1
(xi − x)Kh2

(x𝑗 − xi)

=∶ 𝑗21 +𝑗22.

Since yi exp(g(xi)) = 𝑓 (xi) + 𝜀i

E(𝑗21) =
K(0)

nh2𝜑(x)
E
{

yi exp(g(xi))
[𝑓 2(xi) + 1]𝜑(xi)

[1 − yi exp(g(xi))𝜀i]Kh1
(xi − x)

}
= −K(0)

nh2𝜑(x)
E
{

E(𝜀3) + 𝑓 (xi)
[𝑓 2(xi) + 1]𝜑(xi)

Kh1
(xi − x)

}
= −K(0)

nh2𝜑(x) ∫
E(𝜀3) + 𝑓 (t)

[𝑓 2(t) + 1]𝜑(t)
Kh1

(t − x)𝜑(t) dt

= O
(

1
nh2

)
.
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Next we consider 𝑗22. Since y𝑗 exp(g(x𝑗)) = 𝑓 (x𝑗) + 𝜀𝑗

𝑗22 = 1
n2𝜑(x)

n∑
i=1

∑
𝑗∶𝑗≠i

yi exp(g(xi))
[𝑓 2(xi) + 1]𝜑(xi)

[1 − y𝑗 exp(g(x𝑗))𝜀𝑗]Kh1
(xi − x)Kh2

(x𝑗 − xi)

= 1
n2𝜑(x)

n∑
i=1

∑
𝑗∶𝑗≠i

yi exp(g(xi))
[𝑓 2(xi) + 1]𝜑(xi)

[1 − 𝜀2
𝑗
− 𝑓 (x𝑗)𝜀𝑗]Kh1

(xi − x)Kh2
(x𝑗 − xi)

= 1
n2𝜑(x)

n∑
i=1

yi exp(g(xi))
[𝑓 2(xi) + 1]𝜑(xi)

Kh1
(xi − x)

∑
𝑗∶𝑗≠i

[1 − 𝜀2
𝑗
− 𝑓 (x𝑗)𝜀𝑗]Kh2

(x𝑗 − xi).

Since 𝑗 ≠ i, then 𝜀𝑗 is independent of xi and x𝑗 . By E(1 − 𝜀2
𝑗
) = 0 and E(𝜀𝑗) = 0, we have

E(𝑗22) = 0 and

E(2
𝑗22) =

1
n4𝜑2(x)

n∑
i1=1

n∑
i2=1

∑
𝑗∶𝑗≠i1,i2

E
{ yi1 exp(g(xi1 ))

[𝑓 2(xi1 ) + 1]𝜑(xi1 )
yi2 exp(g(xi2 ))

[𝑓 2(xi2 ) + 1]𝜑(xi2 )

× [1 − y𝑗 exp(g(x𝑗))𝜀𝑗]2Kh1
(xi1 − x)Kh2

(x𝑗 − xi1 )Kh1
(xi2 − x)Kh2

(x𝑗 − xi2 )
}

= O
(

1
nh2

)
.

It follows that 𝑗22 = OP(1∕
√

nh2), and moreover 𝑗2 = OP(1∕
√

nh2). Therefore

𝑓 (x) − 𝑓 (x) = 1
2
𝑓 ′′(x)𝜇2h2

1 +
1

n𝜑(x)

n∑
i=1

Kh1
(xi − x)𝜀i + op

(
h2

1 +
1√
nh1

)
+ Op

(
h2

2 +
1√
nh2

)
.

Finally, given that nh1h4
2 → 0 and h1∕h2 → 0, the proof of Theorem 1 follows from the central

limit theorem.

Proof of the positive definiteness of Hessian matrix. To show that the local minimizer of (4)
exists, we derive the Hessian matrix of (4) and prove that it is positive definite in the
neighbourhood of the true value. The detailed proof is given as follows.

Let 𝜸 = (𝛾0, 𝛾1)T , zi = (1, (xi − x)∕h2)T and ki = h−1
2 K(xi − x∕h2). The objective function (4)

can then be represented as

Q(𝜸) =
n∑

i=1

{1
2
[
yiexp(zT

i 𝜸) − 𝑓_(xi)
]2 − zT

i 𝜸
}

Kh2
(xi − x).

The Hessian matrix is

H =
𝜕2Q(𝜸)
𝜕𝜸𝜕𝜸T

=
n∑

i=1

ki{2y2
i exp(2zT

i 𝜸) − yi exp(zT
i 𝜸)𝑓 (xi)}ziz

T
i .

To show that the objective function (4) has a local minimizer, we only need to prove that H is
positive definite in expectation. Note that
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2y2
i exp(2g(xi)) − yi exp(g(xi))𝑓 (xi) = exp(g(xi)){2y2

i exp(g(xi)) − yi𝑓 (xi)}

=
𝜇(xi) + 𝜎(xi)𝜀i

𝜎(xi)
×
𝜇(xi) + 2𝜎(xi)𝜀i

𝜎(xi)

= 2𝜀2
i + 3

𝜇(xi)
𝜎(xi)

𝜀i +
𝜇2(xi)
𝜎2(xi)

with 𝑓 (x) = 𝜇(x)∕𝜎(x), g(x) = − log(𝜎(x)) and y = 𝑓 (x) + 𝜎(x)𝜀. We have

E(H|x) = n∑
i=1

kiziz
T
i E

[
2𝜀2

i + 3
𝜇(xi)
𝜎(xi)

𝜀i +
𝜇2(xi)
𝜎2(xi)

|xi

]

=
n∑

i=1

kiziz
T
i

{
2E[𝜀2

i |xi] + 3
𝜇(xi)
𝜎(xi)

E[𝜀i|xi] +
𝜇2(xi)
𝜎2(xi)

}

=
n∑

i=1

kiziz
T
i

(
2 +

𝜇2(xi)
𝜎2(xi)

)
.

Hence, it is easy to show that E(H|x) is positive definite. ◼
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