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The Wilcoxon signed-rank test and the Wilcoxon-Mann-Whitney test are two commonly 
used rank-based methods for one- and two-sample tests when the one-dimensional data 
are not normally distributed. The new rank-based nonparametric tests for equality of 
mean vectors are proposed in the high-dimensional settings. To overcome the technical 
challenges in data sorting, the new statistics are constructed by taking the sum of the 
Wilcoxon signed-rank or Wilcoxon-Mann-Whitney test statistics from each dimension 
of the data. The asymptotic properties of the proposed test statistics are investigated 
under the null and local alternative hypotheses. Simulation studies show that the new 
tests perform as well as the state-of-the-art methods when the high-dimensional data 
are normally distributed, but they turn out to be more powerful when the normality 
assumption is violated. Finally, the new testing methods are also applied to a human 
peripheral blood mononuclear cells gene expression data set for demonstrating their 
usefulness in practice.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Hypothesis testing for means is one of the most important problems in many practical applications. In this paper, we 
are interested in high-dimensional temporally independent data and want to test whether the mean vector equals to a 
given vector μ0 in one-sample case, or whether the two mean vectors are equal in two-sample case. To be precise, let 
{xi = (Xi1, . . . , Xip)T, i = 1, . . . , m} and {yi = (Yi1, . . . , Yip)T, i = 1, . . . , n} be two independent random samples from two 

distributions with distribution functions F (x − μ1) and F (y − μ2), where μ1
def= (μ11, . . . , μ1p)T and μ2

def= (μ21, . . . , μ2p)T

are the true mean vectors, respectively. Without loss of generality, we also let μ0 = 0 throughout the paper. Then for 
one-sample case, the null and alternative hypotheses are

H0 : μ1 = μ0 versus H1 : μ1 �= μ0; (1)

and for two-sample case,

H0 : μ1 = μ2 versus H1 : μ1 �= μ2. (2)
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Hotelling’s T 2 test is the most classic method for testing hypotheses (1) and (2) with fixed p ≥ 2. For one-sample case, 
Hotelling’s T 2 statistic is constructed as T 2

1 = mx̄T S−1
x x̄ where x̄ = m−1 ∑m

i=1 xi and Sx = (m − 1)−1 ∑m
i=1(xi − x̄)(xi − x̄)T; 

and for two-sample case, it is T 2
2 = mn(m +n)−1(x̄− ȳ)T S−1

w (x̄− ȳ) where ȳ = n−1 ∑n
i=1 yi and Sw = (m +n −2)−1{∑m

i=1(xi −
x̄)(xi − x̄)T + ∑n

i=1(yi − ȳ)(yi − ȳ)T}. With the rapid development of high-dimensional data especially in biological sciences 
(Dan et al., 2008), Hotelling’s T 2 test statistics for (1) and (2) are challenged with the so-called “large-p-small-n” problem. 
Due to the difficulty in solving the inverse of high-dimensional covariance matrices Sx and Sw, Hotelling’s T 2 test will no 
longer be applicable.

To overcome the problem, various test statistics for (1) and (2) have been proposed for testing high-dimensional data in 
the recent literature. Using two-sample test for illustration, researchers have made a great effort on improving the sample 
estimates of the covariance matrix Sw. To name a few, Bai and Saranadasa (1996) replaced Sw in T 2

2 with the identify 
matrix I p . Chen and Qin (2010) modified the test statistics in Bai and Saranadasa (1996) to further relax the restriction on 
the relationship between the data dimension and sample size. Wang and Shao (2020) extended the U -statistic in Chen and 
Qin (2010) to high-dimensional stationary process by self-normalization. Other replacements of Sw also include diag(Sw)

in Srivastava and Du (2008) and (Sw + λI p) in Chen et al. (2011), where, in particular, the test statistic with diag(Sw) can 
be viewed as the sum of the squares of Student’s t test statistics under the condition of the same variance between the 
two samples for all p components. Gregory et al. (2015) put forward another test statistic according to the mean of the 
squares of Student’s t test statistics under the condition of different variance between the two samples for all p components, 
and they further derived the asymptotic normality of their test statistic without restriction on the data distribution. More 
recently, Hu et al. (2019) proposed a likelihood ratio test for normal mean vectors in high-dimensional data, and their test 
statistic is given as the sum of likelihood ratio test statistics from each component. For other works related to Hotelling’s 
tests, see, for example, Wu et al. (2006), Srivastava (2007), Yamada and Srivastava (2012), Cai et al. (2013), Dong et al. 
(2016), Zhao and Xu (2016), Zoh et al. (2018) and Li et al. (2020). In high-dimensional case, some extreme value-type 
statistics were developed for sparse alternatives, and their limiting distributions were studied by Gaussian approximation 
with examples including the methods for independent Gaussian process sequences (Chernozhukov et al., 2013) and for weak 
correlated sequences (Zhang and Cheng, 2018). Moreover, Zhang and Wu (2017) also used Gaussian approximation for mean 
vector testing in high-dimensional stationary process.

In the era of explosive growth of biological information, the study of gene expression data for diabetes has been of 
great significance. Nevertheless, as shown in Fig. 7, it is not uncommon that many gene expression data may not follow a 
normal distribution. According to the official website of the International Diabetes Federation (IDF), there were 463 million 
adults aged 20-79 suffering from diabetes in the world in 2019; in other words, one in 11 people is diabetic. It was also 
estimated that the number of diabetic patients will reach 578.4 million by 2030. Also in 2019, about 4.2 million adults died 
of diabetes or its complications, which is equivalent to one person dying of diabetes every 8 seconds, accounting for 11.3% 
of all deaths worldwide. Wu et al. (2007) obtained muscle biopsies for 20 insulin sensitive individuals both before and after 
insulin treatment and identified 779 insulin-responsive genes after microarray data analysis. Wang et al. (2015) developed a 
high-dimensional nonparametric multivariate test, and then by applying it to the gene expression data in Wu et al. (2007), 
a total of 954 gene sets out of 2519 candidate genes sets were identified as significant.

In this paper, we focus on whether there are differences in gene expression between healthy people and patients with 
diabetes. The existing methods based on the normality assumption, however, may not work well or is not robust when 
the sample sizes are relatively small. To solve the problem, we propose new test statistics by taking the sum of the 
component-wise Wilcoxon signed-rank statistics for hypothesis (1) in one-sample case, and the component-wise Wilcoxon-
Mann-Whitney (WMW) statistics for hypothesis (2) in two-sample case. As we will show, the proposed method has two 
main advantages: 1) the proposed rank-based method is more robust; and 2) the new test method requires a weaker as-
sumption on the data distribution. Moreover, the asymptotic properties of the proposed tests will also be investigated under 
both the null and local alternative hypotheses, together with the derivation of the critical values under the null hypothesis.

The rest of the paper is organized as follows. In Section 2, we review the Wilcoxon signed-rank test and propose a rank-
based test statistic in high-dimensional case for testing (1). The asymptotic distributions under the null and local alternative 
hypotheses will also be derived. In Section 3, we review the WMW test and extend it to the setting of multivariate dimen-
sion for two-sample case in (2), followed by the derivation of the asymptotic behaviors under the null and local alternative 
hypotheses. We then conduct extensive numerical studies to evaluate the performance of the proposed rank-based test from 
Section 3 and compare it with some state-of-the-art methods in Section 4. The proposed test for two-sample case is also 
applied to a gene expression data set in Section 5. Finally, we conclude the paper in Section 6, and provide the technical 
results in the Appendix.

2. One-sample test

2.1. Wilcoxon signed-rank test in high dimension

To introduce the procedure for one-sample test in multivariate case clearly, we first review Wilcoxon signed-rank test 
briefly. In the case of p = 1, we suppose {xi = Xi1, i = 1, . . . , m} is the random sample drawn from the symmetrical dis-
tribution F1(x − μ11) with E(X11) = μ11, where F1(·) is a continuous distribution function and the corresponding density 
2
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function f1(x) is symmetrical about μ11. For the hypothesis testing problem H0 : μ11 = 0 versus H1 : μ11 �= 0, we define 
Rx

i1 as the rank of |Xi1| among {|Xi1|, i = 1, . . . , m}, where |Xi1| is the absolute value of Xi1. The Wilcoxon signed-rank test 
is defined as

U 1
m

def=
m∑

i=1

Rx
i1 I(Xi1 > 0), (3)

where I(Xi1 > 0) is the indicator function. Under the null hypothesis that μ11 = 0, we have E(U 1
m) = m(m + 1)/4. Hence, 

the null hypothesis will be rejected when {U 1
m − m(m + 1)/4}2 is sufficiently large.

For p-dimensional case, the Wilcoxon signed-rank test for each of p components, U j
m , can also be defined similarly as 

(3). That is

U j
m

def=
m∑

i=1

Rx
i j I(Xij > 0), for j = 1,2, . . . , p,

where Rx
i j is the rank of |Xij | among {|Xij |, i = 1, . . . , m} for fixed j. In parallel to univariate case, the null hypothesis μ1 j = 0

will be rejected when {U j
m − E(U j

m)}2 is sufficiently large with E(U j
m) = m(m + 1)/4. Let W j

m
def= {U j

m − m(m + 1)/4}2, the 
sum-of-square based test statistic for multivariate test (1) is defined as

Wm
def= p−1

p∑
j=1

W j
m = p−1

p∑
j=1

{
U j

m − m(m + 1)

4

}2
. (4)

We reject H0 if Wm is sufficiently large.

2.2. Asymptotic null distribution of Wm

In this section, we derive the asymptotic normality of Wm in (4) under H0 in (1). Firstly, we consider the expectation 
and variance of W j

m . Under the null hypothesis, it can be derived that {W j
m, j = 1, . . . , p} is a series of random variables 

with same expectation E(W j
m) and variance var(W j

m), where

E(W j
m) = m(m + 1)(2m + 1)/24 and

var(W j
m) = (6m + 5m2 − 30m3 − 25m4 + 24m5 + 20m6)/1440. (5)

To ease subsequent illustration, we define E(W j
m) def= ξm and var(W j

m) def= ηm .
To prove the asymptotic property of Wm , we also need to consider the dependent structure among {V j

m, j = 1, . . . , p}
with definition V j

m
def= (W j

m − ξm)/
√

ηm . For any σ -fields F and G , α(F , G) = sup{|P (A ∩ B) − P (A)P (B)| : A ∈ F , B ∈ G}
denotes the strong mixing coefficient. To derive the asymptotic property of the statistic Wm , we assume the following 
Conditions (C1) and (C2).

(C1) Let α(r) = sup{α(Fk
1 , F p

k+r) : 1 ≤ k ≤ p − r}, where Fb
a = σ {V j

m : a ≤ j ≤ b}. Assume that the stationary sequence {V j
m} 

satisfies the strong mixing condition such that α(r) ↓ 0 as r → ∞, where ↓ denotes the monotone decreasing conver-
gence.

(C2) Suppose that 
∑∞

r=1 α(r)δ/(2+δ) < ∞ for some δ > 0, and for any k ≥ 0, lim
p→∞

p−k∑
j=1

cov(V j
m, V j+k

m )/(p − k) = γ1(k) exists.

Based on Conditions (C1) and (C2), Theorem 1 shows that the asymptotic distribution of Wm under H0 in (1) is a normal 
distribution. In what follows, the symbol D−→ denotes convergence in distribution.

Theorem 1. Suppose that the sequence {V j
m} is stationary and satisfies Conditions (C1) and (C2). Under H0 in (1), for any fixed m ≥ 2, 

we have

Zm
def=

√
p(Wm − ξm)√

ηm

D−→ N(0, τ 2
1 ), as p → ∞, (6)

where τ 2
1 = 1 + 2 

∑∞
k=1 γ1(k).

Let � be the p × p covariance matrix of random vector x. When � is a diagonal matrix so that the variables are not 
correlated, the sequence {V j

m} is stationary and γ1(k) = 0 for k = 1, . . . , ∞. Conditions (C1) and (C2) are satisfied naturally 
and τ 2

1 = 1. Thus, the asymptotic result with the diagonal matrix � can be derived from Theorem 1 and is shown in 
Corollary 1.1.
3
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Corollary 1.1. When � is a diagonal matrix, under H0 in (1), for any fixed m ≥ 2, we have
√

p(Wm − ξm)√
ηm

D−→ N(0,1), as p → ∞.

According to Theorem 1, in order to derive the critical value, the parameter τ 2
1 in (6) needs to be estimated. Following 

Hu et al. (2019), we apply the spectrum analysis to estimate τ 2
1 as follows:

τ̂ 2
1

def=
∑

0<|k|<L

w(k/L)γ̂1(k) + 1, (7)

which depends on estimation γ̂1(k) of autocovariance γ1(k) for {V j
m, j = 1, . . . , p}. Recalling the definition of γ1(k), the 

estimator of the autocovariance γ1(k) is given by

γ̂1(k)
def= (p − k)−1

p−k∑
j=1

(
V j

m − p−1
p∑

j=1

V j
m
)(

V j+k
m − p−1

p∑
j=1

V j
m
)
, for k ≥ 1,

and we have γ1(0) = var(V j
m) = 1 under H0 in (1). The lag-window size L will be specified in numerical analysis. The 

function w(·) in (7) is lag-window function, and is chosen as the following Parzen window function as Brockwell and Davis 
(2009),

w(x) =
⎧⎨
⎩

1 − 6|x|2 + 6|x|3, |x| < 1/2,

2(1 − |x|)3, 1/2 ≤ |x| ≤ 1,

0, |x| > 1.

(8)

2.3. Statistical power under the local alternative

To study the power performance of the proposed statistic for one-sample test, we consider the local alternative that

H ′
1 : μ1 = δ1/

√
m, (9)

where δ1 = (δ11, . . . , δ1p)T. We assume the j-th component of x, X j , has the distribution function F j(x − δ1 j/
√

m) and the 
density function f j(x − δ1 j/

√
m). With the help of Taylor expansion, it can be derived that the expectation of W j

m under 
the local alternative (9) is

E(W j
m) = m(m + 1)(2m + 1)

24
+ δ2

1 jm
3

⎡
⎣ ∞∫

0

{2F j(x) − 1}df j(x)

⎤
⎦

2

+ o(m3). (10)

By simple algebraic calculation, we can obtain that lim
m→∞

p∑
j=1

{
E(W j

m) − ξm

}
/
√

ηm = 
1 and


1
def= 6

√
2

p∑
j=1

δ2
1 j

⎡
⎣ ∞∫

0

{2F j(x) − 1}df j(x)

⎤
⎦

2

. (11)

Thus, according to the conclusions in (10) and (11), we can obtain the asymptotic distribution of Wm under the local 
alternative (9) and the asymptotic power of the level α test, which are summarized in Theorem 2.

Theorem 2. If the sequence {V j
m} is stationary and satisfies Conditions (C1) and (C2), the asymptotic distribution of Zm is

Zm =
√

p(Wm − ξm)√
ηm

D−→ C1 · N(0, τ 2
1 ) + 
1√

p
,

as (m, p) → ∞, where C1 =
√

τ 2
1 − 1 + γ1(0)/τ1 . Then the asymptotic power of the level α test is

β(Zm) = 1 − �
{

C−1
1

(
Z1−α − 
1

τ1
√

p

)}
, as (m, p) → ∞.

Here, �(·) is the cumulative distribution function of the standard normal distribution, and �(Z1−α) = 1 − α.
4
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By β(Zm) in Theorem 2, it can be verified that the power function tends to 1 when 
1/
√

p → ∞ against (m, p) → ∞. 

Since | ∫ ∞
0 {2F j(x) − 1}df j(x)| ≤ 1, we only need 

√
p = o 

(
p∑

j=1
δ2

1 j

)
. Thus for one-sample test, if the true mean vector is 

sparse, the power function going to 1 requires the signals to be strong such that 
√

p = o 
(

max1≤ j≤p{δ2
1 j}

)
. And if the signals 

are dense, we only need the weak signals δ2
1 j = O (pα) with α > −1/2 for each 1 ≤ j ≤ p, which implies 

√
p = o 

(
p∑

j=1
δ2

1 j

)

and makes the power of Zm increasing towards 1 as p → ∞.

3. Two-sample test

3.1. Wilcoxon-Mann-Whitney test in high dimension

For two-sample case, we suppose that distribution functions of random vectors x = (X1, . . . , Xp)T and y = (Y1, . . . , Y p)T

are F (x − μ1) and F (y − μ2), respectively. We first review the WMW test briefly. In the case of p = 1, we suppose {xi =
Xi1, i = 1, . . . , m} and {yk = Yk1, k = 1, . . . , n} are independent samples drawn from distributions with distribution functions 
F1(x − μ11) and F1(y − μ21), respectively. For the testing hypothesis problem that H0 : μ11 = μ21 versus H1 : μ11 �= μ21, 
the WMW statistic is defined as

U 1
m,n

def=
m∑

i=1

Rxy
i1 − m(m + 1)

2
, (12)

where Rxy
i1 denotes the rank of Xi1 in the mixed sample {X11, . . . , Xm1; Y11, . . . , Yn1}. Under H0, we have E(U 1

m,n) = mn/2. 
The null hypothesis will be rejected when the value of (U 1

m,n − mn/2)2 is sufficiently large.

For p-dimensional case, the WMW test for each of p components, U j
m,n , can be also defined as

U j
m,n

def=
m∑

i=1

Rxy
i j − m(m + 1)

2
, for j = 1,2, . . . , p,

where Rxy
i j is the rank of Xij among {X1 j, . . . , Xmj; Y1 j, . . . Ynj} for fixed j. In parallel to univariate case, the null hypothesis 

μ1 j = μ2 j will be rejected when {U j
m,n − E(U j

m,n)}2 is sufficiently large with E(U j
m,n) = mn/2. Let W j

m,n
def= (U j

m,n − mn/2)2, 
the proposed statistic is defined as

Wm,n
def= p−1

p∑
j=1

W j
m,n = p−1

p∑
j=1

(
U j

m,n − mn

2

)2
. (13)

We reject H0 in (2) when Wm,n is sufficiently large.

3.2. Asymptotic null distribution of Wm,n

In this section, we derive the asymptotic normality of the proposed statistic Wm,n in (13) under H0 in (2). First of all, 
we calculate the expectation E(W j

m,n) and variance var(W j
m,n) of W j

m,n . By letting N
def= m + n, we have

ξm,n
def= E(W j

m,n) = mn(N + 1)/12 and

ηm,n
def= var(W j

m,n) = {mn(5N + 8) − 3N(N + 1)}(N + 1)mn/360.

Let V j
m,n

def= (W j
m,n − ξm,n)/

√
ηm,n , we consider the dependence structure of {V j

m,n, j = 1, . . . , p} to investigate the asymptotic 
property under H0. The following conditions are assumed for deriving the asymptotic distribution of the test statistic Wm,n . 
We use the same notation α(r) as that in Conditions (C1)-(C2) when this does not cause ambiguity.

(C3) Let α(r) = sup{α(Fk
1 , F p

k+r) : 1 ≤ k ≤ p − r}, where Fb
a = σ {V j

m,n : a ≤ j ≤ b}. Assume that the stationary sequence 
{V j

m,n} satisfies the strong mixing condition such that α(r) ↓ 0 as r → ∞, where ↓ denotes the monotone decreasing 
convergence.

(C4) Suppose that 
∑∞

r=1 α(r)δ/(2+δ) < ∞ for some δ > 0, and for any k ≥ 0, lim
p→∞

p−k∑
cov(V j

m,n, V j+k
m,n )/(p − k) = γ2(k) exists.
j=1

5
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Through similar proof techniques in one-sample test, we can derive the following asymptotic normality of the proposed 
statistic Wm,n in (13) under the null hypothesis.

Theorem 3. Suppose that the sequence {V j
m,n} is stationary and satisfies Conditions (C3) and (C4). Under H0 in (2), for any fixed 

m, n ≥ 2, we have

Zm,n
def=

√
p(Wm,n − ξm,n)√

ηm,n

D−→ N(0, τ 2
2 ), as p → ∞,

where τ 2
2 = 1 + 2 

∑∞
k=1 γ2(k).

In parallel to the one-sample case, we have γ2(0) = var(V j
m,n) = 1 under H0. The estimator of the autocovariance γ2(k)

for the sequence {V j
m,n} is estimated by

γ̂2(k) = (p − k)−1
p−k∑
j=1

(
V j

m,n − p−1
p∑

j=1

V j
m,n

)(
V j+k

m,n − p−1
p∑

j=1

V j
m,n

)
. (14)

Thus, we use the estimator τ̂ 2
2 = ∑

0<|k|<L w(k/L)γ̂2(k) + 1 for τ 2
2 in order to obtain the critical value.

3.3. Statistical power under the local alternative

To derive the asymptotic power of the proposed statistic for two-sample test, we consider the local alternative that

H ′′
1 : μ1 − μ2 = δ2/

√
N, (15)

where δ2 = (δ21, . . . , δ2p)T. Without loss of generality, we let μ1 = (0, . . . , 0)T, then x follows the distribution function F (x)

and y follows the distribution function F (y + δ2/
√

N). For j-th dimension, we suppose that the j-th component of x, X j , 
follows the distribution function F j(x) and the j-th component of y, Y j , follows the distribution function F j(y + δ2 j/

√
N)

and density function f j(y + δ2 j/
√

N) respectively when this does not cause ambiguity. Invoking Taylor expansion, we can 
derive the expectation of W j

m,n under the local alternative (15) is

E(W j
m,n) = mn(N + 1)

12
+ m2n2

N
δ2

2 j E2{ f j(X j)} + o(N3). (16)

Define νm,n
def= m/N with νm,n → ν ∈ (0, 1) as m, n → ∞. By algebraic calculation, we have lim

m,n→∞
∑p

j=1

{
E(W j

m,n) − ξm,n

}
/

√
ηm,n = 
2, where


2
def= 6

√
2(1 − ν)ν

p∑
j=1

E2 {
f j(X j)

}
δ2

2 j . (17)

Thus, based on E(W j
m,n) in (16), we can obtain the asymptotic power function for Wm,n of the level α test given in 

Theorem 4.

Theorem 4. If the sequence {V j
m,n} is stationary and satisfies Conditions (C3) and (C4),

Zm,n =
√

p(Wm,n − ξm,n)√
ηm,n

D−→ C2 · N(0, τ 2
2 ) + 
2√

p
,

as (m, n, p) → ∞, where C2 =
√

τ 2
2 − 1 + γ2(0)/τ2 . Then the asymptotic power of the level α test is

β(Zm,n) = 1 − �
{

C−1
2

(
Z1−α − 
2

τ2
√

p

)}
, as (m,n, p) → ∞.

By β(Zm,n) in Theorem 4, it can be verified that the power function tends to 1 when 
2/
√

p → ∞ against (m, n, p) →
∞. Since E2

{
f j(X j)

} ≤ 1, we only need 
√

p = o 

(
p∑

j=1
δ2

2 j

)
. Thus for two-sample test, if the true mean vector is sparse, the 

power function going to 1 requires the signals to be strong such that 
√

p = o 
(

max1≤ j≤p{δ2
2 j}

)
. And if the signals are dense, 

we only need the weak signals δ2
2 j = O (pα) with α > −1/2 for each 1 ≤ j ≤ p, which implies 

√
p = o 

(
p∑

j=1
δ2

2 j

)
and makes 

the power of Zm,n increasing towards 1 as p → ∞.
6
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Fig. 1. The simulated null distributions of six test statistics and the line in each subgraph is the probability density function of N(0, 1) when the observations 
follow multivariate normal distribution. And (a)-(f) are corresponding to SD, CQ, RHT, GCT2, DLRT and RHDT respectively.

4. Simulation study

In this section, we carry out simulation studies to evaluate the performance of the proposed method, which is referred to 
Rank-based High-Dimensional Test (RHDT). For space consideration, we mainly focus on the testing of mean vectors under 
two-sample scenarios. The proposed statistic is compared with the following competitors: the test SD in Srivastava and Du 
(2008), the test CQ in Chen and Qin (2010), the test RHT in Chen et al. (2011), the test GCT1 and GCT2 in Gregory et al. 
(2015), the test DLRT in Hu et al. (2019). According to Gregory et al. (2015), the statistic GCT1 is adopted in “moderate-p” 
scenarios restricting p to grow at a rate such that p = o(m2), while the test statistic GCT2 is implemented in “large-p” 
scenarios that allow p = o(m6).

For sake of comparison convenience, following the setting in Hu et al. (2019), we generate independent samples {xi , i =
1, 2, . . . , m} and {yi, i = 1, 2, . . . , n} with mean vectors μ1 and μ2 and covariance matrixes �1 = �2 = � from two different 
distributions, that is, multivariate normal distribution and multivariate td distribution with d = 3 degree of freedoms. To 
present the different performance of test methods under various dependent structures, we utilize the following four depen-
dent structures in simulations: (1) independent structure (IND) that � = Ip×p ; (2) ARMA structure with weak correlation (AR 
= 0.3) that � = (ρ |i− j|)p×p with ρ = 0.3; (3) ARMA structure with strong correlation (AR = 0.6) that � = (ρ |i− j|)p×p with 
ρ = 0.6; (4) long range dependent structure (LR) that � = (σi j)p×p , where σi j = {(|i − j| +1)2h + (|i − j| −1)2h −2|i − j|2h}/2
with h = 0.625. And we use lag-window size L = 5 to estimate τ 2

2 in (14).

4.1. Performance under the null hypothesis

In this subsection, we demonstrate the performance of the proposed statistic RHDT and other five testing methods by 
the simulated null distributions and the Type I error rates.

At first, we generate samples from multivariate normal distribution and multivariate t3 distribution with m = 10, n = 15
and dimension p = 500. Figs. 1–2 display the histograms of six statistics under IND dependent structure. All histograms 
are obtained by 5000 simulations. The density function for N(0, 1) is presented in histograms for comparison. For space 
consideration, the simulated null distribution of test statistic GCT1 is not shown, since the test statistic GCT1 has a similar 
performance to GCT2. When samples are from multivariate normal distribution, Fig. 1 shows the simulated null distributions 
of all statistics agree well with N(0, 1). Fig. 2 shows the simulated null distributions when samples are from multivariate 
7
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Fig. 2. The simulated null distributions of six test statistics and the line in each subgraph is the probability density function of N(0, 1) when the observations 
follow multivariate t3 distribution. And (a)-(f) are corresponding to SD, CQ, RHT, GCT2, DLRT and RHDT respectively.

t3 distribution, it is obvious that the proposed RHDT still maintains the standard normal distribution. But other competitors 
can not be fitted well by N(0, 1).

For comparison of type I error rates, we generate observations from multivariate normal distribution and multivariate 
t3 distribution with different combinations of (m, n) × p = {(3, 3) or (10, 15) or (15, 15)} × {100 or 300 or 500}. Table 1
shows the simulated results across the four dependence structures for normal data. As we can see in Table 1, the simulated 
type I error rates of RHDT test are very close to the significance level (α = 0.05) under four dependence structures. It is 
obvious that the tests SD, RHT and GCT1 can not control the type I error rate when sample sizes are extremely small such 
as (m, n) = (3, 3).

Table 2 shows the sizes of all the tests across the four dependence structures when observations follow multivariate 
t3 distribution. The simulated results demonstrate that test RHDT can control the type I error rate pretty well under all 
scenarios, and the performance of test DLRT is similar to RHDT’s. Table 2 also shows that the sizes of SD, CQ and RHT are 
far less than 0.05 when the sample size is small. It means that these three methods are too conservative for heavy-tailed 
data. However, under the LR dependence structures, the type I error rates of the SD test reach 0.4 when (m, n) = (3, 3). 
Finally, neither GCT1 nor GCT2 can control the type I error for heavy-tailed data.

4.2. Statistical power

For power comparison, the observations are generated from multivariate normal distribution and multivariate t3 dis-
tribution under balanced cases (m, n) = (15, 15) and (m, n) = (50, 50), and under imbalanced case (m, n) = (10, 15). Fol-
lowing the same settings in Hu et al. (2019), we let the mean vectors μ1 = 0p×1 and μ2 = (μ21, . . . , μ2k, 0, . . . , 0)T with 
μ21 = · · · = μ2k = η

√
χ2(5)/5 and p = 500. The proportion τ = k/p ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} and η = 0.25 are used to con-

trol the differences between μ1 and μ2. We mainly focus on how the powers of all methods change with τ under different 
dependence structures. The simulated results under balanced and imbalanced cases are shown in Figs. 3–5 by 2000 simula-
tions. In each figure, the subgraphs (a)-(d) are the results obtained from multivariate normal distribution, and the subgraphs 
(e)-(h) are for multivariate t3 distribution. The four subgraphs in each column correspond to the simulated results under 
the IND, AR = 0.3, AR = 0.6 and LR dependence structures in turn. Since GCT1 and GCT2 can not control the type I error, 
the simulated powers of GCT1 and GCT2 are not shown.

In Fig. 3, we can see that, for normal data under balanced scenarios, the powers of all methods increase to 1 as τ
increases to 1. When τ �= 0, the powers of RHDT are the highest among all methods under all dependence structures. And 
8
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Table 1
The sizes of the tests under four dependence structures when observations follow multivariate normal distribution.

p (m,n) SD CQ RHT GCT1 GCT2 DLRT RHDT

IND 100 (3,3) 0.406 0.088 0.112 0.607 0.106 0.060 0.068
(10,15) 0.043 0.054 0.059 0.080 0.081 0.056 0.067
(15,15) 0.046 0.059 0.067 0.071 0.097 0.059 0.060

300 (3,3) 0.366 0.083 0.102 0.962 0.059 0.049 0.054
(10,15) 0.033 0.050 0.052 0.180 0.071 0.057 0.052
(15,15) 0.027 0.053 0.053 0.106 0.063 0.050 0.051

500 (3,3) 0.354 0.084 0.101 0.982 0.036 0.051 0.051
(10,15) 0.020 0.052 0.056 0.280 0.071 0.054 0.053
(15,15) 0.029 0.051 0.056 0.155 0.066 0.048 0.052

AR = 0.3 100 (3,3) 0.398 0.079 0.101 0.552 0.115 0.059 0.054
(10,15) 0.038 0.050 0.057 0.080 0.100 0.052 0.053
(15,15) 0.041 0.047 0.061 0.071 0.099 0.059 0.067

300 (3,3) 0.364 0.086 0.098 0.951 0.064 0.056 0.056
(10,15) 0.029 0.040 0.044 0.148 0.071 0.057 0.057
(15,15) 0.025 0.045 0.057 0.095 0.079 0.062 0.055

500 (3,3) 0.325 0.086 0.101 0.983 0.042 0.049 0.045
(10,15) 0.020 0.047 0.050 0.234 0.072 0.055 0.058
(15,15) 0.029 0.057 0.057 0.144 0.081 0.064 0.059

AR = 0.6 100 (3,3) 0.359 0.090 0.107 0.408 0.129 0.070 0.060
(10,15) 0.042 0.052 0.059 0.097 0.133 0.084 0.065
(15,15) 0.033 0.046 0.051 0.095 0.139 0.080 0.055

300 (3,3) 0.323 0.084 0.093 0.913 0.085 0.084 0.070
(10,15) 0.028 0.054 0.057 0.143 0.114 0.085 0.067
(15,15) 0.026 0.053 0.062 0.098 0.106 0.082 0.066

500 (3,3) 0.288 0.076 0.091 0.981 0.062 0.068 0.059
(10,15) 0.020 0.052 0.056 0.195 0.098 0.078 0.071
(15,15) 0.019 0.048 0.053 0.121 0.093 0.080 0.050

LR 100 (3,3) 0.390 0.071 0.096 0.577 0.106 0.059 0.063
(10,15) 0.046 0.051 0.057 0.081 0.099 0.062 0.065
(15,15) 0.042 0.049 0.048 0.071 0.093 0.061 0.070

300 (3,3) 0.342 0.085 0.099 0.962 0.065 0.058 0.057
(10,15) 0.036 0.063 0.063 0.167 0.085 0.068 0.069
(15,15) 0.030 0.051 0.054 0.097 0.086 0.058 0.057

500 (3,3) 0.323 0.081 0.097 0.987 0.046 0.065 0.050
(10,15) 0.026 0.047 0.051 0.268 0.067 0.054 0.067
(15,15) 0.022 0.048 0.044 0.164 0.062 0.053 0.053

RHDT can control the power at 0.05 nearly when τ = 0. The test DLRT has suboptimal performance, and followed by RHT, 
CQ and SD under all scenarios. Also in Fig. 3, for the multivariate t3 distribution, the test RHDT also has the superior 
performance than others when τ �= 0. Meanwhile, Fig. 3 shows that, under all dependence structures, tests SD and CQ are 
almost unable to detect difference in mean vectors even when τ = 1. In conclusion, the proposed RHDT has the most stable 
performance among all five methods, and can also work well for heavy-tailed data such as multivariate t3 distribution. Fig. 4
indicates there are similar conclusions under the imbalanced scenarios as that under balanced scenarios. The proposed RHDT 
exhibits superior to SD, CQ, RHT and GCT2 in many cases. Fig. 5 presents the power curves of the five methods. In the case 
of multivariate normal distribution, the performance of CQ test will be improved compared with that for the case of small 
sample size. We also note that its power is close to RHDT test, whereas SD test has the best performance. In contrast, for 
multivariate t3 distribution, the performance of CQ test does not improve significantly along with the sample size, which 
coincides with the heavy-tailed simulation on Pareto(1.5, 1) distribution in Gregory et al. (2015).

Remark 1. For the bandwidth selection, Corollary 1 in Mcmurry and Politis (2010) showed that if |γi | = O (p−d) for some 
d > 1, the optimal bandwidth should satisfy L = O (p(q−1)/(dq)) with 1 < q ≤ 2, where γi is the estimator of the autoco-
variance the sequence V j

m . It can be verified that 0 < (q − 1)/(dq) < 1/2 for (q, d) mentioned above, we thus choose the 
bandwidth L = O (p1/3). To examine how the bandwidth affects the performance of the test statistic, we have conducted 
a new simulation using multivariate normal distribution with different combinations of (m, n)× p ×L = (15, 15) × 500 ×
{[0.4p1/3], [0.5p1/3], [0.6p1/3], [0.7p1/3], [0.8p1/3], [p1/3], [1.2p1/3]}, where [x] is the largest integer smaller than or equal 
to x. Fig. 6 shows the power curves of RHDT, DLRT and GCT2 tests as functions of the bandwidth. From the results, it 
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Table 2
The sizes of the tests under four dependence structures when observations follow multivariate t3 distribution.

p (m,n) SD CQ RHT GCT1 GCT2 DLRT RHDT

IND 100 (3,3) 0.047 0.002 0.014 0.530 0.179 0.044 0.054
(10,15) 0.001 0.000 0.008 0.069 0.302 0.092 0.059
(15,15) 0.000 0.002 0.007 0.072 0.255 0.047 0.066

300 (3,3) 0.015 0.001 0.006 0.947 0.150 0.076 0.053
(10,15) 0.000 0.000 0.004 0.143 0.397 0.221 0.070
(15,15) 0.000 0.000 0.001 0.112 0.358 0.041 0.059

500 (3,3) 0.006 0.000 0.003 0.982 0.171 0.115 0.062
(10,15) 0.000 0.000 0.003 0.221 0.457 0.316 0.074
(15,15) 0.000 0.000 0.000 0.137 0.432 0.044 0.056

AR = 0.3 100 (3,3) 0.069 0.006 0.013 0.509 0.197 0.048 0.064
(10,15) 0.002 0.003 0.012 0.077 0.291 0.103 0.068
(15,15) 0.000 0.001 0.011 0.070 0.267 0.041 0.053

300 (3,3) 0.015 0.001 0.004 0.942 0.184 0.076 0.067
(10,15) 0.000 0.000 0.009 0.141 0.381 0.229 0.076
(15,15) 0.000 0.000 0.001 0.095 0.344 0.041 0.048

500 (3,3) 0.005 0.000 0.002 0.983 0.196 0.117 0.061
(10,15) 0.000 0.000 0.004 0.225 0.446 0.302 0.080
(15,15) 0.000 0.000 0.000 0.136 0.418 0.049 0.051

AR = 0.6 100 (3,3) 0.062 0.009 0.022 0.401 0.191 0.060 0.065
(10,15) 0.003 0.005 0.021 0.108 0.320 0.123 0.060
(15,15) 0.001 0.004 0.021 0.090 0.276 0.067 0.067

300 (3,3) 0.018 0.001 0.009 0.887 0.191 0.091 0.065
(10,15) 0.000 0.001 0.005 0.116 0.377 0.202 0.074
(15,15) 0.001 0.001 0.002 0.101 0.340 0.068 0.062

500 (3,3) 0.010 0.000 0.009 0.973 0.188 0.122 0.074
(10,15) 0.000 0.001 0.006 0.169 0.403 0.268 0.077
(15,15) 0.000 0.000 0.000 0.124 0.393 0.079 0.062

LR 100 (3,3) 0.403 0.028 0.031 0.516 0.136 0.040 0.056
(10,15) 0.030 0.015 0.035 0.077 0.276 0.051 0.067
(15,15) 0.024 0.021 0.040 0.067 0.278 0.043 0.068

300 (3,3) 0.430 0.020 0.026 0.958 0.123 0.060 0.058
(10,15) 0.022 0.013 0.022 0.135 0.480 0.049 0.053
(15,15) 0.017 0.014 0.021 0.106 0.450 0.051 0.070

500 (3,3) 0.446 0.017 0.020 0.987 0.099 0.071 0.057
(10,15) 0.013 0.011 0.020 0.232 0.624 0.051 0.056
(15,15) 0.010 0.013 0.021 0.150 0.580 0.043 0.056

is evident that their performance is quite stable and not sensitive to the choice of the bandwidth. For the simulations in 
Section 4, we choose bandwidth L = 5 following the setting in Hu et al. (2019).

5. Application to real data analysis

As described in the introduction, study of gene expression data can lead to important insights into diabetes biology. In 
this section, we apply the proposed method to a human peripheral blood mononuclear cells (PBMCs) gene expression data 
set. The gene data set is available from the Gene Expression Omnibus online pathway databases (https://www.ncbi .nlm .nih .
gov /geo /query /acc .cgi ?acc =GSE142153). The data set contains cells from 10 healthy controls and 23 patients with diabetic 
nephropathy. Fig. 7 indicates that the data set can not show normal distribution in each dimension. Considering that GCT1
can not control the type I error rate when sample sizes are extremely small, we apply other tests to test the equality of 
global PBMCs gene expression between healthy controls and patients with diabetic nephropathy.

Following the setting in Hu et al. (2019), in order to compare the performance of the tests, we screen the most significant 
p genes by performing two-sample t tests for each dimension, and then use p = 100 to calculate the experience ability. The 
empirical powers for the tests applied to both the healthy controls and patients with diabetic nephropathy are given in 
Table 3 on 1000 simulation runs. In each run, we randomly select n1 and n2 samples from healthy controls and patients 
with diabetic nephropathy without replacement, respectively. When the sample size is small like n1 = 3 and n2 = 3, the 
empirical power of the RHDT test is higher than the SQ, CQ, RHT and GCT2 tests. And the DLRT test also works well. The 
results are similar in unbalanced samples when n1 = 3 and n2 = 5. With the increase of sample size, all the tests work well 
under the setting with n1 = 5 and n2 = 5.
Y. Ouyang, J. Liu, T. Tong et al. Computational Statistics and Data Analysis 173 (2022) 107495
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Fig. 3. Power curves of the five methods against the proportion of nonzero mean differences τ under IND, AR = 0.3, AR = 0.6 and LR dependence with 
(m, n) = (15, 15). The subgraphs (a)-(d) and (e)-(h) present the simulated results from multivariate normal distribution and multivariate t3 distribution, 
respectively.
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Fig. 4. Power curves of the five methods against the proportion of nonzero mean differences τ under IND, AR = 0.3, AR = 0.6 and LR dependence with 
(m, n) = (10, 15). The subgraphs (a)-(d) and (e)-(h) present the simulated results from multivariate normal distribution and multivariate t3 distribution, 
respectively.
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Fig. 5. Power curves of the five methods against the proportion of nonzero mean differences τ under IND, AR = 0.3, AR = 0.6 and LR dependence with 
(m, n) = (50, 50). The subgraphs (a)-(d) and (e)-(h) present the simulated results from multivariate normal distribution and multivariate t3 distribution, 
respectively.
13
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Fig. 6. Power curves of three methods against different bandwidths under IND dependence with (m,n) = (15,15).

Fig. 7. The density curves of healthy controls (solid line) and patients with diabetic nephropathy (dot-dash line) on the top 4 significant gene sets AK056630, 
AK092810, ARFIP1 and AK022015.

Table 3
Data analysis results for PBMCs gene expression data set with p = 100.

n1 n2 SD CQ RHT GCT2 DLRT RHDT

3 3 0.777 0.771 0.781 0.767 0.929 0.934
3 5 0.757 0.892 0.763 0.926 0.971 0.984
5 5 0.951 0.973 0.927 0.996 1.000 1.000

6. Conclusion

Hotelling’s T 2 test is the most commonly used method for testing mean vectors in multivariate statistics. It is known 
however that, when the dimension of the data exceeds the number of samples, Hotelling’s T 2 test will no longer be ap-
plicable due to the singularity of the sample covariance matrix. Some modified methods have made efforts to replace the 
inverse of the sample covariance matrix S−1

W in Hotelling’s T 2 test statistics, while Gregory et al. (2015) used the mean of 
the squares of Student’s t test statistics in all p components. Hu et al. (2019) proposed a likelihood ratio test under the 
assumption of normal data.
14
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In this paper, we propose a rank-based mean test, which combines the results of nonparametric tests in each dimension. 
The method can be applied to one-sample or two-sample in high-dimensional situation, which is based on the Wilcoxon 
signed-rank test or the WMW test. Our new method has no requirements for data distribution and has a wider scope of 
application. We also establish the asymptotic normality of the proposed test statistic under the null and local alternative 
hypotheses. In simulation section, the proposed RHDT test can work as well as other methods for normal data, and has the 
most efficient performance when observations follow multivariate t3 distribution. In real data analysis, the proposed test 
works also equally.
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Appendix

The proofs of Theorems 1–4 are presented in Appendices A–D, respectively.

Appendix A. Proof of Theorem 1

To investigate the asymptotic property of Wm under H0 in (1), we first calculate the expectation and variance of W j
m . 

Recalling the definition of W j
m , we have E(W j

m) = var(U j
m). It indicates that E(W j

m) = m(m +1)(2m +1)/24. For the variance 
of W j

m , we have

var(W j
m) = E{(W j

m)2} − E2(W j
m)

= E{(U j
m)4} − 4E{(U j

m)3}E(U j
m) + 8E{(U j

m)2}E2(U j
m) − 4E4(U j

m) − E2{(U j
m)2}.

We have the result in (5) by algebraic calculations.
Based on the definitions of ξm and ηm , V j

m = (W j
m − ξm)/

√
ηm implies the sequence {V j

m, j = 1, . . . , p} is a series of 
random variables with mean zero and variance one. Invoking the central limit theorem under the strong mixing conditions 
(see Corollary 5.1 in Hall and Heyde (1980)), when sequence {V j

m, j = 1, . . . , p} satisfies Conditions (C1) and (C2), we only 
need to show that E|V j

m|2+δ < ∞ for any m and fixed 0 < δ < ∞ to prove

∑p
j=1 V j

m

τ1
√

p
D−→ N(0,1), as p → ∞. (A.1)

Based on the definition of V j
m , we have

E|V j
m|2+δ = E|W j

m − ξm|2+δ

η
(2+δ)/2
m

.

Noting that the Wilcoxon signed test statistic U j
m ≤ m(m +1)/2, we have W j

m ≤ {m(m +1)}2/16. Moreover, we have E|W j
m −

ξm|2+δ ≤ |{m(m + 1)}2/16 − ξm|2+δ . Thus, for any fixed m ≥ 2, we have

E|V j
m|2+δ ≤

[ {m(m2 − 1)(3m + 2)}
48

√
ηm

]2+δ

< ∞.

As a result, (A.1) has been proved. Moreover, we have

∑p
j=1 V j

m

τ1
√

p
=

√
p(Wm − ξm)

τ1
√

ηm

D−→ N(0,1), as (m, p) → ∞.

This completes the proof of Theorem 1. �
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Appendix B. Proof of Theorem 2

To prove Theorem 2, we first calculate the expectation of W j
m under the local alternative (9). For fixed j, we suppose 

{X(k) j, k = 1, . . . , m} is the order sample for {Xij, i = 1, . . . , m} ranking by the absolute value |Xij |. The Wilcoxon signed-rank 
statistic for the j-th dimension can be equivalently rewritten as

U j
m =

m∑
k=1

kI(X(k) j > 0), (B.1)

and we have E{I(X(k) j > 0)} = Pr(X(k) j > 0). To ease subsequent illustration, we define Pr(X(k) j > 0) def= ckj and A j(x) def=
F j(x − δ1 j/

√
m) − F j(−x − δ1 j/

√
m). By algebraic derivation, we have

ckj = m!
(k − 1)!(m − k)!

∞∫
0

{A j(x)}k−1 {
1 − A j(x)

}m−k d{F j(x − δ1 j/
√

m)}.

For the expectation of W j
m under the local alternative H ′

1 in (9), by simple transformation, we have E(W j
m) = var(U j

m) +{
E(U j

m) − m(m + 1)/4
}2

. In the following, we calculate the expectation and variance of U j
m under the local alternative H ′

1

in (9). Based on the transformation of U j
m in (B.1), it can be derived that

E(U j
m) =

m∑
k=1

kE{I(X(k) j > 0)} =
m∑

k=1

kckj,

E(U j
m)2 = E

{ m∑
k=1

k2 I(X(k) j > 0) +
m∑

k1=1

m∑
k2 �=k1

k1k2 I(X(k1) j > 0)I(X(k2) j > 0)
}

=
m∑

k=1

k2ckj +
m∑

k1=1

m∑
k2 �=k1

k1k2ck1 jck2 j

and var(U j
m) = E(U j

m)2 − E2(U j
m) = ∑m

k=1 k2ckj(1 − ckj). Furthermore, it follows that

E(W j
m) =

m∑
k=1

k2ckj(1 − ckj) +
{ m∑

k=1

kckj − m(m + 1)

4

}2
. (B.2)

Next, we simplify E(W j
m) in (B.2) by simplifying ckj . Based on Taylor expansions with first order for F j(x − δ1 j/

√
m) and 

F j(−x − δ1 j/
√

m), we have

A j(x) = F j(x) − δ1 j√
m

f j(x) − F j(−x) + δ1 j√
m

f j(−x) + O (m−1).

The symmetry of distribution F (·) implies that F j(−x) = 1 − F j(x) and f j(−x) = f j(x), thus we have A j(x) = 2F j(x) − 1 +
O (m−1) and the last term O (m−1) can be omitted when m → ∞. Moreover, ckj can be simplified as

ckj = k

(
m

k

) ∞∫
0

{2F j(x) − 1}k−1 {
2 − 2F j(x)

}m−k
d{F j(x) − δ1 j√

m
f j(x)}

= 1

2
− δ1 jk√

m

(
m

k

) ∞∫
0

{2F j(x) − 1}k−1{2 − 2F j(x)}m−kdf j(x) + Rm

= 1

2
− B jk + Rm,

where

B jk
def= δ1 jk√

m

(
m

k

) ∞∫
{2F j(x) − 1}k−1{2 − 2F j(x)}m−kdf j(x),
0
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and the term Rm can be omitted when m → ∞. The remaining terms involved in the below are also represented by Rm , but 
the actual meaning of each line is different. Furthermore, we have ckj(1 − ckj) = 1/4 − B2

jk + Rm . The first term of E(W j
m)

in equation (B.2) is

m∑
k=1

k2ckj(1 − ckj) =
m∑

k=1

k2

4
−

m∑
k=1

k2(B jk)
2 + Rm

= m(m + 1)(2m + 1)

24
−

m∑
k=1

k2(B jk)
2 + Rm,

where Rm = o(m3). In what follows, we prove that 
∑m

k=1 k2(B jk)
2 = o(m3). Notice that −1/2 ≤ B jk < 0 and 

∑m
k=1 k2 B jk is 

equal to

δ1 j√
m

∞∫
0

m∑
k=1

k3
(

m

k

)
{2F j(x) − 1}k−1{2 − 2F j(x)}m−kdf j(x)

= δ1 j√
m

∞∫
0

[m(m − 1)(m − 2){2F j(x) − 1}2 + 3m(m − 1){2F j(x) − 1} + m]df j(x)

= O (m5/2).

It follows that 
∑m

k=1 k2 B jk < 0 and 
∑m

k=1 k2|B jk| = o(m3). Since |B jk| < 1/2, we have

m∑
k=1

k2 B2
jk =

m∑
k=1

k2|B jk|2 <
1

2

m∑
k=1

k2|B jk| = o(m3).

Thus, the proof of 
∑m

k=1 k2(B jk)
2 = o(m3) has been completed. Furthermore, we can obtain that

m∑
k=1

k2ckj(1 − ckj) = m(m + 1)(2m + 1)

24
+ o(m3).

Meanwhile, the term 
∑m

k=1 kckj in (B.2) can be simplified as

m∑
k=1

k

2
−

m∑
k=1

kB jk + Rm

= m(m + 1)

4
− δ1 j√

m

∞∫
0

m∑
k=1

k2
(

m

k

)
{2F j(x) − 1}k−1{2 − 2F j(x)}m−kdf j(x) + Rm

= m(m + 1)

4
− δ1 j√

m

∞∫
0

[m(m − 1){2F j(x) − 1} + m]df j(x) + Rm.

Thus, we have

E(W j
m) = m(m + 1)(2m + 1)

24
+

( ∞∫
0

{2F j(x) − 1}df j(x)
)2

δ2
1 jm

3 + o(m3).

In the following, we derive the asymptotic property for Wm under the local alternative hypothesis in (9). First of all, we 
have

√
p(Wm − ξm)√

ηm
=

√
p{Wm − ξm − p−1 ∑p

j=1 E(W j
m) + p−1 ∑p

j=1 E(W j
m)}

√
ηm

=
√

p{Wm − p−1 ∑p
j=1 E(W j

m)}
√

ηm
+

√
p{p−1 ∑p

j=1 E(W j
m) − ξm}

√
ηm

.

For the first item in the equality above, we have
17
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√
p{Wm − p−1 ∑p

j=1 E(W j
m)}

√
ηm

=
∑p

j=1{V j
m − E(V j

m)}
√

p

=
∑p

j=1{V j
m − E(V j

m)}√
var(

∑p
j=1 V j

m)

√
var(

∑p
j=1 V j

m)
√

p
.

Under Conditions (C1)-(C2) and the definition of τ 2
1 , we have p−1 var(

∑p
j=1 V j

m) = τ 2
1 − 1 + γ1(0). Recalling the definition 

of 
1 in (11), we have
√

p(Wm − ξm)√
ηm

D−→ C1 · N(0, τ 2
1 ) + 
1√

p
, as p → ∞,

where C1 is defined in Theorem 2. Finally, this yields the asymptotic power function of Zm as

β(Zm) = Pr
{√

p(Wm − ξm)

τ1
√

ηm
> Z1−α | H ′

1 is true
}

= 1 − �
{

C−1
1

(
Z1−α − 
1

τ1
√

p

)}
. �

Appendix C. Proof of Theorem 3

In parallel to the proof of Theorem 1, the derivation of the asymptotic distribution of Wm,n under H0 in (2) can be 
divided into two parts. At first, we calculate the expectation and variance of W j

m,n . And then, we verify that the sequence 
{V j

m,n, j = 1, . . . , p} satisfies the condition of central limit theorem under the strong mixing conditions.

To calculate the expectation and variance of W j
m,n , we consider the probability distribution of ranks Rxy

i j . For ease of syn-

tax and without loss of generality, we ignore the subscript j and the superscript xy of Rxy
i j hereafter since the distributions 

of Rxy
i j are same for j = 1, . . . , p. For a fixed j and mutually different indexes i1, i2, i3, i4, we let {Ri1 , Ri2 , Ri3 , Ri4 } denote 

the ranks of {Xi1 j, Xi2 j, Xi3 j, Xi4 j} among {X1 j, . . . , Xmj, Y1 j, . . . Ynj}. Let r1, r2, r3, r4 = 1, 2, . . . , N and be mutually different, 
under the null hypothesis that μ1 = μ2, we have

Pr(Ri1 = r1, . . . , Ris = rs) = 1/

s∏
t=1

(N − t + 1), s = 1,2,3,4.

Thus, we can obtain that E(Ri1 ) = (N + 1)/2, E(R2
i1
) = (N + 1)(2N + 1)/6 and E(Ri1 Ri2 ) = (N + 1)(3N + 2)/12. Recalling the 

definition of W j
m,n , we have E(W j

m,n) = var
(∑m

i1=1 Ri1

)
. Furthermore,

E(W j
m,n) =

m∑
i1=1

E(R2
i1
) +

m∑
i1=1

m∑
i2 �=i1

E(Ri1 Ri2) − {
mE(Ri1)

}2 = mn(N + 1)

12
.

On the other hand, we have E(R3
i1
) = N(N + 1)2/4, E(Ri1 R2

i2
) = N(N + 1)2/6, E(Ri1 Ri2 Ri3 ) = N(N + 1)2/8 and

E(R4
i1
) = (N + 1)(2N + 1)(3N2 + 3N − 1)/30,

E(Ri1 R3
i2
) = (N + 1)(15N3 + 21N2 − 4)/120,

E(R2
i1

R2
i2
) = (N + 1)(2N − 1)(2N + 1)(5N + 6)/180,

E(Ri1 Ri2 R2
i3
) = (N + 1)(30N3 + 35N2 − 11N − 12)/360

and E(Ri1 Ri2 Ri3 Ri4) = (N + 1)(15N3 + 15N2 − 10N − 8)/240.

Furthermore, we can derive that

E
( m∑

i=1

Ri
)3 = N(N + 1)2m2(m + 1)/8 and

E
( m∑

i=1

Ri
)4 = m(N + 1){mN(5N2 + 9N + 2) + 2m2N(15N2 + 25N + 8)

+m3(15N3 + 15N2 − 10N − 8) − 2N2(N + 1)}/240.
18
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For the variance of W j
m,n , we have

var(W j
m,n) = E

{ m∑
i=1

Ri − m(N + 1)

2

}4 − {E(W j
m,n)}2

= E
( m∑

i=1

Ri
)4 − 2m(N + 1)E

( m∑
i=1

Ri
)3 + 3m2(N + 1)2

2
E
( m∑

i=1

Ri
)2

−m3(N + 1)3

2
E
( m∑

i=1

Ri
) + m4(N + 1)4

16
− m2n2(N + 1)2

144
.

By algebraic calculation, we have var(W j
m,n) = {mn(5N + 8) − 3N(N + 1)}(N + 1)mn/360.

Below, we verify the sequence {V j
m,n, j = 1, . . . , p} satisfies the condition of central limit theorem under the strong 

mixing condition. Namely, we need to prove that E|V j
m,n|2+δ < ∞ for any m, n and fixed 0 < δ < ∞. Based on the definition 

of V j
m,n , we have

E|V j
m,n|2+δ = E|W j

m,n − ξm,n|2+δ

η
(2+δ)/2
m,n

.

Notice that the WMW test statistic U j
m,n ≤ mn, thus, we have W j

m,n ≤ (mn/2)2. Moreover, we have E|W j
m,n − ξm,n|2+δ ≤

|m2n2/4 − ξm,n|2+δ . Thus, for any fixed m, n ≥ 2, we have

E|V j
m,n|2+δ ≤

{mn(3mn − N − 1)

12
√

ηm,n

}2+δ

< ∞.

Finally, by the central limit theorem under the strong mixing condition (see Corollary 5.1 in Hall and Heyde (1980)), the 
proof of Theorem 3 is completed. �
Appendix D. Proof of Theorem 4

To prove Theorem 4, we first calculate the expectation of W j
m,n , namely, var(U j

m,n), under the local alternative H ′′
1 in 

(15). In order to calculate the variance of U j
m,n , we rewrite U j

m,n as

U j
m,n =

m∑
i=1

n∑
k=1

I(Ykj < Xij).

For ease of subsequent illustration, we define

e j
def= E{F j(X j + δ2 j/

√
N)},

g j
def= E{F j(X j + δ2 j/

√
N)}2 and

h j
def= E{1 − F j(X j + δ2 j/

√
N)}2. (D.1)

For any 1 ≤ i ≤ m and 1 ≤ k ≤ n, we have E
{

I(Ykj < Xij)
} = Pr(Y j < X j) = e j . Thus

E(U j
m,n) =

n∑
k=1

m∑
i=1

E
{

I(Ykj < Xij)
} = mne j . (D.2)

For any 1 ≤ i1 �= i2 ≤ m and 1 ≤ k1 �= k2 ≤ n, we have

E
{

I(Yk1 j < Xi1 j)I(Yk2 j < Xi1 j)
} = E{Pr(Y j < X j | X j)}2 = g j,

E
{

I(Yk1 j < Xi1 j)I(Yk1 j < Xi2 j)
} = E{Pr(X j > Y j | Y j)}2 = h j

and E
{

I(Yk1 j < Xi1 j)I(Yk2 j < Xi2 j)
} = E2{Pr(Y j < X j | X j)} = e2

j .

Furthermore, we have

E(U j
m,n)

2 = E
{ n∑

k=1

m∑
i=1

I(Ykj < Xij)
}2

(D.3)

= mne j + mn(n − 1)g j + mn(m − 1)h j + mn(m − 1)(n − 1)e2.
j
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Combining (D.2) and (D.3), we can obtain that

var(U j
m,n) = mne j − mn(N − 1)e2

j + mn(n − 1)g j + mn(m − 1)h j . (D.4)

Furthermore, the expectation of W j
m,n under the local alternative H ′′

1 in (15) can be derived as

E(W j
m,n) = mn

{
(1 − mn)e j + m−1

n−1 e2
j + (n − 1)g j + (m − 1)h j + mn/4

}
.

Let the function f (x) be differentiable with the first derivative f ′(x). Then by the Taylor expansion, we have

F j

(
x + δ2 j√

N

)
= F j(x) + f j(x)

δ2 j√
N

+ f ′
j(x)

δ2
2 j

2N
+ O (N−3/2).

Thus,

e j =
∞∫

−∞

{
F j(x) + f j(x)

δ2 j√
N

+ f ′
j(x)

δ2
2 j

2N
+ O (N−3/2)

}
dF j(x)

= 1

2
+ E

{
f j(X j)

} δ2 j√
N

+ E
{

f ′
j(X j)

} δ2
2 j

2N
+ O (N−3/2). (D.5)

By the same way, we can transfer g j and h j into

g j = 1

3
+ E

{
F j(X j) f j(X j)

} δ j√
N

+ O (N−1) and

h j = 1

3
+ E[{F j(X j) − 2

}
f j(X j)] δ j√

N
+ O (N−1). (D.6)

Hence, plugging equations (D.5)-(D.6) into (D.4), we can simplify E(W j
m,n) to (16) and obtain that E(W j

m,n) − ξm,n =
E2

{
f j(X j)

}
m2n2δ2

2 j/N + O  
(
N5/2

)
.

Next, we investigate the asymptotic normality of Wm,n under the local alternative H ′′
1 in (15). First of all, we have

√
p(Wm,n − ξm,n)√

ηm,n
=

√
p
{

Wm,n − p−1 ∑p
j=1 E(W j

m,n)
}

√
ηm,n

+
∑p

j=1{E(W j
m,n) − ξm,n}√

pηm,n
. (D.7)

Under Conditions (C3)-(C4) and the definition of τ 2
2 , we have p−1 var(

∑p
j=1 V j

m,n) = τ 2
2 − 1 +γ2(0). Thus, we can prove that 

the first term in (D.7) converges to C2 · N(0, 1) in distribution through similar techniques as in Theorem 2. As (m, n, p) → ∞, 
we can prove that the limit of the second term in (D.7) is p−1/2
2, where 
2 is defined in (17). As a result,

√
p(Wm,n − ξm,n)√

ηm,n

D−→ C2 · N(0, τ 2
2 ) + 
2√

p
, as (m,n, p) → ∞.

This further leads to the power function of Wm,n as

β(Wm,n) = Pr
{√

p(Wm,n − ξm,n)

τ2
√

ηm,n
> Z1−α | H ′′

1 is true
}

= 1 − �
{

C−1
2

(
Z1−α − 
2

τ2
√

p

)}
. �
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