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Abstract Difference-based methods have attracted increasing attention for analyzing
partially linearmodels in the recent literature. In this paper, we first propose to solve the
optimal sequence selection problem in difference-based estimation for the linear com-
ponent. To achieve the goal, a family of new sequences and a cross-validation method
for selecting the adaptive sequence are proposed. We demonstrate that the existing
sequences are only extreme cases in the proposed family. Secondly, we propose a
new estimator for the residual variance by fitting a linear regression method to some
difference-based estimators. Our proposed estimator achieves the asymptotic optimal
rate of mean squared error. Simulation studies also demonstrate that our proposed
estimator performs better than the existing estimator, especially when the sample size
is small and the nonparametric function is rough.
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1 Introduction

Consider the partially linear model

Yi = XT
i β + f (Zi ) + εi , i = 1, 2, . . . , n, (1)

where Yi are responses, β = (β1, . . . , βp)
T is an unknown p dimensional vector

of parameters, f (·) is an unknown nonparametric function, and εi are independent
and identically distributed (i.i.d.) random errors with mean zero and variance σ 2. In
addition, Xi and Zi are design points for parametric and nonparametric components,
respectively. Model (1) has been extensively studied in the literature with popular
methods including, for example, kernel smoothing methods, spline smoothing meth-
ods, penalized least squares methods, and profile likelihood methods (Chen and Shiau
1991; Cuzick 1992; Spechman 1988; Severini and Wong 1992; Eubank et al. 1998;
Hardle et al. 2000; Fan and Huang 2005).

Recently, Wang et al. (2011) proposed a difference-based method for analyzing
model (1). They first applied the classical difference-based method to eliminate the
nonparametric component f , and then applied the standard linear regression to esti-
mate the linear component β and the residual variance σ 2. Let d = {d0, . . . , dm} be a
sequence of real numbers such that

m∑

j=0

d j = 0 and
m∑

j=0

d2j = 1, (2)

where d0dm �= 0 and m > 0 is referred to as the order of sequence. To eliminate the
nonparametric component, the authors applied the following linear transformation to
model (1),

Ỹi = X̃ T
i β + δi + ε̃i , i = 1, . . . , n − m, (3)

where Ỹi = ∑m
j=0 d jYi+ j , X̃i = ∑m

j=0 d j Xi+ j , δi = ∑m
j=0 d j f (Zi+ j ), and ε̃i =∑m

j=0 d jεi+ j . Under the constraint (2), the term δi is asymptotically negligible under
some mild conditions so that the transformed model (3) reduces to nearly a classical
linear regression model. In view of this, the authors then proposed to estimate the
linear component by

β̂ = (X̃ T X̃)−1 X̃ T Ỹ , (4)

where X̃ = (X̃1, X̃2, . . . , X̃n−m)T and Ỹ = (Ỹ1, Ỹ2, . . . , Ỹn−m)T . Further, by the
residual sum of squares the residual variance is estimated as
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σ̂ 2
W = 1

n − m − p

n−m∑

i=1

(
Ỹi − X̃ T

i β̂
)2 = 1

n − m − p
Ỹ TΔỸ , (5)

whereΔ = I − X̃(X̃ T X̃)−1 X̃ T with I being the unit matrix of size (n−m)×(n−m).
We refer to σ̂ 2

W as a partially difference-based variance estimator. It is noteworthy that
other works in difference-based estimation for model (1) are also available, see for
example, Akdeniz and Duran (2013), Eubank et al. (1998), He et al. (2014), Hu
et al. (2016), Levine (2015), Liu and Zhao (2012), Lokshin (2006), Tabakan (2013),
Yatchew (1997), Zhao and You (2011), and the references therein.

To implement (4), one needs an appropriate choice of sequence d under the con-
straint (2). As pointed out in Dette et al. (1998), the choice of the difference sequence
can be rather delicate in practice and requires further attention. In this paper, we
consider the following family for the optimal choice of sequence:

d j =
{

{m/(m + 1)}1/2 j = k,

−{m(m + 1)}−1/2 j = 0, . . . , k − 1, k + 1, . . . ,m,
(6)

where the integer k is a tuning parameter and represents the location where the spike
is taken. All other d j values are equally distributed so that

∑m
j=0 d j = 0. Due to the

symmetry, it is sufficient to consider the parameter space as 0 ≤ k ≤ m/2 if m is
even and 0 ≤ k ≤ (m − 1)/2 if m is odd. To estimate β optimally, Wang et al. (2011)
suggested to use the spike sequence with the spike at the boundary of the sequence.
Note that, though optimal in the asymptotic sense, the spike sequencemay not perform
well for small sample sizes. This motivates us to develop an adaptive sequence for the
difference-based estimation and demonstrate its superiority over the existing one.

Needless to say, an accurate estimate of σ 2 is also important and crucial for par-
tially linear models. It is needed, for instance, in constructing confidence intervals, in
checking goodness of fit and outliers, and in many other applications. We note, how-
ever, that the partially residual-based variance estimator σ̂ 2

W in (5) does not achieve
the asymptotic optimal rate of mean squared error (MSE). Specifically, we will show
in Sect. 3 that

MSE
(
σ̂ 2
W

)
>

1

n
Var(ε2) + o

(
1

n

)
. (7)

This motivates us to also propose a new estimator for σ 2 in partially linear models.
The proposed estimator is optimal in the sense that its asymptotic MSE is equal to
Var(ε2)/n.

The rest of the paper is organized as follows. In Sect. 2, we study the appropriate
choice of sequence for the estimator β̂ in (4). By drawing connections between the
existing sequences and the proposed family, we propose a novel adaptive sequence by
the cross-validation method. In Sect. 3, we propose a new estimator of the variance
σ 2 and show that the MSE of the proposed estimator achieves the asymptotic optimal
rate of MSE. In Sect. 4, we conduct two simulation studies to assess the proposed
optimal estimators, where the first one is for the adaptive sequence and the other is
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for the variance estimation. Simulation studies support our findings that the proposed
methods perform better than the existing competitors.We conclude the paper in Sect. 5
and provide the technical proofs in Sect. 6.

2 Optimal choice of sequence

In this section, we investigate the appropriate choice of sequence in difference-based
estimation for partially linear models. To achieve this, we first derive the approximate
MSE of the estimator β̂ in (4). Let δ = (δ1, . . . , δn−m)T and ε̃ = (ε̃1, ε̃2, . . . , ε̃n−m)T .
Then in matrix form, model (3) can be written as

Ỹ = X̃β + δ + ε̃. (8)

Assume also that Xi are i.i.d. random vectors with mean vector μ and covariance
matrix ΣX , and Zi are equally spaced design points with Zi = i/n for i = 1, . . . , n.
For ease of notation, let A = (DT δ)(DT δ)T = (ai j )n×n , B = μμT , and D is an
(n − m) × n matrix of form

D =

⎛

⎜⎜⎜⎝

d0 d1 · · · dm 0 · · · 0
0 d0 d1 · · · dm · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 d0 d1 · · · dm

⎞

⎟⎟⎟⎠ .

Theorem 1 Assume that f has a bounded first derivative. The approximate MSE of
β̂ in (4) is given as

MSE
(
β̂
)

∼ 1

n2

⎧
⎨

⎩tr(A)Σ−1
X +

n∑

i, j=1

ai jΣ
−1
X BΣ−1

X

⎫
⎬

⎭ + 1

n

(
1 + 2

m∑

l=1

c2l

)
σ 2Σ−1

X ,

(9)

where cl = ∑m−l
j=0 d jd j+l for l = 1, . . . ,m and ‘∼’ is defined the same way as in

Stirling’s approximation.

The Proof of Theorem 1 is given in Sect. 6.1. It shows that the MSE of β̂ consists of
two distinct components, where one is associated with the nonparametric component
and the other one with the random errors. Note that the sequence family (5) solely
depends on the location k of the spike. To be specific, we represent the sequence d as
a function of k, i.e., d(k) = (d0(k), d1(k) . . . , dm(k)) where

d j (k) =
{

{m/(m + 1)}1/2 j = k,

−{m(m + 1)}−1/2 j = 0, . . . , k − 1, k + 1, . . . ,m.
(10)

Then to find the optimal sequence is equivalent to finding the optimal k value.
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With the sequence d(k) in (10), the approximate MSE of β̂ derived in (9), can now
be represented as a function of k. Specifically, we have

MSE
(
β̂
)

∼ (V1 + V2)Σ
−1
X , (11)

where

V1 = (m + 1)(m − 2k)2

4mn4
tr

((
DT f ′) (DT f ′)T

)
,

V2 = m
(
3m2 + 5m + 1

) + 12k(k + 1)

3nm2(m + 1)
σ 2,

and f ′ = ( f ′(Z1+k), . . . , f ′(Zn−m+k))
T are the first-order derivatives of f .

2.1 The sequence in Wang et al. (2011)

Note that V1 = O(n−4) and V2 = O(n−1) for any fixed m. Therefore, from an
asymptotic point of view, the contribution of the nonparametric component to the
MSE is negligible compared to that from the random errors. As a consequence, if we
ignore the term V1 in (11), the approximate MSE(β̂) reduces to

m(3m2 + 5m + 1) + 12k(k + 1)

3nm2(m + 1)
σ 2Σ−1

X . (12)

Noting that k ≥ 0, the minimum value of (12) is achieved at k = 0. This results in
the sequence suggested in Wang et al. (2011), i.e.,

d j (0) =
{

{m/(m + 1)}1/2 j = 0,

−{m(m + 1)}−1/2 j = 1, . . . ,m.

We refer to it as the WBC sequence. Note that the WBC sequence takes the spike in
the boundary and so is an extreme case of the proposed sequence family. In addition,
the WBC sequence is optimal in the asymptotic sense and has been applied in the
recent literature, e.g., Liu and Zhao (2012).

2.2 The sequence in Hall et al. (1990)

When the sample size is small, however, the contribution of the nonparametric com-
ponent, i.e., the term V1, is often non-negligible. In particular, when f is very rough,
V1 may even dominate the MSE of β̂. Thus, as an alternative option, one may also
consider the sequence that minimizes V1 only. That is, we are to minimize the quantity

(m + 1)(m − 2k)2

4mn4
tr

((
DT f ′) (DT f ′)T

)
Σ−1

X . (13)
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868 Y. Zhou et al.

Note that tr((DT f ′)(DT f ′)T ) > 0 for any non-constant function f . Therefore,
the unique minimum MSE of (13) has to be achieved at k = m/2 when m is an even
number. Specifically, the resulting sequence is

d j

(m
2

)
=
{

{m/(m + 1)}1/2 j = m/2,

−{m(m + 1)}−1/2 0 ≤ j ≤ m
2 − 1 or m

2 + 1 ≤ j ≤ m.
(14)

Similarly, when m is an odd number, it can be also shown that the minimum MSE is
achieved at k = (m − 1)/2 or k = (m + 1)/2. The resulting sequence is then

d j

(
m − 1

2

)
=
{

{m/(m + 1)}1/2 j = (m − 1)/2,

−{m(m + 1)}−1/2 0 ≤ j ≤ m−3
2 or m+1

2 ≤ j ≤ m.
(15)

We note that the sequences in (14) and (15) are the same as the spike sequence in
Hall et al. (1990). Here we refer to them as the HKT sequence. The HKT sequence
takes the spike in the middle and so is another extreme case of the proposed sequence
family. We also note that the HKT sequence can be transformed to the sequence used
by Gasser et al. (1986) when m = 2.

2.3 Adaptive sequence

Recall that theWBC sequence is achieved by minimizing the random errors part and it
may only perform well in the asymptotic sense. On the other hand, the HKT sequence
is achieved by minimizing the nonparametric component and it may only work for
small sample size. As a consequence, neither of them may be the optimal in practice.
Especially when the sample size is moderate, V1 and V2 can be very comparable so
that both of them should be taken in account.

To explore the relationship between V1 and V2, we consider the following simple
example. Let n = 100, m = 16, σ 2 = 1, and f (Z) = sin(ωπ Z) with ω = 0, 1, 2
and 4, corresponding to the different levels of oscillation. We plot V1, V2 and V1 + V2
as a function of k in Fig. 1, respectively. From the plotted curves, we note that V1 is
a decrease function of k on [0,m/2], and V2 is an increase function of k on [0,m/2].
This coincides with the fact that the HKT sequence takes the spike at k = m/2 and
theWBC sequence at k = 0. Note also that V1 +V2 is no longer a monotonic function
of k when ω = 1, 2 or 4, that is, when f is not a constant function. It is evident that
the minimumMSE, i.e., the minimum of V1 + V2, is located in somewhere between 0
and m/2. This demonstrates that the HKT sequence and the WBC sequence are both
extreme cases and may not be the optimal in practice.

To find the optimal k value, we propose a data-drivenmethod that controls V1 and V2
simultaneously. Specifically, the following cross-validation method is considered. For
n pair observations {(Xi , Zi ,Yi ), i = 1, . . . , n}, let β̂−i be a leave-one-out estimator
of β without the i th pair (Xi , Zi ,Yi ). We then choose the optimal k = kCV that
minimizes
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Fig. 1 With n = 100, m = 15 and f (z) = sin(ωπ z). Solid lines: V1 + V2; Dot-dashed lines: V1; Dashed
lines: V2

CV(k) =
n∑

i=1

∥∥∥β̂(d(k)) − β̂−i (d(k))
∥∥∥
2

(16)

within the parameter space of 0 ≤ k ≤ m/2 if m is even or 0 ≤ k ≤ (m − 1)/2 if m
is odd. Correspondingly, we refer to d(kCV) as the adaptive sequence.

3 Optimal variance estimation

Needless to say, an accurate estimate of σ 2 is also desired in partially linear models.
However, as shown in Theorem 2, the estimator σ̂ 2

W in Wang et al. (2011) does not
achieve the asymptotic optimal rate ofMSE. In this section,wepropose a newestimator
ofσ 2, derive its theoretical results, and show that it is superior to the existing competitor
σ̂ 2
W.
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870 Y. Zhou et al.

Let Y ∗
i = Yi − XT

i β̂ for i = 1, 2, . . . , n. Note that, by Wang et al. (2011), the
estimator β̂ is

√
n-consistent. We have Y ∗

i ≈ Yi − XT
i β and consequently

Y ∗
i ≈ f (Zi ) + εi , i = 1, 2, . . . , n. (17)

In such away, we have reducedmodel (1) approximatively to a standard nonparametric
regression model. It is noteworthy that, although relatively new in partially linear
models, difference-based methods have been extensively studied in nonparametric
regression (Rice 1984; Gasser et al. 1986; Hall et al. 1990; Dette et al. 1998; Hall and
Keilegom 2003; Tong and Wang 2005; Tong et al. 2013; Dai et al. 2015; Zhou et al.
2015; Wang and Lin 2015; Dai et al. 2016, 2017; Wang et al. 2017). In this paper, we
propose to apply the least squares methods in Tong and Wang (2005) and Tong et al.
(2013) to optimally estimate σ 2 using model (17). Let

sk = 1

2(n − k)

n∑

i=k+1

(
Y ∗
i − Y ∗

i−k

)2
, k = 1, 2, . . . , τ.

We refer to sk as the lag-k Rice estimators. For any fixed τ = o(n)with the equidistant
design, it is easy to verify that

E(sk) ≈ 1

2(n − k)

n∑

i=k+1

E {( f (Zi ) + εi ) − ( f (Zi−k) + εi−k)}2

≈ σ 2 + dk J,

where dk = k2/n2 and J = ∫ 1
0 ( f ′(x))2dx/2.

Now treating sk as the response variable and dk as the independent variable, we can
fit the following linear regression model and estimate σ 2 as the fitted intercept,

sk = α + γ dk + εk, k = 1, 2, . . . , τ, (18)

where εk are random errors. Note that sk involves (n−k) pairs of difference.We assign
the weights wk = (n − k)/N to the response variable sk where N = ∑τ

k=1(n − k) =
nτ − τ(τ + 1)/2. We fit model (18) to get the weighted least squares estimate. By
minimizing the weighted sums of squares

∑τ
k=1 wk(sk − α − γ dk)2, we have the

estimator of σ 2 as

σ̂ 2
new = s̄w − γ̂ d̄w, (19)

where γ̂ = ∑τ
k=1 wksk(dk − d̄w)/

∑τ
k=1 wk(dk − d̄w)2, s̄w = ∑τ

k=1 wksk and d̄w =∑τ
k=1 wkdk . Let h0 = 0 and hk = 1 − (dk − d̄w)d̄w/

∑τ
k=1 wk(dk − d̄w)2 for k =

1, 2, . . . , τ . The quadratic form of σ̂ 2
new can be represented as

σ̂ 2
new = 1

2N
Y ∗T HY ∗, (20)

123

Author's personal copy



Optimal difference-based estimation for partially linear… 871

where H = (hi j )n×n is a symmetric matrix with elements hi j = ∑τ
i=1 hk +∑min{i−1,n−i,τ }

k=0 hk for i = j , hi j = −h|i− j | for 0 < |i − j | ≤ τ and hi j = 0
otherwise, and Y ∗ = (Y ∗

1 ,Y ∗
2 , . . . ,Y ∗

n )T .
In what follows, we derive the theoretical results of the proposed estimators includ-

ing the asymptoticMSE and the asymptotic normality. For comparison, the asymptotic
MSE of the partially residual-based variance estimator σ̂ 2

W is also derived.

Theorem 2 Assume that f has a bounded first derivative and E(ε4) < ∞. For the
equidistant design with m → ∞ and m/n → 0, we have

MSE
(
σ̂ 2
W

)
= 1

n

⎧
⎨

⎩var(ε2) + 4σ 4
m∑

k=1

m−k∑

j=1

d2j d
2
j+k

⎫
⎬

⎭ + o

(
1

n

)
.

For the equidistant design with τ → ∞ and τ/n → 0, we have

MSE
(
σ̂ 2
new

)
= 1

n
var(ε2) + o

(
1

n

)
.

Theorem 3 For the equidistant design, σ̂ 2
new is an unbiased estimator of σ 2 when f

is a linear function, regardless of the choice of τ .

Theorem 4 Assume that f has a bounded second derivative and E(ε6) < ∞. For
any τ = o(nr ) with 0 < r < 1/2, then

√
n
(
σ̂ 2
new − σ 2

)
D−→ N

(
0, (γ4 − 1)σ 4

)
,

where γ4 = Eε4/σ 4 and
D−→ denotes in distribution convergence.

The proofs of the theorems are given in Sect. 6. Theorem 2 shows that our pro-
posed estimator achieves the asymptotic optimal rate of MSE, and it is hence a more
efficient estimator of σ 2 than σ̂ 2

W. Theorem 4 establishes the asymptotic normality for
the proposed estimator σ̂ 2

new. It can be used to construct confidence intervals for σ 2.
For instance, if n > (γ4 − 1)z2α/2 where zα is the upper α-th percentile of the standard
normal distribution and if γ̂4 is an estimate of γ4, then an approximate 1 − α confi-
dence interval for σ 2 can be constructed as (σ̂ 2

new/{1+ zα/2
√

(γ̂4 − 1)/n}, σ̂ 2
new/{1−

zα/2
√

(γ̂4 − 1)/n}).

4 Simulation studies

In this section, we report two simulation studies. The first study is to assess the impact
of the various sequences on the performance of the estimator β̂, and the other one is
to evaluate the finite sample performance of the new estimator and compare it with
the existing competitor.
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Fig. 2 MSEs for n = 25, β = (2, 2, 4)T and f (z) = 5 sin(ωπ z), respectively. Solid lines: the adaptive
sequence; Dashed lines: the HKT sequence; Dot-dashed lines: the WBC sequence

4.1 Sequence selection

To assess the impact of the sequences on the estimation, we consider the following
three estimators for β̂ in (4): β̂ with the WBC sequence, β̂ with the HKT sequence,
and β̂ with the adaptive sequence by the cross-validation method. For the sample size,
we consider n = 25 and 200. For the linear component of the regression model, we
consider β = (2, 2, 4)T and Xi are i.i.d. from N ((1, 2, 3)T , I3), where I3 is an identity
matrix of size 3 × 3. For the nonparametric component of the regression model, we
consider f (Z) = 5 sin(ωπ Z) with ω = 0, 1, 2, 4 for n = 25, and w = 0, 2, 4, 6
for n = 200, respectively. The design points Zi are equidistant with Zi = i/n for
i = 1, . . . , n. Finally, the random errors εi are independently generated from N (0, 1).

For each simulation setting, we repeat the procedure for 1000 times and compute
the corresponding MSEs of β̂ for the distinct sequences. We then plot the MSE(β̂) of
the considered estimators in Figs. 2 and 3, respectively. From the simulated results, we
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Fig. 3 MSEs for n = 200, β = (2, 2, 4)T and f (z) = 5 sin(ωπ z), respectively. Solid lines: the adaptive
sequence; Dashed lines: the HKT sequence; Dot-dashed lines: the WBC sequence

observe that when f is a constant function, i.e., when ω = 0, the estimator with the
WBC sequence provides the smallest mean squared error. In general, MSE(β̂(WBC))

increases asm increases whereasMSE(β̂(HKT)) decreases asm increases. Compared
with the WBC sequence and the HKT sequence, the adaptive sequence performs
relatively well in most settings, especially when f is a very rough function.

4.2 Variance estimation

We now conduct a simulation study to evaluate the finite sample performance of the
proposed estimator σ̂ 2

new and compared it with the estimator σ̂ 2
W. For the parametric

part, we consider p = 2, β = (1, 1.5)′, both xi1 and xi2 are generated from the
uniformdistributionU (0, 1). For the nonparametric part, we consider the function f =
5 sin(ωπ Z) with ω = 0, 1, 2, 4, and 6, denoted by f1, f2, f3, f4 and f5 respectively.
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Table 1 The relative MSEs of σ̂ 2
W and σ̂ 2

new under various simulation settings

n σ Methods f1 f2 f3 f4 f5

30 0.5 σ̂ 2
W 1.53 37.05 524.75 4218.4 8396.3

σ̂ 2
new 1.54 1.58 2.93 31.16 289.4

2 σ̂ 2
W 1.54 1.67 4.04 23.44 57.09

σ̂ 2
new 1.53 1.51 1.53 1.57 2.50

100 0.5 σ̂ 2
W 1.27 2.34 19.63 284.1 1392.8

σ̂ 2
new 1.13 1.13 1.14 1.45 5.66

2 σ̂ 2
W 1.24 1.26 1.33 2.39 6.84

σ̂ 2
new 1.14 1.14 1.13 1.13 1.13

400 0.5 σ̂ 2
W 1.35 1.37 1.51 5.82 25.64

σ̂ 2
new 1.19 1.19 1.16 1.15 1.15

2 σ̂ 2
W 1.38 1.38 1.30 1.34 1.41

σ̂ 2
new 1.19 1.19 1.16 1.14 1.14

The design points Zi are equally spaced with Zi = i/n and the random errors εi
are generated independently from the normal distribution N (0, σ 2). In addition, we
consider σ 2 = 0.25 and 4 to represent the small and large variances, and n = 30, 100
and 400 to represent the small, moderate and large sample sizes, respectively.

For the difference sequence d, we choose the adaptive sequence as proposed in
Sect. 2.3 and the order of sequence m = 4. For the bandwidth τ , we choose τ = n1/3.
We repeat the simulation 1000 times for each setting and report the relative mean
squared errors, nMSE/(2σ 4), of the two estimators in Table 1. From Table 1, it is
evident that our proposed estimator σ̂ 2

new performs better than the existing competitor
σ̂ 2
W in most settings. We also note that the performance of σ̂ 2

W depends heavily on the
smoothness of f , the sample size n, and the signal-to-noise ratio. In particular, when
σ 2 is small and f is rough, σ̂ 2

W fails to provide a reasonable estimate. Together with
Theorem 2, we conclude that our proposed estimator improves the existing estimator
significantly in both theory and simulations.

5 Conclusion

In the first part of the paper, we investigate the choice of difference sequence for β̂ in a
given sequence family. We derive that the mean squared error of the difference-based
estimator consists of twodistinct components: one is associatedwith the nonparametric
component and the other one with the random errors. It turns out that the existing
sequences are just special cases in the sequence family. Subsequently, we give an
adaptive sequence by the cross-validation method. Simulation studies indicate that
the criterion is quite effective and the adaptive sequence assesses good performance
for most settings. In the second part of the paper, we propose a new estimator for the
residual variance σ 2 by fitting a linear regression model to difference-based variance
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estimators. We have also derived the theoretical results including the asymptotic MSE
and the asymptotic normality of the proposed estimator. In both theory and simulations,
we demonstrate that the proposed estimator performs better than the partially residual-
based estimator in Wang et al. (2011).

For simplicity, the covariate Zi are assumed to be equally spaced design points with
Zi = i/n in this paper. In practice, our proposed method can also be readily applied to
unequally spaced designs with the design points satisfying Zi −Zi−1 = 1/n+o(1/n).
In addition, we note that our proposedmethod requires the design points to be ordered.
Hence as the classical difference-based methods, it may not be easy to extend our
method to general models with high-dimensional data or infinite-dimensional data
with applications in functional data analysis (Aneiros et al. 2015). Further research is
needed in this direction.

6 Proofs

We first present three lemmas. Lemmas 1 and 2 are immediate results from Schott
(1997) and Whittle (1964), respectively. Proof of Lemma 3 will be given.

Lemma 1 Let X be an length m random vector with finite fourth moments so that
both E(XXT ) and E(XXT ⊗ XXT ) exist. Let μ and Ω denote the mean vector and
covariance matrix of X, respectively. Then for any m × m symmetric matrix A, we
have

Var(XT AX) = tr{(A ⊗ A)E(XXT ⊗ XXT )} − {tr(AΩ) + μT Aμ}2.

Lemma 2 Assume that the matrix A = (ai j )nn satisfies ai j = ai− j and
∑∞

−∞ ai− j <

∞. Furthermore, assume that E(ε6) is finite. Then

1

n
εT Aε = 1

n

n∑

i=1

n∑

j=1

ai− jεiε j
D−→ N

(
a0σ

2, σ 2
A

)
,

where σ 2
A = (γ4 − 3)a20σ

4/n + 2σ 4∑n
i=1

∑n
j=1 a

2
i− j/n

2.

Lemma 3 Assume that τ → ∞, τ/n → 0. Then,

(1)
∑τ

k=1 hk = O(τ ),
(2)

∑τ
k=1 h

2
k = O(τ ),

(3)
∑τ

k= j hk = τ − 9/4 j + 5 j3

4τ 2
+ o(τ ),

(4) f T H f = O(τ 4/n2),
(5) f T H2 f = O(τ 5/n2).
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Proof (1) Note that N = nτ − τ(τ + 1)/2. It is easy to show that

d̄w = I2
Nn

− I3
Nn2

= τ 2

3n2
+ o

(
τ 2

n2

)
,

τ∑

k=1

wk(dk − d̄w)2 = I4
Nn3

− I5
Nn4

−
(

I2
Nn

− I3
Nn2

)2

= 4τ 4

45n4
+ o

(
τ 4

n4

)
,

where It = ∑τ
k=1 k

t for t = 2, 3, 4, 5. Hence, we obtain

η = d̄w
∑τ

k=1 wk
(
dk − d̄w

)2 = 15n2

4τ 2
+ o

(
n2

τ 2

)
.

In addition, we have

τ∑

k=1

(
dk − d̄w

) = 1

n2

τ∑

k=1

k2 − τ

Nn2

τ∑

k=1

(n − k)k2

= τ

Nn2

τ∑

k=1

k3 + 1

n2

(
1 − τn

N

) τ∑

k=1

k2

= τ 4

12n3
+ o

(
τ 4

n3

)
.

This leads to
∑τ

k=1 hk = τ − η
∑τ

k=1(dk − d̄w) = τ − 5τ 2
16n + o

(
τ 2

n

)
= O(τ ).

(2)Note that η = 15n2

4τ 2
+o

(
n2

τ 2

)
and

∑τ
k=1(dk−d̄w) = τ 4

12n3
+o

(
τ 4

n3

)
. Furthermore,

it is easy to show that
∑τ

k=1(dk − d̄w)2 = 4τ 5

45n4
+ o

(
τ 5

n4

)
. Then,

τ∑

k=1

h2k = τ − 2η
τ∑

k=1

(
dk − d̄w

) + η2
τ∑

k=1

(
dk − d̄w

)2

= τ −
(
5τ 2

8n
+ o

(
τ 2

n

))
+
(
15n2

4τ 2
+ o

(
n2

τ 2

))2
(

4τ 5

45n4
+ o

(
τ 5

n4

))

= 9

4
τ + o(τ ) = O(τ ).

(3) For 1 ≤ j ≤ τ ,
∑τ

k= j hk = ∑τ
k=1 hk −∑ j−1

k=1 hk . Note that ηd̄w = 5/4+o(1).
Then, we have
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j−1∑

k=1

hk = ( j − 1)
(
1 + ηd̄w

) − η

j−1∑

k=1

dk

= ( j − 1) (1 + 5/4 + o(1)) −
(
15n2

4τ 2
+ o

(
n2

τ 2

))(
j3

3n2
+ O

(
j2

n2

))

= 9

4
j − 5 j3

4τ 2
+ o( j) + O(1).

By
∑τ

k=1 hk = τ − 5τ 2
16n + o

(
τ 2

n

)
, we get

∑τ
k= j hk = τ − 9

4 j + 5 j3

4τ 2
+ o(τ ).

(4) We have

f T H f =
τ∑

k=1

{
hk

n∑

i=k+1

( fi − fi−k)
2

}

=
τ∑

k=1

{
hk

n∑

i=k+1

(
f ′
i
k

n
+ O

(
k2

n2

))2
}

=
τ∑

k=1

[
hk

{
k2

n2

n∑

i=k+1

f ′
i
2 + O

(
(n − k)k3

n3

)}]

= J

n

τ∑

k=1

k2hk + O

(
1

n2

) τ∑

k=1

k3hk,

where J = ∫ 1
0 f ′(x)2dx . Note that

∑τ
k=1 k

2hk = (1+ηd̄w)
∑τ

k=1 k
2−η

∑τ
k=1 k

2 =
3
4τ

3 − 3
4τ

3 + o(τ 3) = o(τ 3) and
∑τ

k=1 k
3hk = (1 + ηd̄w)

∑τ
k=1 k

3 − η
∑τ

k=1 k
3 =

O(τ 4). Hence, we get f T H f = O(τ 4/n2).
(5) Since H is symmetric, then f T H2 f = f T HT H f = (H f )T H f = pT p,

where p = H f = (p1, p2, . . . , pn)T . For i ∈ [τ + 1, n − τ ], we have

pi =
τ∑

k=1

hk( fi − fi−k) −
τ∑

k=1

hk( fi+k − fi )

=
τ∑

k=1

hk

(
k

n
f ′
i − k2

2n2
f

′′
i + o

(
k2

2n2

))
−

τ∑

k=1

hk

(
k

n
f ′
i + k2

2n2
f

′′
i + o

(
k2

2n2

))

= − 1

n2
f

′′
i

τ∑

k=1

k2hk + o

(
τ 3

n2

)
= o

(
τ 3

n2

)
,

where f ′
i and f

′′
i denote first and second derivative of f (Zi ), respectively. For i ∈

[1, τ ], we have

pi =
i−1∑

k=1

hk( fi − fi−k) −
τ∑

k=1

hk( fi+k − fi )
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=
i−1∑

k=1

hk

(
k

n
f ′
i − k2

2n2
f

′′
i + o

(
k2

2n2

))
−

τ∑

k=1

hk

(
k

n
f ′
i + k2

2n2
f

′′
i + o

(
k2

2n2

))

= − f ′
i

n

τ∑

k=i

khk − f
′′
i

2n2

τ∑

k=i

k2hk + o

(
τ 3

n2

)
= O

(
τ 2

n

)
.

Similarly, for i ∈ [n − τ + 1, n], we can show that pi = O
(

τ 2

n

)
. Then, we have

f T H2 f = pT p =
τ∑

i=1

p2i +
n−τ∑

i=τ+1

p2i +
n∑

i=n−τ+1

p2i = O

(
τ 5

n2

)
.

��

6.1 Proof of Theorem 1

By (4) and (8), we have β̂ = β + (X̃ T X̃)−1 X̃ T δ + (X̃ T X̃)−1 X̃ T ε̃. Note that δ and ε̃

are independent of each other and E{(X̃ T X̃)−1 X̃ T ε̃} = 0. Then

MSE
(
β̂
)

= Var
(
(X̃ T X̃)−1 X̃ T ε̃

)
+ E

(
(X̃ T X̃)−1 X̃ T δ

) (
(X̃ T X̃)−1 X̃ T δ

)T
.(21)

For the first term, by Remark 5 in Wang et al. (2011), we have

Var
(
(X̃ T X̃)−1 X̃ T ε̃

)
∼ 1

n

(
1 + 2

m∑

l=1

c2l

)
σ 2Σ−1

X , (22)

where cl = ∑m−l
j=0 d jd j+l for l = 1, . . . ,m, and ‘∼’ is defined the same way as in

Stirling’s approximation.
Now we derive the second term in (21). For ease of notation, let A =

(DT δ)(DT δ)T = (ai j )n×n , B = μμT . Note that X̃ = DX and X̃ T X̃/n → ΣX
as n → ∞. We have

E
(
(X̃ T X̃)−1 X̃ T δ

) (
(X̃ T X̃)−1 X̃ T δ

)T = 1

n2
E
{
(X̃ T X̃/n)−1(X̃ T δ)(X̃ T δ)T (X̃ T X̃/n)−1

}

∼ 1

n2
Σ−1

X E
{
XT (DT δ)(DT δ)T X

}
Σ−1

X .

Further, we have

E
{
XT (DT δ)(DT δ)T X

}
= E

⎧
⎨

⎩

n∑

i=1

n∑

j=1

ai j Xi X
T
j

⎫
⎬

⎭

= E

⎡

⎣
n∑

i=1

n∑

j=1

ai j {(Xi − μ) + μ}{(X j − μ) + μ}T
⎤

⎦
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=
n∑

i=1

aiiΣX +
n∑

i, j=1

ai jμμT

= tr(A)ΣX +
n∑

i, j=1

ai j B.

Then,

E
(
(X̃ T X̃)−1 X̃ T δ

) (
(X̃ T X̃)−1 X̃ T δ

)T ∼ 1

n2

⎧
⎨

⎩tr(A)Σ−1
X +

n∑

i, j=1

ai jΣ
−1
X BΣ−1

X

⎫
⎬

⎭ .

(23)

Finally, by (21), (22) and (23), the approximate MSE of β̂ is given as

MSE
(
β̂
)

∼ 1

n2

⎧
⎨

⎩tr(A)Σ−1
X +

n∑

i, j=1

ai jΣ
−1
X BΣ−1

X

⎫
⎬

⎭ + 1

n

(
1 + 2

m∑

l=1

c2l

)
σ 2Σ−1

X .

(24)

6.2 Proof of Theorem 2

By the definition of σ̂ 2
W and

√
n-consistency of β̂, we have

σ̂ 2
W = 1

n − m − p

n−m∑

i=1

(
Ỹi − X̃ T

i β̂
)2

= 1

n − m − p

n−m∑

i=1

{
X̃ T
i (β − β̂) + δi + ε̃i

}2

= 1

n − m − p

n−m∑

i=1

ε̃2i + Op

(
1

n

)
.

Hence, we obtain that

E(σ̂ 2
W) = n − m

n − m − p
σ 2 + O

(
1

n

)
, (25)

Var(σ̂ 2
W) = 1

(n − m − p)2
Var

(
n−m∑

i=1

ε̃2i

)
+ o

(
1

n

)

= 1

(n − m − p)2

⎧
⎨

⎩

n−m∑

i=1

Var(ε̃2i ) + 2
∑

i< j

Cov(ε̃2i , ε̃
2
j )

⎫
⎬

⎭ + o

(
1

n

)
. (26)
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Next, we calculate Var(ε̃2i ) and Cov(ε̃2i , ε̃
2
j ), respectively. We know that

Var
(
ε̃2i

)
= E

(
ε̃2i − σ 2

)2 = E
(
ε̃4i

)
− σ 4

= E

⎧
⎨

⎩

m∑

j=0

d2j ε
2
i+ j + 2

∑

0≤p<q≤m

dpdqεi+pεi+q

⎫
⎬

⎭

2

− σ 4

= E

⎧
⎨

⎩

m∑

j=0

d2j ε
2
i+ j

⎫
⎬

⎭

2

+ 4E

⎧
⎨

⎩
∑

0≤p<q≤m

dpdqεi+pεi+q

⎫
⎬

⎭

2

− σ 4

=
m∑

j=0

d4j Eε4 + 6
∑

0≤p<q≤m

d2pd
2
qσ 4 − σ 4

=
m∑

j=0

d4jVar(ε
2) + 4

∑

0≤p<q≤m

d2pd
2
qσ 4, (27)

and

Cov
(
ε̃2i , ε̃

2
j

)
= E

(
ε̃2i ε̃

2
j

)
− σ 4

= E

{(
m∑

s=0

dsεi+s

)(
m∑

t=0

dtε j+t

)}2

− σ 4

=
m∑

s=0

m∑

t=0

d2s d
2
t E(ε2i+sε

2
j+t ) − σ 4

=
{

m∑

s=0

m∑

t=0

}

i+s= j+t

d2s d
2
t E(ε4) +

{
m∑

s=0

m∑

t=0

}

i+s �= j+t

d2s d
2
t σ

4 − σ 4

=
{

m∑

s=0

m∑

t=0

}

i+s= j+t

d2s d
2
t Var(ε

2). (28)

Plugging (27) and (28) into (26), we have

Var
(
σ̂ 2
W

)
= n − m

(n − m − p)2

⎧
⎨

⎩Var(ε2) + 4σ 4
m∑

k=1

m−k∑

j=0

d2j d
2
j+k

⎫
⎬

⎭ + o

(
1

n

)
. (29)

Combining (25) and (29), asm/n → 0 withm → ∞, the asymptotic MSE of σ̂ 2
W can

be denotes as

MSE
(
σ̂ 2
W

)
= 1

n

⎧
⎨

⎩Var(ε2) + 4σ 4
m∑

k=1

m−k∑

j=0

d2j d
2
j+k

⎫
⎬

⎭ + o

(
1

n

)
. (30)
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In what follows, we consider the asymptotic MSE of σ̂ 2
new. By the definition of σ̂

2
new

and
√
n-consistency of β̂, we have

σ̂ 2
new = 1

2N
Y ∗T HY ∗ = 1

2N

(
X (β − β̂) + δ + ε

)T
H
(
X (β − β̂) + δ + ε

)

= 1

2N

{
εT Hε + Op

(
1√
n

)}
.

Then, we have

E
(
σ̂ 2
new

)
= tr(H)

2N
σ 2 + O

(
1

mn3/2

)
, (31)

Var
(
σ̂ 2
new

)
= 1

4N 2 Var
(
εT Hε

)
+ O

(
1

m2n5/2

)
. (32)

By Lemma 1, we have

Var
(
εT Hε

)
= tr{(H ⊗ H)E

(
εεT ⊗ εεT

)
} − {tr(H)σ 2}2

= tr
{
(H ⊗ H)E

(
εεT ⊗ εεT

)}
− {tr(H)}2σ 4. (33)

We know

tr(H) = 2
τ−1∑

j=0

⎛

⎝
τ∑

k=1

hk +
j∑

k=0

hk

⎞

⎠ + 2(n − 2τ)

τ∑

k=1

hk ,

tr
{
(H ⊗ H)E

(
εεT ⊗ εεT

)}
=

⎧
⎪⎨

⎪⎩
2

τ−1∑

j=0

⎛

⎝
τ∑

k=1

hk +
j∑

k=0

hk

⎞

⎠
2

+ 4(n − 2τ)

(
τ∑

k=1

hk

)2
⎫
⎪⎬

⎪⎭
E(ε4)

+
⎡

⎣2
τ−1∑

j=0

⎛

⎝
τ∑

k=1

hk +
j∑

k=0

hk

⎞

⎠

⎧
⎨

⎩2
τ−1∑

j=0

⎛

⎝
τ∑

k=1

hk +
j∑

k=0

hk

⎞

⎠

+ 2(n − 2τ)

τ∑

k=1

hk −
⎛

⎝
τ∑

k=1

hk +
j∑

k=0

hk

⎞

⎠

⎫
⎬

⎭

+ 2(n − 2τ)

(
τ∑

k=1

hk

)⎧
⎨

⎩2
τ−1∑

j=0

⎛

⎝
τ∑

k=1

hk +
j∑

k=0

hk

⎞

⎠

+ 2(n − 2τ − 1)
τ∑

k=1

hk

}]
σ 4,
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where h0 = 0. Therefore, we have

Var
(
εT Hε

)
=

⎧
⎪⎨

⎪⎩
2

τ−1∑

j=0

⎛

⎝
τ∑

k=1

hk +
j∑

k=0

hk

⎞

⎠
2

+ 4(n − 2τ)

(
τ∑

k=1

hk

)2
⎫
⎪⎬

⎪⎭
Var(ε2).

(34)

Note that
∑τ

k=1 hk = τ − 5τ 2
16n +o

(
τ 2

n

)
and

∑ j
k=1 hk = 9

4 j − 5 j3

4τ 2
+o( j)+o

(
j3

τ 2

)
for

1 ≤ j ≤ τ . By (31), (32) and (34), as τ/n → 0 with τ → ∞, we have the asymptotic
MSE of σ̂ 2

new for

MSE
(
σ̂ 2
new

)
= 1

n
Var(ε2) + o

(
1

n

)
.

6.3 Proof of Theorem 3

By the root-n consistency of β̂ and smoothness of f , we have

E(sk) = 1

2(n − k)

n∑

i=k+1

E{(Xi − Xi−k)
′(β − β̂) + ( fi − fi−k) + (εi − εi−k)}2

= σ 2 + o(n−1/2),

where fi = f (Zi ). Then,

E(σ̂ 2
new) =

τ∑

k=1

wk E(sk) − d̄w∑τ
k=1 wk(dk − d̄w)2

τ∑

k=1

wk(dk − d̄w)E(sk)

= σ 2 + o(n−1/2).

Thus, σ̂ 2
new is an asymptotically unbiased estimator of σ 2.

6.4 Proof of Theorem 4

Note that Y ∗ = Y − X β̂ = X (β − β̂) + f + ε. We have

σ̂ 2
new = 1

2N
(X (β − β̂) + f + ε)T H(X (β − β̂) + f + ε).
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Let A = X (β − β̂). Then,

σ̂ 2
new = 1

2N
(A + f + ε)T H (A + f + ε)

= 1

2N

(
AT H A + 2AT H f + f T H f + 2AT Hε + 2 f T Hε + εT Hε

)

= I1 + I2 + I3 + I4 + I5 + I6.

By the root-n consistency of β̂ and the smoothness of f , we have I1 = op(n−1/2) and
I2 = op(n−1/2). By δi = O(τ/n) and f ′H f = O(τ 3/n). we have I3 = O(τ 2/n2).
Further, for any τ = nr with 0 < r < 3/4, we have I3 = o(n−1/2). By the root-n con-
sistency of β̂ and for any τ , we have E(AT Hε/N )2 = AT HHT Aσ 2/N 2 = o(1/n).
This implies that I4 = op(n−1/2). Note also that E( f T Hε/N ) = f T H2 f σ 2/N 2 and
f T H2 f = O(τ 5/n2). Then for any τ = o(n), we have I5 = op(n−1/2).
In what follows, we consider the limiting distribution of εT Hε/(2N ). Let

nH/(2N ) = B − C , where B = (bi j )n×n with elements bi j = n
∑τ

k=1 hk/N
for i = j , bi j = −nh|i− j |/(2N ) for 0 < |i − j | ≤ τ , bi j = 0 otherwise; and
C = diag(c1, c2, . . . , cn) with ci = n

∑τ+1
min(i,n+1−i,τ+1) hk/(2N ). Then,

1

2N
εT Hε = 1

n
εT Bε − 1

n
εTCε. (35)

Note that the asymmetric matrix B satisfies bi j = bi− j with b0 = n
∑τ

k=1 hk/N ,
bi− j = b j−i = −nh|i− j |/(2N ) for 0 < |i − j | ≤ τ and bi− j = b j−i = 0 otherwise.
By Lemma 3, for any τ = o(n), we have

∑∞
k=−∞ b2k = b20 + 2

∑τ
k=1 b

2
k < ∞. We

assume that E(ε6) < ∞. By Lemma 2, we have

√
n

(
1

n
εT Bε − b0σ

2
)

d−→ N
(
0, σ 2

B

)
, (36)

where

σ 2
B = n2(γ4 − 1)σ 4

N 2

(
τ∑

k=1

hk

)2

+ nσ 4

N 2

τ∑

k=1

(n − k)h2k .

We know εTCε = ∑τ
i=1 ciε

2
i + ∑n

i=n−τ+1 ciε
2
i . Note that

E

(
τ∑

i=1

ciε
2
i

)2

= (γ4 − 1)
n2σ 4

4N 2

τ∑

i=1

⎛

⎝
τ+1∑

min(i,n+1−i,τ+1)

hk

⎞

⎠
2

+n2σ 4

4N 2

⎛

⎝
τ∑

i=1

τ+1∑

min(i,n+1−i,τ+1)

hk

⎞

⎠
2

.
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By Lemma 3, we have E
(∑τ

i=1 ciε
2
i

)2 = O(τ 2). Similarly, we can obtain

E
(∑n

i=n−τ+1 ciε
2
i

)2 = O(τ 2). Then, E
( 1
n εTCε

)2 = O(τ 2/n2). For any τ = nr

with 0 < r < 1/2, we have

1

n
εTCε = op(n

−1/2).

By Slutsky’s theorem, we can get

√
n
(
σ̂ 2
new − b0σ

2
)

/σB
d−→ N (0, 1), as n → ∞.

Note also that b0 = 1+ O(τ/n), σ̂ 2
B = (γ4 − 1)σ 4 + o(1). Therefore, for any τ = nr

with 0 < r < 1/2, we have
√
n(b0 − 1) = o(1). Applying Slutsky’s theorem, we

have

√
n
(
σ̂ 2
new − σ 2

)
√

γ4 − 1σ 2
= σB√

γ4 − 1σ 2

(√
n
(
σ̂ 2
new − b0σ 2

)

σB
+

√
n(b0 − 1)σ 2

σB

)

d−→ N (0, 1), as n → ∞.

This completes the proof of theorem.
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