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Abstract
Chromatin immunoprecipitation followed by massively parallel next-generation sequencing (ChIP-seq) is a valu-

able experimental strategy for assaying protein–DNA interaction over the whole genome. Many computational

tools have been designed to find the peaks of the signals corresponding to protein binding sites. In this paper,

three computational methods, ChIP-seq processing pipeline (spp), PeakSeq and CisGenome, used in ChIP-seq

data analysis are reviewed. There is also a comparison of how they agree and disagree on finding peaks using the

publically available Signal Transducers and Activators of Transcription protein 1 (STAT1) and RNA polymerase II

(PolII) datasets with corresponding negative controls.
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Background

The regulation of gene expression is tightly con-

trolled by transcription factors (TFs) that bind to

specific DNA regulatory regions, histone modifi-

cations and positioned nucleosomes in the genome.

High-throughput chromatin immunoprecipitation

(ChIP) followed by massively parallel next-

generation sequencing (ChIP-seq) represents a

current approach in profiling genome-wide

protein–DNA interactions, histone modifications

and nucleosome positions. This new technology

has marked advantages over microarray-based

(ChIP-chip) approaches by offering higher speci-

ficity, sensitivity and coverage for locating TF occu-

pancy or epigenetic markers across the genome.

ChIP-seq experiments generate large amounts of

data (in the order of tens of millions of reads), thus

creating a bottleneck for data analysis and

interpretation. Consequently, effective bioinfor-

matics tools are needed to process, analyse and

interpret these data in order to uncover underlying

biological regulatory mechanisms.

In essence, the ChIP-seq analysis workflow can

be divided into the following steps:

(i) Pre-processing. The goal of this step is to

filter out erroneous and low-quality reads

and to ensure that only the highest quality

sequencing reads are retained for the sub-

sequent mapping step;

(ii) Mapping. This is the key step in which

mapped reads are converted to an integer

count of ‘tags’ at each position in the genome

with fixed read length. The choice of flexibility

options on mapping multiple reads to multiple

sites affects sensitivity and specificity dependent
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on the volume and complexityof target genome

sequences. The user can increase specificity

using unique reads only or can increase sensi-

tivity allowing multiple alignments of reads;

(iii) Peak finding. This is the most challenging

step in the analysis workflow, as the goal is to

identify significant peak signals among back-

ground signals. This includes not only finding

the strong signals, but also finding the statisti-

cally reproducible weak signals obtained from

the modest read counts. To achieve this goal,

statistical tests should be based on biologically

meaningful background assumptions.

Types of peaks

Peaks in the ChIP-seq data can be classified into

three groups: punctate signals (�100 base pairs [bp]);

localised but broader signals (� kilobase [kb]) and

broad signals (�100 kb).1 The predictive power of

the existing tools depends on the type of data. A

mixture of punctate and broader signals is a typical

pattern of RNA polymerase II, which occupies tran-

scription start sites and promoter–proximal pause

sites in a punctate fashion, but the signals diffuse over

the body of the transcribed genes.2,3 Most algorithms

have been optimised to handle the punctate data but

are not as good at detecting mixed binding patterns

that require non-default parameter settings.

In this paper, three commonly used ChIP-seq

computational tools are reviewed in detail, with

special emphasis on their underlying peak-calling

methods. Information is also provided on the fol-

lowing issues: (i) how ChIP-seq methods agree or

disagree on different types of data; (ii) the benefits

of using the combined methods by comparing

these methods on two public datasets.

ChIP-seq processing pipeline (spp)

Spp4 was developed as an analysis pipeline specifically

designed to detect protein-binding positions with

high accuracy by introducing methods to improve tag

alignment and to correct for background signals. Spp

implemented three peak-calling methods: (i) the

window tag density (WTD), which is similar to

XSET5, is a method that extends positive- and

negative-strand tags by the expected DNA fragment

length in order to determine binding positions to

those tags with the highest number of overlapping

fragments, and scores positions based on the strand-

specific tags; (ii) the matching strand peaks (MSP)

approach (which determines local peaks of strand-

specific tag density and identifies positions sur-

rounded by positive- and negative-strand peaks); (iii)

the mirror tag correlation (MTC) method (which

scans the genome to identify positions exhibiting

pronounced positive- and negative-strand tag patterns

that mirror each other). All methods employ back-

ground subtraction of the control tag density to

correct for the uneven background distribution. The

p-value is calculated assuming Poisson density, and

candidate binding sites were selected with p-values

,1025. Given the score s calculated by one of the

above methods, the corresponding false discovery rate

(FDR) can be estimated as the number of binding

positions with the score s or higher found in the

ChIP dataset, divided by that in the control set.

CisGenome

CisGenome6 was developed specifically as a suite of

tools for ChIP data analysis (both ChIP-chip and

ChIP-seq data). For the peak calling method, it uses

strand-specific tags to refine peak boundaries and

filter out low-quality predictions, and uses a con-

ditional binomial model for two-sample analysis (it

uses a negative binomial for one-sample analysis) to

identify peak regions. Windows passing a user-

specified FDR cut-off are used to generate predicted

binding regions. Detected windows that overlap

with each other are merged into one region. (The

minimal FDR among the overlapped windows is

taken as the FDR of the region.) There are two

post-processing options available in CisGenome:

boundary refinement and single-strand filtering.

PeakSeq

PeakSeq2 was designed based on the observation

that potential binding sites are strongly correlated

with signal peaks in the control, probably revealing
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the features of open chromatin. As such, this

method comprises a two-pass strategy to compen-

sate for including control signals in the analysis. In

brief, the first pass identifies regions or peaks in the

ChIP-seq fragment density map which are substan-

tially enriched compared with a simulated simple

null background model. To construct the density

map, it uses both predefined fragment length and

extends tags. Once a fragment density map has been

built, control tags are sampled with multiple simu-

lations from the subdivided segments (�1 megabase

[Mb]) in length considering mappability (eg the

fraction of uniquely alignable bases in that segment)

to generate the null background model. In the

second pass, it filters out putative binding sites not

significantly enriched compared with the normal-

ised control by computing precise enrichments and

significances. A peak is deemed statistically signifi-

cant based on binomial distribution. The FDR is

that estimated for these peaks following the

Benjamini and Hochberg7 approach. PeakSeq

returns a ranked target list sorted by q-value and

fold-enrichment values for each binding site.

Design of ChIP experiment

There are two strategies for ChIP-seq experimental

design: one-sample and two-sample experiments. In

one-sample analysis, only a ChIP sample is

sequenced. In two-sample analysis, both a ChIP

sample and a control sample are sequenced.

One-sample design (without a control) is a cost-

effective strategy after careful post-processing, and

some experiments have shown good agreement

between one-sample and two-sample analyses.6 The

uniform control model5 does not hold due to the

biases from non-specific fragments, such as random

protein–DNA or antibody–DNA interactions, and

the existence of sequencing8 and mapping2 biases or

chromatin structure and genome copy number vari-

ations.9,10 Therefore, these intrinsic biases necessitate

a control or two-sample analysis.

Peak finding procedure

Due to the intrinsic biases described above, most

computational tools recommend the use of a

control in the ChIP-seq analysis for identifying sig-

nificant and reliable peaks. The pre-processing and

mapping procedures are, in general, followed by

the peak-calling steps: (i) create a profile; (ii) select

candidate sites; (iii) calculate significance (p-value);

and (iv) determine cut-off threshold (ie FDR).

Step1: Creating a signal profile

The ChIP profile is obtained by smoothing the tag

counts with or without correcting tag-shifting

effects (ie the difference in genomic distance

between observed tags and the centre of the actual

binding positions). This helps in intrapolating unob-

served counts due to low mappability or low cover-

age, improving summit resolution (tag reshifting) and

exclusion of outliers caused by artefacts. In general, a

window of a fixed size develops the profile, sliding

across the genome and replacing the tag count at

each site with the summed value within the window

centred at the site. Spp4 and CisGenome6 merge

consecutive windows above a threshold value. The

alternative is to use non-overlapping windows as in

PeakSeq,2 in which the peaked windows adjacent to

each other can be aggregated. There are many

modified versions. MACs10 uses the sliding

windows after shifting the tags. F-seq11 uses kernel

density estimation rather than the summed value.

QuEST uses the kernel density approach for devel-

oping the strand-specific profile.12

Step 2: Selecting candidate sites or calling
peaks

Once generating profile each profile unit satisfies a

criterion is considered candidate peaks. The cri-

terion is an absolute ChIP signal or a relative

enrichment to the background. The utility of this

rough selection is twofold. The candidate peaks

selected at this step are used to estimate a fragment

size and a distance of tag shift. The regions not

overlapping with the peaks are used for estimating

negative control parameters.

Step 3: Calculating the significance of peaks

Different types of background models can be

applied for each candidate peak. The natural choice
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of background model is a Poisson distribution,5,10

assuming a uniform effect of the negative control

over the genome. Binomial distribution is an

alternative model for utilising the non-uniform

effects of the negative control after normalising the

sampling ratio between the ChIP and the negative

control sample in non-binding regions.6,13

Step 4: Determining cut-off threshold

Given the scores of the peaks, selecting a threshold

value is a non-trivial problem. When p-values for

the designated distribution are available, they can

be used to calculate an FDR.5,6,14,15 Some tools do

not provide p-values; these generally rank the peaks

by the peak height or fold enrichment.4,10,12,16,17

These tools instead calculate an empirical FDR by

sampling the tags from the control and ChIP data.

The FDR in this case is defined as the ratio of the

number of peaks called in the control to the

number of peaks called in the ChIP data.

The post-processing step considers tag-shifting

effects and predicts the fragment sizes of the library.

This consideration is important for prediction of

the original binding positions. Spp pre-calculates

the autocorrelation between positive- and

negative-stranded tag counts to estimate a tag shift.

CisGenome takes a two-step approach and corrects

these effects in the second step. PeakSeq does not

provide automatic correction of tag shifting but

allows the user to define the fragment lengths.

Some specialised tools have been developed to

analyse broad ChIP peak types — such as those

associated with histone modifications — utilising a

hidden Markov model18 and a clustering algor-

ithm19 to find significant patterns.

Preparation of ChIP-seq datasets

The publically available ChIP-seq datasets (after

ELAND alignment) were used for human RNA

polymerase II (PolII) and STAT1, each with match-

ing input-DNA controls (http://www.gersteinlab.

org/proj/PeakSeq/). Twenty-eight known human

interferon-responsive STAT1 binding sites were

obtained from the supplementary material of

Robertson et al.5 Data for the known binding sites

are available through the ORegAnno database (http://

www.oreganno.org) as dataset OREGDS00006.

Spp provides autocorrelation profiles that can be

used to correct for tag shift and define a window

size. Ninety-five bp and 60 bp tag shifts and 355

bp and 200 bp window sizes were observed for the

STAT1 and PolII datasets, respectively. This infor-

mation was used to set up the window sizes for

PeakSeq and CisGenome with default settings. The

MTC scoring scheme was used for the Spp

procedure.

Comparative study of SPP,
CisGenome and PeakSeq on STAT1
and PolII

To compare the predictions of the above three

methods, analyses were performed for STAT1

ChIP-seq data with a two-sample approach, using a

negative control dataset. A total of 2,716, 5,590

and 1,680 peaks were obtained by applying FDR

,0.001 to Spp, PeakSeq and CisGenome, respect-

ively. Peak median sizes were 190 bp (from the

maximum peak of autocorrelations), 450 bp, and

146 bp, respectively. Table 1 summarises the agree-

ment between the three peak-finding tools by

counting the number of predictions from one tool

that overlap within 200 bp of the other tools. Out

of 28 known, stimulated STAT1 biding sites,

PeakSeq found 68 per cent of them within 200 bp.

Table 1. The number of common peaks identified by the three

ChIP-seq analytical tools for Stat1 experimental data

Prediction Predictions within 200 bp

Spp PeakSeq CisGenome Known

Stat1

binding

sites

(stimulated)

Spp - 2633

(97%)

1640 (60%) 17/28 (61%)

PeakSeq 2579

(46%)

- 1671 (30%) 19/28 (68%)

CisGenome 1611

(96%)

1677

(100%)

- 12/28 (43%)
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Spp and CisGenome found 61 per cent and 43 per

cent, respectively. Among the 12 known STAT1

binding sites predicted by CisGenome, 11 and 12

sites overlapped with Spp and PeakSeq predictions,

respectively.

PolII data were also analysed using the same two-

sample approach. A total of 16,228, 14,181 and

9,221 peaks were obtained by applying FDR

,0.001, giving median peak sizes of 120 bp, 833

bp and 101 bp using Spp, PeakSeq and

CisGenome, respectively. Table 2 summarises the

number of common peaks predicted by each

method. Based on the genomic coordinates of

RefSeq genes (UCSC hg18), it was observed that

two-thirds of predicted peaks were within 1 kilo-

base pair (kbp) from the transcription start site

(TSS), and that peaks were within 1 kbp the tran-

scription end sites (TES) to a considerable extent.

Figure 1 shows examples of peak predictions

based on the STAT1 and PolII datasets. The three

methods have a good agreement on predicting the

centre of STAT1 sites around the known binding

sites (black) but Spp (red), PeakSeq (green) and

CisGenome (blue) estimated different peak bound-

aries due to the different criteria applied at the

smoothing and peak-calling steps. For the PolII

dataset, only CisGenome specifically predicted

peaks at the 50 and 30 ends of the Myc gene. Spp

predicted multiple peaks surrounding the 50–30

boundaries, all of which were included within the

clustered peak predictions by PeakSeq over the

transcript body. Such inconsistency might have

arisen because these tools were not designed to

characterise dynamic PolII patterns.

Discussion and conclusion

Three ChIP-seq computational tools were reviewed

in this paper, focusing on their underlying peak-

calling methods in particular. These tools were also

compared and tested in the analysis of STAT1 and

PolII ChIP-seq datasets. From this analysis, it

appeared that most of the current ChIP-seq analysis

tools were designed for identifying punctuate

binding sites. As evident by showing good agree-

ment on STAT1 data. By contrast, the predictions

for PolII were localised within 1 kbp from the start

sites of 70 per cent of RefSeq transcripts. The

selected tools were not designed to characterise the

trend of PolII occupancy, however, and consistently

failed to describe biologically meaningful patterns

or secondary peaks observed at the 30 ends in this

experimental dataset.

The overall performance of a peak-calling algor-

ithm was found to be highly dependent on the

smoothing or profiling steps, either by increasing

or decreasing the window size. For example,

CisGenome with a window size of 100 bp pre-

dicted only 900 significant peaks in the STAT1

ChIP-seq experimental data. The tag shifting is

another factor that affects performance in some

analytical tools. Spp automatically determines this

effect, which can be used to specify the fragment

extension for PeakSeq and post-correction step in

CisGenome.

The quality of ChIP experiments is highly

dependent on the enrichment of TF-bound chro-

matin compared with background signals. For

ChIP-seq analysis, the read number at each chro-

mosomal position is related to the number of occu-

pied sites in the genome, the range of signal

intensity and the bias introduced by sequence

pattern and chromatin structure. These parameters

are not fully understood in advance and none of

the existing ChIP-seq analysis tools can handle all

of these possible situations. Integration of genomic

contexts such as nucleosome occupancy,20

GC-content8 and multi-species conservation6 will

Table 2. The number of common peaks identified by the three

ChIP-seq analytical tools for PolII experimental data

Prediction Support <1 kbp

Spp PeakSeq CisGenome From

TSS

From

TES

Spp - 15,606

(96%)

8866 (55%) 12,135

(75%)

790

(5%)

PeakSeq 10,507

(74%)

- 7541 (53%) 9550

(67%)

1181

(8%)

CisGenome 8203

(89%)

8961

(97%)

- 7654

(83%)

454

(5%)
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help to improve prediction performance. The

alternative ChIP-chip studies are useful for compar-

ing the ChIP-seq results and can help to tune the

parameters of methods when it is difficult to find a

gold standard test set for PolII.

In summary, ChIP-seq has become an indispensa-

ble tool for studying the transcriptional machinery

and gene expression regulation on the genome-wide

scale. Existing computational software can analyse

highly sequence-specific ChIP-seq data with high

accuracy. It is likely, however, that new compu-

tational methods and more user-friendly workflow

will be developed to analyse more complex

ChIP-seq data in the future.

Acknowledgments

We would like to thank Dr David L. Bentley for his construc-

tive comments on the initial draft of this manuscript. H.K. is

supported by NIH grant to GM063873 to D.L. Bentley.

References
1. Pepke, S., Wold, B. and Mortazavi, A. (2009), ‘Computation for ChIP-

seq and RNA-seq studies’, Nat. Methods Vol. 6 (11 Suppl.), pp. S22–S32.

2. Rozowsky, J., Euskirchen, G., Auerbach, R.K., Zhang, Z.D., Gibson, T.

et al. (2009), ‘PeakSeq enables systematic scoring of ChIP-seq exper-

iments relative to controls’, Nat. Biotechnol. Vol. 27, pp. 66–75.

3. Baugh, L.R., Demodena, J. and Sternberg, P.W. (2009), ‘RNA Pol II

accumulates at promoters of growth genes during developmental arrest’,

Science Vol. 324, pp. 92–94.

4. Kharchenko, P.V., Tolstorukov, M.Y. and Park, P.J. (2008), ‘Design and

analysis of ChIP-seq experiments for DNA-binding proteins’, Nat.

Biotechnol. Vol. 26, pp. 1351–1359.

Figure 1. Graphical comparison of three methods on STAT1 (A) and PolII (B) in the University of California Santa Cruz (UCSC)

genome browser. The top panel represents the predicted binding sites by ChIP-seq analysis tools; red, green and blue lanes represent

Spp, PeakSeq and CisGenome, respectively. The middle panel represents the aligned tags (with non-unique mapping) of ChIP-seq data,

and inputs were drawn using squish modes. The lower panel represents the known genes of the STAT1 and PolII binding sites.

SOFTWARE REVIEW Kim et al.

122 # HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 5. NO 2. 117–123 JANUARY 2011



5. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y. et al.

(2007), ‘Genome-wide profiles of STAT1 DNA association using chro-

matin immunoprecipitation and massively parallel sequencing’, Nat.

Methods Vol. 4, pp. 651–657.

6. Ji, H., Jiang, H., Ma, W., Johnson, D.S., Myers, R.M. and Wong, W.H.

(2008), ‘An integrated software system for analyzing ChIP-chip and

ChIP-seq data’, Nat. Biotechnol. Vol. 26, pp. 1293–1300.

7. Benjamini, Y. and Hochberg, Y. (1995), ‘Controlling the false discovery

rate: A practical and powerful approach to multiple testing’. J. R. Stat.

Soc. Ser. B Vol. 57, pp. 289–300.

8. Dohm, J.C., Lottaz, C., Borodina, T. and Himmelbauer, H. (2008),

‘Substantial biases in ultra-short read data sets from high-throughput

DNA sequencing’, Nucleic Acids Res. Vol. 36, p. e105.

9. Vega, V.B., Cheung, E., Palanisamy, N. and Sung, W.K. (2009), ‘Inherent

signals in sequencing-based Chromatin-ImmunoPrecipitation control

libraries’, PLoS One, Vol. 4, p. e5241.

10. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S. et al.

(2008), ‘Model-based analysis of ChIP-Seq (MACS)’, Genome Biol. Vol.

9, p. R137.

11. Boyle, A.P., Guinney, J., Crawford, G.E. and Furey, T.S. (2008), ‘F-Seq:

A feature density estimator for high-throughput sequence tags’,

Bioinformatics Vol. 24, pp. 2537–2538.

12. Valouev, A., Johnson, D.S., Sundquist, A., Medina, C., Anton, E. et al.

(2008), ‘Genome-wide analysis of transcription factor binding sites based

on ChIP-Seq data’, Nat. Methods Vol. 5, pp. 829–834.

13. Xu, H., Handoko, L., Wei, X., Ye, C., Sheng, J. et al. (2010), ‘A signal-

noise model for significance analysis of ChIP-seq with negative control’,

Bioinformatics Vol. 26, pp. 1199–1204.

14. Jothi, R., Cuddapah, S., Barski, A., Cui, K. and Zhao, K. (2008),

‘Genome-wide identification of in vivo protein-DNA binding sites from

ChIP-Seq data’, Nucleic Acids Res. Vol. 36, pp. 5221–5231.

15. Zang, C., Schones, D.E., Zeng, C., Cui, K., Zhao, K. et al. (2009),

‘A clustering approach for identification of enriched domains from

histone modification ChIP-Seq data’, Bioinformatics Vol. 25,

pp. 1952–1958.

16. Johnson, D.S., Mortazavi, A., Myers, R.M. and Wold, B. (2007),

‘Genome-wide mapping of in vivo protein-DNA interactions’, Science

Vol. 316, pp. 1497–1502.

17. Nix, D.A., Courdy, S.J. and Boucher, K.M. (2008), ‘Empirical methods

for controlling false positives and estimating confidence in ChIP-Seq

peaks’, BMC Bioinformatics Vol. 9, p. 523.

18. Xu, H., Wei, C.L., Lin, F. and Sung, W.K. (2008), ‘An HMM approach

to genome-wide identification of differential histone modification sites

from ChIP-seq data’, Bioinformatics Vol. 24, pp. 2344–2349.

19. Hon, G., Ren, B. and Wang, W. (2008), ‘ChromaSig: A probabilistic

approach to finding common chromatin signatures in the human

genome’. PLoS Comput. Biol. Vol. 4, p. e1000201.

20. Lee, C.K., Shibata, Y., Rao, B., Strahl, B.D. and Lieb, J.D. (2004),

‘Evidence for nucleosome depletion at active regulatory regions genome-

wide’, Nat. Genet. Vol. 36, pp. 900–905.

A short survey of computational analysis methods in analysing ChIP-seq data SOFTWARE REVIEW

# HENRY STEWART PUBLICATIONS 1479–7364. HUMAN GENOMICS. VOL 5. NO 2. 117–123 JANUARY 2011 123


