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Abstract: The determinant of the covariance matrix for high-dimensional data plays an important role in
statistical inference and decision. It has many real applications including statistical tests and information
theory. Due to the statistical and computational challenges with high dimensionality, little work has been
proposed in the literature for estimating the determinant of high-dimensional covariance matrix. In this
paper, we estimate the determinant of the covariance matrix using some recent proposals for estimating
high-dimensional covariance matrix. Specifically, we consider a total of eight covariance matrix estimation
methods for comparison. Through extensive simulation studies, we explore and summarize some interesting
comparison results among all compared methods. We also provide practical guidelines based on the sample
size, the dimension, and the correlation of the data set for estimating the determinant of high-dimensional
covariance matrix. Finally, from a perspective of the loss function, the comparison study in this paper may
also serve as a proxy to assess the performance of the covariance matrix estimation.

Keywords: covariance matrix, high-dimensional data, log-determinant, sparse matrix, shrinkage estimation,
thresholding estimation

1 Introduction
High-dimensional data are becoming more common in scientific research including gene expression study,
financial engineering and signal processing. One significant feature of such data is that the dimension p is
larger than the sample size n, the so-called “large p small n” data. For example, gene microarray often meas-
ures thousands of gene expression values simultaneously for each individual. However, due to the cost or the
limited availability of patients, the number of samples in microarray experiments is usually much smaller
than the number of genes. It is common to see microarray data with less than 10 samples [1–5]. As seen in the
literature, there are many statistical and computational challenges in analyzing the “large p small n” data.

Let Xi = (xi1, . . . , xip)T , i = 1, . . . , n, be independent and identically distributed (i.i.d.) random vectors
from the multivariate normal distribution Np(,, G), where , is a p-dimensional mean vector and G is a covari-
ance matrix of size p × p. When p is larger than n, the sample covariance matrix Sn is a singular matrix. To
overcome the singularity problem, various methods for estimating G have been proposed in the recent literat-
ure, e.g., the ridge-type estimators in [6] and [7], the sparse estimators in [8–10] and [11]. Recently, [12] and [13]
considered sparse covariance matrix estimation for time series data based on certain dependence measures,
which relaxes the independence assumption among samples. For more references, see also [14, 15] and [16].
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2 Zongliang Hu et al.: A Comparison of Methods

Apart from the covariance matrix estimation, there are situations where one needs an estimate of the
determinant (or the log-determinant) of the covariance matrix for high-dimensional data. To illustrate it, we
write the log-likelihood function of the data as

log(L) = –
np
2
log(20) – n

2
log |G| – 1

2

n∑

i=1
(Xi – ,)TG–1(Xi – ,),

where |G| denotes the determinant of the covariance matrix G. In classic multivariate analysis, the determin-
ant |G|, referred to as the generalized variance (GV), was introduced by [17] and [18] as a scalar measure of
overall multidimensional scatter. It has many applications such as outlier detection, hypothesis testing, and
classification. To cater for this demand, we present several examples as follows.
– Quadratic discriminant analysis (QDA) is an important method of classification. Assuming that the data

in class k follows Np(,k, Gk), the quadratic discriminant scores are given by

dk(Y) = (Y – ,k)TG–1k (Y – ,k) + log |Gk| – 2 log0k, k = 1, . . . ,K,

where Y is the new sample, K is the total number of classes, and 0k is the prior probability of observing
a sample from class k. The classification rule is to assign Y to class k that minimizes dk(Y) among all
classes. To implement QDA, it is obvious that we need an estimate of |Gk| or log |Gk|.

– To estimate the high-dimensional precisionmatrixK = G–1, [19] and [20] proposed to solve the following
optimization problem:

K̂ = argmin
K>0

{tr(SnK) – log |K| + +‖K‖1},

where tr(⋅) is the trace, ‖ ⋅ ‖1 is the �1 norm, and + is a tuning parameter. The purpose of the term,
log |K| = – log |G|, is to ensure that the optimization problem has a unique global positive definite
minimizer [10]. Other proposals in this direction include [21], [22], [23], [24] and among others.

– In probability theory and information theory, the differential entropy is commonly used by extending
the concept of entropy to the continuous probability distribution [25, 26]. For a random vector from
Np(,, G), the differential entropy is

h(G) = p
2
+
p log(20)

2
+
log |G|
2

.

– The minimum covariance determinant (MCD) method developed by [27] and [28] is a robust estimator
of multivariate scatter. MCD aims to find a subset with h samples (observations) having the smallest
determinant of the covariance matrix. Specifically, let S = {I ⊂ {1, . . . , n} : card(I) = h} be the collec-
tions of all subsets with h samples, where card(I) is the cardinality of I. For any I ∈ S, let SI be the
corresponding sample covariance. The subset with the minimum determinant is defined as

Im = argmin
I∈S

{|SI |}.

When p is larger than n, MCD is ill-defined as SI is singular. To generalize the MCD method to high-
dimensional data, we need an estimate for the determinant of the high-dimensional covariance matrix.
For instance, [29] replaced |SI | with |diag(SI)|, and [30] modified |SI | by shrinking the subset-based
sample covariance matrix toward a target matrix.

– Multivariate analysis of variance (MANOVA) is a procedure for testing the equality of mean vectors
across multiple groups. Wilks’ D statistic for the hypothesis test [31] is given as

D =
|E|

|H + E| ,
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Zongliang Hu et al.: A Comparison of Methods 3

where E is the within-group sum of squares and cross-product matrix, and H is the between-group
sum of squares and cross-product matrix. However, E is singular under the “large p small n” setting.
To apply MANOVA for high-dimensional data, [32] proposed replacing E with a shrinkage estimator, in
which the shrinkage intensity is computed based on the method by [33]. Ullah and Jones [34] compared
the powers of three types of regularized Wilks’ D statistics, in which E was replaced by the lasso, ridge
and shrinkage estimator, respectively.

From the above examples, it is evident that an estimator of GV, or log |G|, plays an important role in
high-dimensional data analysis. For ease of notation, we let

( = log |G|

throughout the paper. In contrast to the covariance matrix estimation, the investigation of estimating ( is
relatively overlooked in the literature. In practice, one often estimates the covariance matrix first and then
uses it to compute the log-determinant. Chiu et al. [35] considered a regression model and allowed the cov-
ariance matrix of response vector Xi = (xi1, . . . , xip)T to vary with explanatory variables. In specific, they
proposed modeling each element of log G as a linear function of the explanatory variables. One property of
the transformation is that the log determinant log |G| is equal to tr(log G), a summation of log eigenvalues
of G. Recently, [36] investigated the estimation of ( under various settings. Under some “moderate” setting
with p ≤ n, they proposed to estimate ( by the determinant of the sample covariance matrix, i.e., log |Sn|. A
central limit theorem was also established for log |Sn| in the setting where p can grow with n. For the “large
p small n” data, however, they showed that it is impossible to estimate ( consistently, unless some structural
assumption such as sparsity on the parameter can be imposed.

In this paper, we conduct a comprehensive simulation study that evaluates the performance of the exist-
ing methods for estimating (. We follow a two-step procedure: we first estimate G with the existing methods,
and then estimate ( by the plug-in estimator, (̂ = log(|Ĝ|). In Section 2, we consider a total of eight methods
for estimating (. A brief review on each of the methods is also given. In Section 3, we conduct simulation
studies to evaluate and compare their performance under various settings. In particular, we will consider dif-
ferent types of correlation structures including a non-positive definite covariance matrix that is often ignored
in the existing literature. We then explore and summarize some useful findings, and provide some prac-
tical guidelines for scientists in Section 4. Finally, we conclude the paper in Section 5 with some discussion.
Technical details are provided in the Appendix.

2 Methods for estimating (
In this section, we review eight representative methods for estimating the covariance matrix, and then estim-
ate the log-determinant ( using the eight estimates of G, respectively. We also propose a new method for
estimating ( under the assumption of a diagonal covariance matrix. For ease of presentation, we divide the
eight methods into four categories: diagonal estimation, shrinkage estimation, sparse estimation, and factor
model estimation.

2.1 Diagonal estimation

Method 1: Diagonal Estimator (DE)
Under the “large p small n” setting, one naive approach is to estimate G by the diagonal sample

covariance matrix, i.e., diag(Sn). This estimator was first considered in [37] to propose a diagonal linear
discriminant analysis. It was further considered in [38] where the authors demonstrated that a diagonal
covariance matrix estimation can be sometimes reasonable when p is much larger than n. Let diag(G) =
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4 Zongliang Hu et al.: A Comparison of Methods

diag(321 , . . . , 32p) where 32j are the covariate-specific variances for j = 1, . . . , p, and diag(Sn) = diag(s21, . . . , s2p)
where s2j are the sample variances of 32j , respectively. By letting Ĝ = diag(Sn), we define the first estimator
of ( as

(̂(1) = log
∣∣diag(Sn)

∣∣ =
p∑

j=1
log s2j . (1)

We refer to (̂(1) as the diagonal estimator (DE). To be specific, DE is proposed to estimate log |diag(G)| rather
than log |G|.
Method 2: Improved Diagonal Estimator (IDE)

It is noteworthy that DEmay not performwell as an estimate of log |diag(G)|when the sample size is small,
mainly due to the unreliable estimates of the sample variances. Various approaches have been proposed to
improving the variance estimation in the literature. See, for example, [39–42], and [43].

To improve DE, we consider the optimal shrinkage estimator in [42],

3̂2j = {hp(1)s2pool}
!{h1(1)s2j }

1–!,

where s2pool =
∏p

i=1(s
2
j )
1/p, hp(1) = (-/2)

{
A(-/2)/A(-/2 + 1/p)

}p with - = n – 1, A(⋅) is the Gamma function, and
! ∈ [0, 1] is the shrinkage parameter. Replacing s2j in DE by 3̂2j , we have

(̂ =
p∑

j=1
log 3̂2j = (̂(1) + C, (2)

where C = log {h!pp (1)h(1–!)p1 (1)} is a constant.
The estimation structure in eq. (2) shows that the DE estimator, (̂(1), can be further improved. Specifically,

if we have C0 such that E((̂(1) + C0) = log |diag(G)|, then C0 is defined as the optimal C value so that the
estimator (̂(1) + C0 minimizes the mean squared error in the family of estimators {(̂(1) + C : C ∈ (–∞,∞)}.

Theorem 1. Let s2j = 32j 72-,j/-, where 72-,j are i.i.d random variables with a common chi-squared distribution with
- degrees of freedom, and C0 = –p

{
log (2/-) + 8(-/2)

}
, where 8(⋅) = A′(⋅)/A(⋅) is the digamma function. Then for

any fixed - > 0, we have
(1) (̂(1) + C0 is an unbiased estimator of log |diag(G)|.
(2) Assume also that 32j are i.i.d random variables from a common distribution F and E(log 321 ) < ∞. Then

1
p

(
(̂(1) + C0 – log |diag(G)|

) a.s.
�→ 0 as p →∞,

where a.s.
�→ denotes almost sure convergence.

The proof of Theorem 1 is given in the Appendix. By eq. (2) and Theorem 1, we define the second estimator
of ( as

(̂(2) =
p∑

j=1
log s2j – p

{
log (2/-) + 8(-/2)

}
.

We refer to (̂(2) as the improved diagonal estimator (IDE).
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Zongliang Hu et al.: A Comparison of Methods 5

2.2 Shrinkage estimation

Recall that the sample covariance matrix Sn is singular when the dimension is larger than the sample size. To
overcome the singularity problem, other than the diagonal methods in Section 2.1, one may also estimate the
covariance matrix by the following convex combination:

S∗ = $T + (1 – $)Sn,

where T is the targetmatrix, and $ ∈ [0, 1] is the shrinkage parameter. Both the targetmatrix and the shrinkage
parameter play an important role in the shrinkage estimation. For instance, if we let T = diag(Sn) and $ = 1,
then S∗ reduces to the DE estimator.

The appropriate choice of the target matrix has been extensively studied in the literature. See, for
example, [6, 33, 44, 45], and [7] and the references therein. Note that T is often chosen to be positive def-
inite and well-conditioned, and consequently, the final estimate S∗ is also guaranteed positive definite and
well-conditioned for any dimensionality. As suggested in [33] and [7], we consider a popular target matrix for
nonhomogeneous variances: the “diagonal, unequal variance” matrix, i.e., the diagonal sample covariance
matrix diag(Sn).

We also note that, given the target matrix, the estimation of the shrinkage parameter $ is also crucial
to the final estimation. The available estimation methods for the shrinkage parameter are mainly: (1) the
unbiased estimation, and (2) the consistent estimation. The unbiased estimation is replacing unknown terms
in the optimal value by their unbiased estimators [33]. Whereas, the consistent estimation is replacing the
unknown terms in the optimal shrinkage parameter with (n, p)-consistent estimators [7]. Taken together, we
present below the four methods for estimating the covariance matrix and consequently for estimating (,
respectively.
Method 3: Unbiased Shrinkage Estimator with T = I (USIE)

Letting the target matrix be T = I, [33] proposed an unbiased estimator for the shrinkage parameter,
denoted by $̂∗

1 . This leads to S∗ = $̂∗
1 I + (1 – $̂∗

1 )Sn. We then define the third estimator of ( as

(̂(3) = log |$̂∗
1 I + (1 – $̂∗

1 )Sn|. (3)

Method 4: Consistent Shrinkage Estimator with T = I (CSIE)
Letting the target matrix be T = I, [7] proposed a consistent estimator for the shrinkage parameter,

denoted by $̂∗
2 . This leads to S∗ = $̂∗

2 I + (1 – $̂∗
2 )Sn. We then define the fourth estimator of ( as

(̂(4) = log |$̂∗
2 I + (1 – $̂∗

2 )Sn|. (4)

Method 5: Unbiased Shrinkage Estimator with T = diag(Sn) (USDE)
Letting T = diag(Sn), [33] also proposed an unbiased estimator for the shrinkage parameter, denoted by

$̂∗
3. This leads to S∗ = $̂∗

3diag(Sn) + (1 – $̂∗
3)Sn. We then define the fifth estimator of ( as

(̂(5) = log |$̂∗
3diag(Sn) + (1 – $̂∗

3)Sn|. (5)

Method 6: Consistent Shrinkage Estimator with T = diag(Sn) (CSDE)
Letting T = diag(Sn), [7] also proposed a consistent estimator for the shrinkage parameter, denoted by $̂∗

4.
This leads to S∗ = $̂∗

4diag(Sn) + (1 – $̂∗
2 )Sn. We then define the sixth estimator of ( as

(̂(6) = log |$̂∗
4diag(Sn) + (1 – $̂∗

4)Sn|. (6)
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6 Zongliang Hu et al.: A Comparison of Methods

2.3 Sparse estimation

When p is much larger than n, the shrinkage methods in Section 2.2 may not achieve a significant improve-
ment over Sn. In such settings, to have a good estimate of G, one may have to impose some structural
assumptions such as sparsity in the parameters. Recently, [15] reviewed some methods on estimating struc-
tured high-dimensional covariance and precision matrix. A typical sparsity is to assume that most of the
off-diagonal elements in the covariance matrix are zero. To estimate the covariance matrix under a sparsity
condition, various thresholding-based methods have been proposed in the literature that aim to locate some
“large” off-diagonal elements. See, for example, [8, 9, 46–51], and [52]. Particularly, the adaptive thresholding
estimator proposed by [49] achieves the optimal rate of convergence over a large class of sparse covariance
matrix under a wide spectral norms. Besides, it can be shown that the adaptive thresholding estimator also
attains the optimal convergence rate under Bregman divergence losses over a large parameter class [15, 50].
Therefore, we also consider the sparsity methods as a representative and use them to estimate (, i.e., the
log-determinant of the covariance matrix.
Method 7: Adaptive Thresholding Estimator (ATE)

Bickel and Levina [8] proposed a universal thresholding method where all entries in the sample cov-
ariance matrix are thresholded by a common value γ . They required that the variances 32j are uniformly
bounded by a constant K, and consequently, the variances of the entries of the sample covariance matrix are
also uniformly bounded. However, it was shown that a universal thresholding method is suboptimal over a
certain class of sparse covariance matrices.

To improve the method above, [49] proposed an adaptive thresholding estimator for the covariance
matrix:

Ĝ∗ = (3̃∗
ij)p×p with 3̃∗

ij = sγij (sij),

where γij is the corresponding threshold of 3̃∗
ij, and sγij (⋅) is a generalized thresholding operator [47], which

is specified as the soft thresholding throughout simulations. With the proper γij, the estimator Ĝ∗ adaptively
achieves the optimal rate of convergence over a large class of sparse covariance matrix under the spectral
norm. Now by Ĝ∗, the seventh estimator of ( is

(̂(7) = log |Ĝ∗|. (7)

We refer to (̂(7) as the adaptive thresholding estimator (ATE).

2.4 Factor model estimation

The sparsity condition on the covariance matrix assumes that most of covariates are uncorrelated to each
other. Note that, however, this assumption may not be realistic in practice. Recently, under the assumption
of conditional sparsity, [54] introduced a principle orthogonal complement thresholding method using the
factor model. In this section, we briefly review their method and then apply it to estimate the log-determinant
of the covariance matrix.
Method 8: Principal Orthogonal Complement Thresholding Estimator (POET)

Fan et al. [54] considered the approximate factor model:

yg = Bfg + ug, g = 1, . . . ,G,

where yg = (y1g, . . . , ypg)T is the observed response, B = (b1, . . . , bp)T is the loading matrix, fg is a Q × 1 vector
of common factors, and ug = (u1g, . . . , upg)T is the error vector. In this model, we can only observe yg. Let

G = Bcov(fg)BT + Gu, g = 1, . . . ,G,
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Zongliang Hu et al.: A Comparison of Methods 7

where Gu is the covariance matrix of ug. To estimate G, [54] applied the spectral decomposition on the sample
covariance matrix:

Sn =
Q∑

j=1
+̂j.̂j.̂Tj + R̂Q,

where +̂1 ≥ +̂1 ≥ ⋅ ⋅ ⋅ ≥ +̂p are eigenvalues of Sn, .̂j, j = 1, . . . , p are the corresponding eigenvectors, and
R̂Q =

∑p
j=Q+1 +̂j.̂j.̂Tj is the principal orthogonal complement. For this decomposition, the first Q principal

components were kept and the thresholding was applied on R̂Q. Here, the generalized thresholding operator
can be used. In addition, [54] also introduced a method to obtain an estimation of Q, denoted by Q̂. Their
final estimator of G is

ĜQ̂ =
Q̂∑

j=1
+̂j.̂j.̂Tj + R̂TQ̂ , (8)

where R̂T
Q̂
is the thresholding result of R̂Q. Now by eq. (8), we define the last estimator of ( as

(̂(8) = log |ĜQ̂|. (9)

We refer to (̂(8) as the principal orthogonal complement thresholding estimator (POET).

3 Simulation studies
In this section, we compare the numerical performance of the aforementioned eight estimators. We consider
five different setups. In the first setup, we generate data from the multivariate normal distribution, Np(0, G).
In the second setup, we generate data from a mixture distribution where the covariance matrix is highly
sparse. In the third setup, we simulate data from the log-normal distribution to assess the robustness of the
eight methods under heavy-tailed data. In the forth setup, we consider a special case where the covariance
matrix is degenerate and the data are generated from a degenerate multivariate normal distribution. And in
the final setup, we use a realistic covariance matrix structure that is obtained from a real data. To compare
these methods, we compute the mean squared error (MSE) as below:

MSE((, (̂) = 1
Mp

M∑

m=1
((̂m – ()2,

whereM is the repeated times. Throughout the simulations, we takeM = 500.

3.1 Normal data

In this setup, we consider a block diagonal structure for the covariance matrix. This structure is widely
adopted in the literature, e.g., [55] and [56]. Specifically, we let

G2 = D1/2R(1)D1/2,

where D = diag(321 , . . . , 32p) with 32j being i.i.d. from the distribution 725/5, and R follows a block diagonal
structure:
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R( 1 ) =
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Figure 1: Log MSEs for data from normal distribution with p=50. The sample size ranges from 5 to 50. In all figures, “1” to “8”
represent the eight methods: DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET [54], respectively.
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Figure 2: Log MSEs for data from normal distribution with p=300. The sample size ranges from 10 to 200. In all figures, “1” to
“8” represent the eight methods: DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET [54], respectively.

In our simulations, we consider G1 = (3ij(1))q×q with 3ij(1) = 1|i–j| for 1 ≤ i, j ≤ q. In addition, we set 1 = 0, 0.3,
0.6 or 0.9, to represent different levels of dependence, and (p, q) = (50, 5) or (300, 10), respectively.

Figures 1 and 2 display the log(MSE) of the eight methods for different levels of dependence, dimension
and sample size. From these figures, we have the following findings. When the covariates are uncorrelated,
IDE gives the best performance under a high dimension (e.g., p = 300). However, if the dimension is not
large (e.g., p = 50), and the covariates are uncorrelated or weakly correlated, shrinking the covariance matrix
toward an identity matrix leads to a better performance under a small sample size. This is because when the
sample size is small, the variances of the entries of the sample covariance matrix are large. Hence, CSIE and
USIE stabilize both diagonal and off-diagonal entries and, at the same time, an identity target possesses an
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10 Zongliang Hu et al.: A Comparison of Methods

explicit structure which in turn requires little data to fit. Consequently, the resulting estimators have a good
bias–variance tradeoff. In addition, when the correlation and dimension are both large, imposing additional
structure assumptions is necessary. Under this situation, ATE and POET turn out to be the best two methods
among the eightmethods unless the sample size is relatively small.When the sample size is small, the pattern
of ATE is very similar to that of DE. When the sample size and dimension are both large, ATE outperforms all
other methods except for POET.

Figure 3 displays the performance of the eight methods for different levels of dependence with p = 300.
The pattern is consistent with Figure 2. In particular, as the correlation and sample size are large, the per-
formance of POET is satisfactory. From Figures 1 and 2, however, we note that the log(MSE) of POET tends
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Figure 3: Log MSEs for data from normal distribution with p=300, and 1 ranging from 0 to 0.9. In all figures, “1” to “8” represent
the eight methods: DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET [54], respectively.
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Zongliang Hu et al.: A Comparison of Methods 11

Table 1: MSEs of (̂ for data from normal distribution with 1 = 0.3, 0.6, 0.9, n = 10, 40 and p = 50, 100, respectively. The
number of factors K is either fixed or estimated by the method in [54], denoted by K̂. All MSEs are rounded to integer numbers.
The minimumMSE of each line is highlighted.

1 K = 0 K = 1 K = 2 K = 4 K = 6 K = K̂

n = 10

0.3 17 272 660 2752 8820 667
p = 50 0.6 156 38 246 2543 7771 288

0.9 2675 1179 338 710 4667 375
0.3 33 944 2487 14261 37946 2481

p = 100 0.6 862 58 665 9643 30972 673
0.9 14031 7386 2733 695 14648 2767
1 K = 0 K = 1 K = 4 K = 8 K = 12 K = K̂

n = 40

0.3 7 5 82 339 752 18
p = 50 0.6 91 44 17 241 691 15

0.9 1359 909 109 272 558 531
0.3 38 8 203 1066 3200 37

p = 100 0.6 526 272 18 529 2159 140
0.9 6457 3816 712 81 1170 2303

to be oscillating as the sample size increases. This may due to that POET depends on the estimated number
of factors K. In [54], the authors used a consistent estimator for K and showed that POET is robust to over-
estimated number of factors under the spectral norm. Our simulations in Table 1, however, show that the
robustness for estimating the covariance matrix may not hold any more when the purpose is to estimate the
determinant. In particular for small sample sizes, either over-estimated or under-estimated K leads to a large
bias for the determinant estimator.

3.2 Mixture normal data

In this setup, we consider a mixture model where the random vectors are generated from

X ∼ !1f1(X) + !2f2(X),

where f1(X) and f2(X) are the density functions of Np(,3, G3) and Np(,4, G4), respectively. For the covariance
matrices, we consider a sparse block diagonal structure as follows:

G3 = D1/2R(1)D1/2 and G4 = D1/2R(–1)D1/2,

where D = diag(321 , . . . , 32p) with 32j being i.i.d. from the distribution (1/5)725, and R(1) being the same as in
Setup II. For simplicity, we set !1 = !2 = 1/2 and ,1 = ,2 = 0. Under this setting, the covariance matrix of X is
simplified as (G3 + G4)/2, which results in a highly sparse matrix where the odd off-diagonal parts in diagonal
blocks are zeros. We set (p, q) = (50, 5) or (300, 10), and 1 = 0, 0.3, 0.6 or 0.9.

Figures 4 and 5 display the log(MSE) of the eight methods under different levels of dependence and
sample size. When the sample size is large and the covariates are uncorrelated, IDE gives the best perform-
ance. When the sample size is small and the dimension is not large (e.g., n = 5, p = 50), shrinking the
covariance matrix toward an identity matrix (e.g., USIE and CSIE) outperforms the other methods except that
the correlation is very large (e.g., 1 = 0.9). However, as the sample size and dimension are both large, the
shrinkage methods will become suboptimal. Instead,if the correlation is also large (e.g., 1 = 0.6), ATE and
POET outperform the other methods in most settings. As aforementioned, the performance of POET is not
stable and may not be satisfactory when the sample size is not large.
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Figure 4: Log MSEs for data from mixture normal distribution with p=50, and 1 ranging from 0 to 0.9. In all figures, “1” to “8”
represent the eight methods: DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET [54], respectively.

3.3 Heavy-tailed data

In this setup, we consider to simulate heavy-tailed data from a log-normal distribution, lnN(,, 32), where
the mean and variance are e,+32/2 and (e32 – 1)e2,+32 , respectively. First of all, we generate n independent
random vectors Zi = (zi1, . . . , zip)T , where all the components of Zi are sampled independently from lnN(0, 1).
Let Xi = G1/2Z∗

i with Z∗
i = (zi1 – e1/2, . . . , zip – e1/2)T/{e(e – 1)}1/2, and G is a p × p positive definite matrix.

Consequently, the mean vector and covariance matrix of Xi are 0p×1 and Gp×p, respectively. For the covariance
matrix, we consider the block diagonal structure as described in Section 3.1. We set (p, q) = (50, 5) or (300, 10),
and 1 = 0, 0.3, 0.6 or 0.9.
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Figure 5: Log MSEs for data from mixture normal distribution with p=300, and 1 ranging from 0 to 0.9. In all figures, “1” to “8”
represent the eight methods: DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET [54], respectively.

Figures 6 and 7 display the log(MSE) of the eight methods under different levels of dependence and sample
size. When the dimension and correlation are both small, USIE and CSIE outperform the other methods. The
reason is similar as the discussion in Section 3.1, the heavy-tailed data may lead to unstable estimates of the
entries of G, hence shrinking towards a simple identity target, which requires little data to fit, stabilizes the
sample covariance matrix. In addition, as shown in Figure 7, when the dimension is large and the correlation
is not small, ATE and POET are the only two methods that have a better performance than the other methods
except that the sample size is small. Finally, we also note that IDE cannot provide a satisfactory performance
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Figure 6: Log MSEs for data from heavy-tailed distribution with p=50, and 1 ranging from 0 to 0.9. In all figures, “1” to “8”
represent the eight methods: DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET [54], respectively.

even if the covariates are uncorrelated. As demonstrated in Theorem 1, IDE estimator is derived under the
normal distribution and may not be robust to heavy-tailed data.

3.4 Degenerate normal data

To further investigate the performance of the eight methods, we consider a non-positive definite covariance
matrix in which the positive definite assumption of the covariance matrix is violated. Note that this new
setting is often overlooked in the literature. To construct a non-positive definite covariance matrix, we define
the affine transformation C as
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Figure 7: Log MSEs for data from heavy-tailed distribution with p=300, and 1 ranging from 0 to 0.9. In all figures, “1” to “8”
represent the eight methods: DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET [54], respectively.
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We then apply the affine transformation to the covariance matrix in Setup II and form

G5 = CG2CT .

It is obvious that |G5| = 0 since |C| = 0. We set (p, q) = (50, 5), and 1 = 0, 0.3, 0.6 or 0.9. Note that
he log-determinant of G5 is negative infinity. Hence, for this degenerate setting, the MSE is defined on the
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Figure 8: Log MSEs for data from degenerate normal distribution with p=50. The sample size ranges from 5 to 50. In all figures,
“1” to “8” represent the eight methods: DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET [54], respectively.
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determinant rather than on the log-determinant. Specifically, it is

MSE(e(, e(̂) =
1
Mp

M∑

m=1

(
e(̂m – e(

)2
.

Figure 8 shows the log(MSE) of all eight methods for different levels of dependence and sample size. We
can see that the simulation results are different from those in the previous three setups. POET gives the best
performance among the eight methods. In addition, we note that, under the non-positive definite setting,
POET performs extremely well when the sample size is very small. For this phenomenon, we explore the
possible reasons in the next paragraph.

To estimate G, [54] applied the spectral decomposition on the sample covariance matrix:

Sn =
Q∑

j=1
+̂j.̂j.̂Tj + R̂Q.

If the sample size is much smaller than the dimension p, most eigenvalues of Sn are zeros. This leads to R̂Q,
the principal orthogonal complement of the largest Q eigenvalues, is nearly a zero matrix. And consequently,
the final estimator of POET, ĜQ̂ =

∑Q̂
j=1 +̂j.̂j.̂Tj + R̂TQ̂ , tends to be highly degenerate for small sample sizes rather

than for large sample sizes.
Finally, it is noteworthy that when the correlation is strong, the log(MSE) of POET is also fluctuant as the

sample size increases. This again verifies that both the correlation and sample size have a large impact on the
performance of POET.

3.5 Real data

In this setup, we consider to generate a realistic covariancematrix from theMyeloma data [57], which is a real
microarray data set including a total of 54, 675 genes, with 351 samples in the first group and 208 samples in
the second group. To generate the covariance matrix, we first select 100 genes randomly from the first group
and then compute the sample covariance matrix using the selected genes, denoted by Gr. Next, to evaluate
the performance of the estimators under different levels of dependence, we follow [58] and define the true
covariance matrix as

G1 = (1 – 1)diag(Gr) + 1Gr,

where 1 controls the level of dependence. We set 1 = 0, 1/3, 2/3 or 1. Note that 1 = 0 corresponds to a diagonal
covariance matrix, and 1 = 1 treats the generated sample covariance matrix as the true covariance matrix.

Figure 9 shows the log(MSE) of the eight methods for different levels of dependence and sample size.
The comparison results are summarized as follows. When the sample size and correlation are both small,
the methods that shrinking the covariance matrix toward the identity matrix (e.g., USIE and CSIE) lead to
a good performance. When the covariates are uncorrelated and the sample size is large, IDE has the best
performance. In addition, when the sample size is large and the correlation is moderate (e.g., n = 80 and
1 = 2/3), shrinking the sample covariance matrix toward a diagonal target matrix (e.g., USDE and CSDE) has
a good performance. When the correlation and sample size are both large, ATE outperforms or is at least
comparable to USDE and CSDE. Finally, POET is not stable and very sensitive to both the correlation and
the sample size. When the correlation and sample size is not large, POET may fail to provide a satisfactory
performance owing to the largely increased bias compared with the other methods.
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Figure 9: Log MSEs for real data with p=100. The sample size ranges from 10 to 80. In all figures, “1” to “8” represent the eight
methods: DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET [54], respectively.

4 Conclusion
In this section, we summarize some useful findings of the comparison results and also provide some practical
guidelines for researchers.
1. Diagonal estimation

The diagonal estimator, DE, is the simplest method for estimating the determinant of high-dimensional
covariance matrix. It assumes that all covariates are uncorrelated. For independent normal data, IDE
is an unbiased estimator of log |diag(G)| and also provides the best performance, especially when the
dimension is large. For such settings, IDE can be recommended for estimating the determinant of

Brought to you by | Hong Kong Baptist University
Authenticated | tongt@hkbu.edu.hk author's copy

Download Date | 10/4/17 7:26 AM



Zongliang Hu et al.: A Comparison of Methods 19

Table 2: The time consumption of computing (̂ with DE [38], IDE, USIE [33], CSIE [7], USDE [33], CSDE [7], ATE [49], and POET
[54], respectively. In ATE and POET, the turning parameter was selected based on 5-fold cross validation. The data is generated
as described in Section 3.1. Timings (seconds) of 10 runs with Intel Core(TM) 3.20GH processor.

n = 100,p = 300 DE IDE USIE CSIE USDE CSDE ATE POET
1 = 0.0 0.52 0.59 16.3 0.70 15.8 0.71 258 359
1 = 0.9 0.50 0.55 16.1 0.71 16.0 0.67 259 361

high-dimensional covariance matrix. In addition, we note that IDE is not robust and may lead to an
unsatisfactory performance when the independent normal assumption is violated.

2. Shrinkage estimation
For the shrinkage estimation, different choices of the target matrix and shrinkage parameter result in
different performance for the determinant estimation. In general, when the dimension is not large (e.g.,
p = 50), the shrinkage towards an identity target matrix (e.g., CSIE and USIE) performs well under
the small sample size and weak correlation. This pattern is more evident for the heavy-tailed data.
With a diagonal target matrix, CSDE, the consistent estimator of [7], has a similar performance with
USDE. However, CSDE and USDE are seldom the best methods especially when the sample size is not
large.
For the shrinkage estimators, the optimal shrinkage intensity can be specified without any further turn-
ing parameters. Consequently, the time consuming procedures such as cross-validation or bootstrap can
be avoided. Table 2 shows the computational time of the eight methods. As we can see, the shrinkage
methods are much faster than ATE and POET. More importantly, if the sample size is very small as n = 5,
10, selecting the turning parameters in ATE and POET by cross-validation may result in a large bias. Under
this situation, the shrinkage estimators (e.g., shrinkage towards an explicit target matrix) can be very
attractive. Nevertheless, as the sample size increases or the correlation is strong, the performance of the
shrinkage methods may not be as competitive as the sparse method and the factor model method.

3. Sparse estimation
ATE presents its robust property in our settings. Specifically, when the sample size is not very small, ATE
performs better or comparably to the other seven methods under various data structures and different
levels of dependence. In practice, if the sample size is not very small and we have no prior information
about the dependence level of the covariates, the sparse estimator can be recommended for estimating
the determinant of high-dimensional covariance matrix.
As shown in the simulations, when the sample size is very small, the performance of ATE is not attractive
as the shrinkage estimators or even the diagonal estimators. For possible reasons, we note that an adaptive
thresholding parameter in ATE is needed in practice. When the sample size is very small, however, their
proposed cross-validation method may not provide a reliable estimate for the optimal threshold value.

4. Factor model estimation
The factor model estimation, POET, is very attractive for strongly correlated data sets when the sample size
is not small. [54] assumed that the data are weakly correlated after extracting the common factors which
can result in high levels of dependence among the covariates. This implies that POET may provide a good
performance if the data are strongly correlated. Note also that POET can select K = 0 automatically if the
true covariancematrix is sparse. Then consequently, theirmethodwill degenerate to the sparse estimation
such as the hard thresholding estimation in [8] or ATE in [49].
POET, however, depends on the number of factors K, which is unknown in practice. To investigate the
impact of the factors under different sample sizes and different levels of dependence, we simulated the
MSE of POET for the log-determinant of the covariance under Setup II. Results from Table 1 show that K
has a large impact on the determinant estimation.When the correlation is strong, K̂, a consistent estimator
of K, usually leads to a large MSE. [54] demonstrated that POET is robust to over-estimated and sensitive
to under-estimated factors. For the finite sample size, they suggested to chose a relatively large K (e.g.,
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not less than 8). However, our simulation studies showed that the robustness for estimating the covari-
ance matrix may not hold any more for estimating the determinant. In particular, for small sample size,
both under-estimated and over-estimated factors will give a bad performance of POET. In view of this, we
believe that future research is needed for selecting the optimal K when the factor model method is applied
to estimate the determinant of the covariance matrix.

To conclude, the sample size, the dependence level and the dimension of the data sets take a great impact
on the accuracy of estimation. In practice, wemay need to select an appropriate estimationmethod according
to the sample size and the prior information on the correlation structure of the covariates. When such prior
information is not available, we recommend to use ATE [49] to estimate the determinant of high-dimensional
covariance matrix, which is robust to various correlations and data structures.

5 Discussion
In this paper, we have compared a total of eight methods for estimating the log-determinant of the high-
dimensional covariance matrix. The performance of the eight methods depends on the sample size, the
dependence structure and the dimension of the data. When the sample size is not small, we note that ATE
[49] is always able to provide an average or above average performance among the eight methods. Hence, if
there is little prior information about the structure of the covariance matrix, we recommend to use ATE to
estimate the log-determinant (, or GV, in practice. In terms of computational time, the shrinkage methods are
more convenient than ATE and POET because the latter two methods need to select the penalty parameters
via cross-validation.

Note that the log-determinant of a covariance matrix is a scalar, the two-step procedure may not provide
the best estimation for (. One possible future direction is to consider circumventing the full covariancematrix
estimation, and estimating the log-determinant directly. Note that log |G| = tr(log G), which is essentially a
summation of the log-eigenvalues of G. This suggests that the randommatrix theory or the spectrum analysis
may provide feasible solutions to estimate the log-determinant more accurately. The comparison study in this
paper may also serve as a proxy to assess the performance of the covariance matrix estimation. Specifically,
from a perspective of the loss function, if we define the loss function as

Loss(Ĝ, G) = (log |Ĝ| – log |G|)2 or Loss(Ĝ, G) = (|Ĝ| – |G|)2,

then the conducted simulations in Section 3 provide essentially a comparison for the eightmethods for estim-
ating G rather than (. Of course, we do not intend to claim that the above loss functions should be consistently
recommended. In contrast, for evaluating the covariance matrix estimation, other popular methods are also
available in the literature. For instance, by letting L as the likelihood function and L̂ as the corresponding
estimator, we may consider any of the distance between the log-likelihood and the estimated log-likelihood
as the criterion to evaluate the performance:

D(L, L̂) = {log(L) – log(L̂)}2.

In addition, we can also consider any of the following loss functions:
– Loss(Ĝ, G) = ‖Ĝ – G‖2 =

√
+max{(Ĝ – G)T(Ĝ – G)}, where +max(⋅) denotes the maximum eigenvalue [46, 47,

59].
– Loss(Ĝ, G) = ‖Ĝ – G‖F =

√∑
i,j(3̂ij – 3ij)2, where G = (3ij)p×p and Ĝ = (3̂ij)p×p [49, 54].

– Loss(Ĝ, G) = ‖Ĝ – G‖max = maxi,j |3̂ij – 3ij| [54].

Further research is needed to investigate which loss function provides the best criterion for evaluating the
estimation methods of the covariance matrix.
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Finally, it is noteworthy that there is another category of publications in the literature on calculating the
log-determinant of the covariance matrix [53, 60–65]. We now point out that they are very different from the
proposed study in our paper. Specifically, these papers assume that the covariance matrix G is known, yet as
the dimension is very large, the canonical methods (e.g., the Choleskey decomposition) for computing log |G|
require a total of O(p3) operations and may not be feasible in practice. The above papers have proposed more
efficient algorithms including the random matrix theory and the spectrum analysis for fast computation of
log |G|.
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Appendix

A proof of Theorem 1
(1) From s2j = 32j 72-,j/-, we have log s2j = log 32j + log (72-,j/-). Then,

∑p
j=1 log s

2
j =

∑p
j=1 log 32j + p log 72-,j – p log -.

Further,

E

⎛

⎝
p∑

j=1
log s2j

⎞

⎠ =
p∑

j=1
log 32j + p

{
log 2 + 8(-/2)

}
– p log -.

This leads to

E
{
(̂(1) + C0

}
= E

⎛

⎝
p∑

j=1
log s2j

⎞

⎠ – p
{
log 2 + 8(-/2)

}
+ p log -

=
p∑

j=1
log 32j = log |diag(G)|.

Hence, (̂(1) + C0 is an unbiased estimator of log |diag(G)|.
(2) For E(log 321 ) < ∞, we have

1
p

p∑

j=1
log 32j

a.s.
�→ E(log 321 ) as p → ∞.

Since E(log s21) = E{E(log s21|321 )} = E(log 321 ) + log (2/-) + 8(-/2), we have

1
p

p∑

j=1
log s2j – log (2/-) – 8(-/2)

a.s.
�→ E(log 321 ) as p →∞.

By the above two results, it yields that

1
p

p∑

j=1
log s2j – log (2/-) – 8(-/2) –

1
p

p∑

j=1
log 32j

a.s.
�→ 0 as p → ∞.
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Finally, we have

1
p

{
(̂(1) + C0 – log |diag(G)|

}
=

1
p

p∑

j=1
log s2j – log (2/-) – 8(-/2) –

1
p

p∑

j=1
log 32j

a.s.
�→ 0 as p →∞.
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