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a b s t r a c t

In this paper, a shrinkage estimator for the population mean is proposed under known
quadratic loss functions with unknown covariance matrices. The new estimator is non-
parametric in the sense that it does not assume a specific parametric distribution for the
data and it does not require the prior information on the population covariancematrix. An-
alytical results on the improvement of the proposed shrinkage estimator are provided and
some corresponding asymptotic properties are also derived. Finally, we demonstrate the
practical improvement of the proposed method over existing methods through extensive
simulation studies and real data analysis.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

High-throughput molecular technologies that enable researchers to collect andmonitor information at the genome level
have revolutionized the field of biology in the past fifteen years. These data offer an unprecedented amount and diverse types
of data that reveal different aspects of the biological processes. One such example is microarray data, where the expression
levels of thousands of genes are measured simultaneously from each sample. These data have motivated the development
of reliable biomarkers for disease subtypes classification and diagnosis, and for the identification of novel targets for drug
treatment. Due to the cost and other experimental difficulties such as the availabilities of biological materials, it is common
that high-throughput data are collected only in a limited number of samples. They are often referred to as high-dimension,
low-sample-size data, or ‘‘large p small n’’ data where p is the number of genes or dimensions and n is the sample size. High-
dimensional data pose many challenges to the traditional statistical and computational methods. Specifically, due to the
small size n, there are more uncertainties associated with standard estimators of parameters such as the mean and variance
estimations. As a consequence, statistical analyses based on such parameter estimation are usually unreliable.

In this work, our interest is conducing a more accurate estimator for the population mean µ under the ‘‘large p small
n’’ setting [16,25]. An accurate estimate of µ is desired in many areas of statistical analysis, e.g., in linear discriminant
analysis [1], diagonal linear discriminant analysis [10], Markowitz mean–variance analysis [22,12] and so on. Under the
assumption thatµ is sparse, Shao et al. [23] proposed a consistent estimator forµ under some regular conditions. However,
in many real problems, there is often little prior information onµ and it may not necessarily have a sparse structure. In such
situations, the shrinkage estimation of µ can be applied. Shrinkage estimation starts with the amazing result of James and
Stein [17] that the commonly used sample mean of a normal distribution is inadmissible and can be improved by shrinkage
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estimators. We refer to them as James–Stein type estimators. Since then, there is a large body of literature in shrinkage
estimation including [3,11,20,6,14,13,9] and etc. In the literature, most existingmethods either assumed that the covariance
matrix Σp is known or assumed that there exists an estimator of Σp that is invertible. As a common practice, if the sample
covariance matrix Sn is used to estimate Σp, the sample size is required to be larger than the dimension, i.e. n > p, to avoid
the singularity. Note that, however, for high-dimensional data it is common that p is much larger than n. To overcome the
singularity problem for high-dimensional data, Tong et al. [25] proposed a new shrinkage estimator for µ by assuming that
Σp has a diagonal structure which may not be realistic. Therefore, the traditional shrinkage methods cannot be applied to
analyze high-dimensional data directly.

Inspired by Ledoit andWolf [18], in this paper we consider the shrinkage estimation forµ under quadratic loss functions
with unknown non-diagonal covariancematrices. The new estimator is non-parametric in the sense that it does not assume
a specific parametric distribution for the data and it does not require the prior information on covariancematrixΣp. Wewill
demonstrate by both theoretical and empirical studies that the proposed estimator has good properties for a wide range of
settings. We will also show that the proposed method is better than the sample mean and the existing shrinkage methods
even under a diagonal covariance matrix assumption.

The rest of the paper is organized as follows. Section 2 introduces the theoretical optimal shrinkage estimation under
quadratic risks. Section 3 develops a data-driven shrinkage estimator and derives the asymptotic properties of the proposed
estimator. We then conduct simulation studies on simulated data in Section 4 and using real data in Section 5 to evaluate
the proposed optimal shrinkage estimator and compare it with existing shrinkage methods. Finally, we conclude the paper
in Section 6 and provide the technical results in the Appendix.

2. Methodology

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) observations satisfying the multivariate model

Xi = Σ1/2
p ϵi + µ, i = 1, . . . , n, (2.1)

where µ is a p-dimensional vector, Σp is a positive definite matrix and the random errors in (ϵij)p×n = (ϵ1, . . . , ϵn) are i.i.d.
with zero mean, unit variance and finite fourth moment. Note that model (2.1) has been widely used in the literature such
as [2,8]. In this paper, we do not assume that the data follow amultivariate normal distribution withmeanµ and covariance
matrix Σp. Given model (2.1), we consider to estimate µ under the following quadratic loss function [4,6,14],

LQ (δ) = n(δ − µ)′Q (δ − µ)/tr(QΣp), (2.2)

where δ = δ(X1, . . . , Xn) is the estimator ofµ,Q is a known positive definite matrix, and tr(A) stands for the trace of matrix
A. Note that for the standard sample mean X̄ = (1/n)

n
k=1 Xk, the risk function is E[LQ (X̄)] = 1.

In the special case when X1, . . . , Xn are multivariate normal distributed, James and Stein [17] showed that

δJS =


1 −

p − 2
nX̄ ′X̄


X̄ (2.3)

dominates X̄ for any p > 2 under the assumption that Σp = Q = Ip. This result was then extended by Baranchik [3]
to Σp = σ 2Ip with σ 2 unknown, and by Efron and Morris [11] to a Bayesian estimator. For a general unknown Σp, the
James–Stein estimator has the form [20,4,6,14,13]

δJS =


I −

r(Q , S−1
n , X̄)

X̄ ′S−1
n X̄


X̄, (2.4)

where r(Q , S−1
n , X̄) is a measurable function of Q , S−1

n and X̄ with 0 ≤ r(Q , S−1
n , X̄) ≤ 2(G − 2)/(n − G + 2) and

Sn =
n

k=1(Xk − X̄)(Xk − X̄)′/(n − 1) being the sample covariance matrix. To guarantee Sn is invertible, n > p is necessary
which means the method is not applicable for the ‘‘large p small n’’ data.

To overcome the singularity problem, Tong et al. [25] considered a special situation where Σp is diagonal. Specifically,
under the loss function with Q = Σ−1

p they constructed a hierarchical Bayesian model and then proposed the following
shrinkage estimator,

δT =


1 −

(p − 2)(n − 1)

n(n − 3)X̄ ′D−1
n X̄


X̄ (2.5)

where Dn = diag(Sn). Other related works for a diagonal Σp and a diagonal Q assumptions include [5,24]. Whereas for an
arbitrary Q with non-diagonal Σp, it remains a challenging yet unanswered question under the ‘‘large p small n’’ setting. To
address this question, we consider to estimate µ by a linear combination of X̄ and e = (1, . . . , 1)′,

δ = αX̄ + βe.

The following theorem derives the optimal shrinkage coefficients for model (2.1) under the quadratic loss (2.2) with an
arbitrary known Q .
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Theorem 2.1. Consider the optimization problem,

min
α,β

E(δ − µ)′Q (δ − µ) s.t. δ = αX̄ + βe, (2.6)

where the coefficients α and β are non-random. The optimal shrinkage estimator is given as µ∗
= α∗X̄ + β∗e where

α∗
=

µ′Qµ −
(e′Qµ)2

e′Qe

µ′Qµ +
1
n tr(QΣp) −

(e′Qµ)2

e′Qe

,

β∗
=

1
n tr(QΣp)

µ′Qµ +
1
n tr(QΣp) −

(e′Qµ)2

e′Qe

e′Qµ

e′Qe
,

and the corresponding risk of µ∗ is

E(LQ (µ∗)) =


µ −

e′Qµ

e′Qe e
′

Q

µ −

e′Qµ

e′Qe e



µ −

e′Qµ

e′Qe e
′

Q

µ −

e′Qµ

e′Qe e


+
1
n tr(QΣp)

. (2.7)

Note that the proposed shrinkage estimator can accommodate any shift of the grand mean, including the shift from µ
to µ + ce where c is a constant. This is a similar idea as that in [21] where the author shrunk the observations to grand
mean rather than to the origin. Also in [25], the authors applied their shrinkage method to the grand mean and so the final
estimator was a linear combination of two different components. By Theorem 2.1, however, we point out that the method
in [21] is not applicable for arbitrary Q . For this point, we will explain in the simulation study an example where the grand
mean is zero but e′Qµ ≠ 0.

3. Data-driven shrinkage estimators for population means

Note that the shrinkage coefficients α∗ and β∗ are unknown and need to be estimated in practice. In this section, we
propose to estimate them by U-statistics, motivated from [8,7,19]. Specifically, we estimate α∗ and β∗ by

α̂∗
=

Y1,n − Y3,n

Y1,n + Y2,n − Y3,n
and β̂∗

=
Y2,n

Y1,n + Y2,n − Y3,n
Y4,n

where

Y1,n =
1

p(n − 1)


i≠j

X ′

iQXj,

Y2,n =
1
np


n

k=1

X ′

kQXk −
1

n − 1


i≠j

X ′

iQXj


,

Y3,n =
1

p(n − 1)e′Qe


i≠j

e′QXiX ′

jQe,

Y4,n =
1

ne′Qe

n
k=1

e′QXk.

The resulting estimator of µ is then µ̂∗
= α̂∗X̄ + β̂∗e. To derive the asymptotic properties of the proposed estimator, we

need the following regularity condition.

Assumption 3.1. There is a constant c0 (not depending on p or n) such that

c−1
0 ≤ all eigenvalues of Σp and Q ≤ c0.

Under Assumption 3.1, we have tr(ΣpQ )/p = O(1). In this work, o(1) denotes a sequence of random variables that
converges to zero and O(1) is short for a sequence that is bounded. Similarly, op(1) and Op(1) are notations in probability.
For more details, one may refer to [26]. Let

π1 = E(X̄ − µ)′Q (X̄ − µ) =
1
n
tr(QΣp),

π2 =


µ −

e′Qµ

e′Qe
e
′

Q


µ −
e′Qµ

e′Qe
e


.

The following theorems establish the rates of convergence for the proposed estimators and for the loss function.
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Theorem 3.1. Under Assumption 3.1,

Y1,n =
n
p
µ′Qµ + Op


1

√
p


, Y2,n =

1
p
tr(ΣpQ ) + Op


1

√
np


,

Y3,n =
n(µ′Qe)2

pe′Qe
+ Op


1
p


, Y4,n =

e′Qu
e′Qe

+ Op


1

√
np


.

Further, we have

α̂∗
= α∗

+ Op


1

√
p


and β̂∗

= β∗
+ Op


1

√
np


+ Op

 e′Qu

p3/2


n
pπ1 +

n
pπ2


 .

Therefore, α̂∗
− α∗

p
−→ 0 and β̂∗

− β∗
p
−→ 0 as p → ∞ and p−3/2e′Qu → 0, where

p
−→ denotes convergence in probability.

Theorem 3.2. Under Assumption 3.1, under the ‘‘large p small n’’ setting the loss function of the shrinkage estimator µ̂∗ is

LQ (µ̂∗) =
π2

π1 + π2
+ Op


1

√
p


. (3.8)

By Theorem 3.2, we note that µ̂∗ behaves at least as well as X̄ when p is large. The explicit improvement of µ̂∗ over X̄
depends on π1 and π2. As in [18], we define the percentage relative improvement in average loss (PRIAL) over the sample
mean as

PRIAL =
E(X̄ − µ)′Q (X̄ − µ) − (µ̂∗

− µ)′Q (µ̂∗
− µ)

E(X̄ − µ)′Q (X̄ − µ)
. (3.9)

We then have the following corollary.

Corollary 3.1. Let sn =
n
p (µ −

e′Qµ

e′Qe e)
′Q (µ −

e′Qµ

e′Qe e). As p → ∞ we have

(I) If sn → 0, PRIAL
p
−→ 1;

(II) If sn → C0, PRIAL
p
−→ C1 ∈ (0, 1);

(III) If sn → ∞, PRIAL
p
−→ 0.

Therefore, the shrinkage estimator µ̂∗ always performs better than X̄ under the loss function (2.2) when sn is finite. In the
extreme case when sn → ∞, µ̂∗ behaves similarly as X̄ .

4. Simulation studies

In this section, we conduct simulation studies to evaluate the performance of the proposed shrinkage estimator µ̂∗ and
compare it with the following four estimators: the James–Stein estimator δJS in [3], the Berger–Bock estimator δBB in [5], the
Tong et al. estimator δT in [25] and the CW estimator δCW proposed by Chételat and Wells [9].

Our first simulationwill be conducted under the classical situation [17] where Q = Σp = Ip. In particular, we considered
two scenarios with respect to the innovation random vector ϵij in model (2.1):

(I) ϵij are i.i.d from standard normal distribution that the data are distributed from Gaussian data with mean µ and an
identity covariance matrix;

(II)
√

v/(v − 2)×ϵij are i.i.d from t-distributionwith v degrees of freedomwhere the constant
√

v/(v − 2) guarantees that
ϵij has zero mean and unit variance.

In both scenarios, we set µ ∼ Np(0, Ip) and all the simulation results are based on 10,000 simulations.
Table 1 reports the empirical risks of the proposed estimator and its competitors for both scenarios of distributions.

We observe from Table 1 that overall the James–Stein estimator has the best performances since it utilized the fact that
the population covariance matrix is an identity matrix and the proposed estimator has similar average losses as ones of
the James–Stein estimator. All the estimators are applicable for variables with normal distributions and t-distributions.
Moreover, the empirical risks for variables with t-distributions follow very similar patterns to those of Gaussian data. This
is understandable as for data structure (2.1), there is no too much differences between Gaussian data and random data with
other distributions such as t-distributions. For this reason, in the following part, we only report the simulation results for
Gaussian data.

Note that the existing competitors for comparison, δJS, δB and δT , only work on a diagonal covariance matrix under the
‘‘large p small n’’ setting. Whereas for the proposed estimator µ̂∗, it works for both diagonal and non-diagonal covariance
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Table 1
Empirical risks of the estimators under classical situation where Q = Σp = Ip and p = 100.

n Sample mean James–Stein Berger–Bock Tong et al. CW Proposed

Normal random vectors

10 1.0012 0.9088 0.9348 0.9094 0.9945 0.9090
20 0.9997 0.9508 0.9569 0.9509 0.9913 0.9508
50 0.9988 0.9790 0.9799 0.9790 0.9899 0.9790

t-distribution with v = 5

10 1.0011 0.9079 0.9604 0.9097 0.9902 0.9080
20 1.0000 0.9511 0.9686 0.9515 0.9893 0.9511
50 1.0014 0.9814 0.9854 0.9815 0.9917 0.9815

t-distribution with v = 10

10 0.9998 0.9075 0.9458 0.9080 0.9924 0.9076
20 1.0006 0.9519 0.9626 0.9520 0.9919 0.9520
50 0.9979 0.9776 0.9796 0.9776 0.9880 0.9776

Table 2
Empirical risks of the estimators under variance settings with covariance matrix Σ1 .

µ τ n Sample mean James–Stein Berger–Bock Tong et al. Proposed

µ1 0.5 10 1.0064 0.5160 0.6175 0.4763 0.4867
25 1.0020 0.8092 0.7428 0.7195 0.7184
50 0.9971 0.8853 0.7865 0.7787 0.7766

100 0.9954 1.0426 0.9191 0.9182 0.9179
1 10 0.9996 0.9524 0.8710 0.8266 0.8323

25 1.0029 0.9231 0.8937 0.8827 0.8811
50 0.9963 0.9868 0.9453 0.9430 0.9429

100 1.0019 1.0024 0.9802 0.9795 0.9793

µ2 0.5 10 1.0036 0.5693 0.6446 0.5083 0.4229
25 1.0010 0.8119 0.7434 0.7165 0.6160
50 0.9945 0.9188 0.8338 0.8268 0.7535

100 0.9940 0.9752 0.9062 0.9044 0.8605
1 10 0.9983 0.8989 0.8578 0.8006 0.7300

25 0.9959 0.9759 0.9155 0.9062 0.8612
50 0.9919 0.9927 0.9489 0.9470 0.9223

100 0.9969 0.9949 0.9720 0.9716 0.9586

matrices. Thus in the following part, for a meaningful comparison, we will consider the quadratic loss function in [25].
Specifically, by letting Q be diagonal and let Q−1

= diag(Σp), we have the following loss function,

L(δ) =
n
p
(δ − µ)′[diag(Σp)]

−1(δ − µ), (4.10)

where the constant n/p is applied to guarantee that E[L(X̄)] = 1. In applications, Q will be estimated from the diagonal
elements of the sample covariance matrix.

We will simulate X1, . . . , Xn independently from a p-dimensional multivariate normal distribution with mean µ and
covariance matrix Σp. For µ, we consider two options:

(a) µ1 = (µ11, . . . , µ1p)
′ where µ11, . . . , µ1p are i.i.d from N(0, τ 2);

(b) µ2 = (µ21, . . . , µ2p)
′ where µ2k = τ for k ≤ p/2 and µ2k = −τ for k > p/2.

In both options, we consider τ = 0.5 and 1 to represent different levels of mean heterogeneity. For Σp, we consider three
covariance matrices:

(1) Σ1 is diagonal with 20% of population eigenvalues being equal to 1, 40% begin equal to 3 and 40% being equal to 10;
(2) Σ2 = Σ

1/2
1 Σ0Σ

1/2
1 where Σ0 = (σij)p×p and σij = ρ|i−j| for 1 ≤ i, j ≤ p;

(3) Σ3 = Σ
1/2
1 Σ00Σ

1/2
1 where Σ00 = (σij)p×p and σij = 1 for i = j, σij = ρ for i ≠ j.

We let ρ range from 0.1 to 0.9 for Σ2 and from 0.1 to 0.5 for Σ3 to represent four different levels of dependent structure.
The second simulation study is to evaluate the performance of µ̂∗ with existing methods when Σp = Σ1, i.e., when the

covariance matrix is diagonal. Let p = 100 throughout the simulations. We consider n = 10, 25, 50 and 100, to represent
different levels of sample sizes. Table 2 reports the empirical risks of the estimators under various settings. First of all, we
observe that all shrinkage methods have a smaller risk than the sample mean X̄ . This shows that for high-dimensional data,
the shrinkage estimators do improve the standard estimation. Among the shrinkage estimators, δT and µ̂∗ are among the
best in most settings. The James–Stein estimator δJS is not very compatible because it is restricted to a common variance
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Fig. 1. Plots of the average losses of the proposed method and existing methods when the observations are correlated. Here p = 100, n = 20 and µ = µ1
with τ = 0.5.

assumption, and δB is only applicable for large sample sizes. Finally, for δT and µ̂∗, we note that they perform similarly when
µ = µ1, and µ̂∗ is better by a large margin than δT when µ = µ2. In addition, when the mean heterogeneity increases
from τ = 0.5 to τ = 1, the improvement of µ̂∗ over X̄ decreases which is consistent with Corollary 3.1. We also observe
that the improvements of the shrinkage estimators over the sample mean become smaller when n becomes larger. This is
meaningful since for the large sample size scenario, the mean estimation itself is good enough and it is no longer necessary
to borrow information from others to improve the estimation.

Finally, we will design simulation studies to evaluate the performance of µ̂∗ with existing methods when the covariance
matrix is non-diagonal. This is to investigate the impact of the correlation coefficient ρ on the performance of the estimators.
To achieve this, we plot in Fig. 1 the average losses of the estimators for covariancematricesΣ2 andΣ3 respectively. To save
space, we only present the results for p = 100, n = 20, µ = µ1 and τ = 0.5; whereas the comparison patterns for other
combination settings remain the similar. From the plots, it is evident that the proposed µ̂∗ provides a smaller average loss
than the other estimators in most settings, no matter if ρ is small or not. We also note that (i) all the shrinkage estimators
perform worse when ρ increases; and (ii) the risks of δB and δT may be even larger than 1 when the dependence structure
is strong, say for Σ3 with ρ ≥ 0.35.

5. An application

In this section, we illustrate the proposed shrinkage estimator using the Leukemia data in [15]. The data set contains
p = 7129 genes for 47 acute lymphoblastic leukemia (ALL) and 25 acute myeloid leukemia (AML), and is available online at
the website http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi.

To evaluate the performance of the proposed estimator and compare it with existing methods, we randomly split the 47
ALL samples into the training set X1 and the test set X2. Specifically, we let the size of the training set range from 5 to 30 and
the remaining samples assigned as the test set. Let X̄1 and X̄2 be the sample means of the training and test sets, respectively.
We further standardize the ALL and AML sets so that each array has variance one across genes. For simplicity, we let Q = Ip
and let the loss function (4.10) be L(δ|µ) = (n/p)(δ − µ)′(δ − µ). Then to compare the performance of the shrinkage
estimator δ and the sample mean X̄1 based on the training set, we define the empirical partial risk (EPR) as

EPR =
L(X̄2|X̄1) − L(X̄2|δ)

L(X̄2|X̄1)
= 1 −

|X̄2 − δ|2

|X̄2 − X̄1|
2
. (5.11)
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Fig. 2. The average EPRs of different shrinkage estimators on Leukemia data.

Intuitively, if δ estimates the true mean µ more accurately than the sample mean X̄1, it will serve as a better proctor of µ
and so L(X̄2|δ) will be smaller than L(X̄2|X̄1). As a consequence, if the estimated EPR is larger than 0, we may clarify that δ is
better than X̄1. Or equivalently, the EPR may represent the improvement of δ over X̄1.

With 10,000 simulations, we plot in Fig. 2 the average EPR using the first 100 and 200 genes of the AML and ALL sets
with different sizes of the training set. Similarly as in Section 4, it is evident that the proposed estimator µ̂∗ outperforms
the shrinkage estimator δT in most settings. We also note that the improvement of µ̂∗ over δT becomes smaller when the
size of the training set increases. This shows that when the sample size is large, the performance of µ̂∗ over δT will be very
similar. Meanwhile, the decreasing pattern of EPR on the training size indicates that both µ̂∗ and δT reduce to the sample
mean X̄1 when the sample size is large.
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6. Conclusion

The paper focuses on the shrinkage mean estimation under the ‘‘large p small n’’ setting. Specifically, we proposed
a shrinkage estimator for the population mean under quadratic loss functions with unknown covariance matrix. Unlike
existing methods in the literature, the proposed method does not assume a specific parametric distribution for the data and
does not require any prior information on the covariance matrix. In this sense, the proposed estimator is a non-parametric
shrinkage estimator and it works for both diagonal and non-diagonal covariance matrices. Except for the loss function (2.2),
we note that another commonly used quadratic loss function is

L(δ) = (δ − µ)TΣ−1
p (δ − µ). (6.12)

WhenΣp is known, it results in a special case of the loss function (2.2). For themore realistic setting whenΣp is unknown, if
we do not assume a specific parametric distribution for the data, a shrinkage estimation for µ under the loss function (6.12)
would be very difficult to achieve. Further research is warranted in this direction.

To verify the proposed estimator, we derived some analytical results on the estimator and on the optimal shrinkage
coefficients. The estimators of the optimal shrinkage coefficients were also derived along with some asymptotic properties.
We have also demonstrated through simulation studies using simulated data and real data that the proposed shrinkage
estimator performs better than the sample mean estimation and the existing shrinkage methods under the ‘‘large p small
n’’ setting. Finally, we note that the proposed method (i) extends the methods in [6,14] from the ‘‘small p large n’’ setting
to the ‘‘large p small n’’ setting; and (ii) extends the methods in [5,25] from a diagonal covariance matrix assumption to a
non-diagonal covariance matrix assumption. The proposed method has extensive applications in different areas including
statistical genetics, epidemiology, ecology, and engineering sciences.
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Appendix. Proofs of the theorems

A.1. Proof of Theorem 2.1

By direct calculation, we have

E(δ − µ)′Q (δ − µ) = α2


µ′Qµ +
1
n
tr(QΣp)


+ 2αµ′Q (βe − µ) + (βe − µ)′Q (βe − µ)

= α2


µ′Qµ +
1
n
tr(QΣp)


− (2α − 1)µ′Qµ + β2e′Qe − 2β(1 − α)e′Qµ.

This leads to the optimal weights as

α∗
=

µ′Qµ −
(e′Qµ)2

e′Qe

µ′Qµ +
1
n tr(QΣp) −

(e′Qµ)2

e′Qe

β∗
=

e′Qµ

e′Qe
(1 − α∗).

Further, we have

E[LQ (µ∗)] =


µ′Qµ −

(e′Qµ)2

e′Qe


µ′Qµ +

1
n tr(QΣp) −

(e′Qµ)2

e′Qe

=


µ −

e′Qµ

e′Qe e
′

Q

µ −

e′Qµ

e′Qe e



µ −

e′Qµ

e′Qe e
′

Q

µ −

e′Qµ

e′Qe e


+
1
n tr(QΣp)

.
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A.2. Proof of Theorem 3.1

Without loss of generality, we assume that E(ϵ4
11) = 3 + ∆. Then E(Y1,n) = (n/p)µ′Qµ, E(Y2,n) = (1/p)tr(ΣpQ ),

E(Y3,n) = n(µ′Qe)2/(pe′Qe) and E(Y4,n) = e′Qu/(e′Qe). In addition, we have

Var(Y1,n) =
2n

p2(n − 1)
tr(ΣpQΣpQ ) = O


1
p


,

Var(Y2,n) =
2

p2(n − 1)
tr(ΣpQΣpQ ) +

∆

p2n
tr((Σ1/2

p QΣ1/2
p ) ◦ (Σ1/2

p QΣ1/2
p )) = O


1
np


,

Var(Y3,n) =
2n

p2(n − 1)


e′QΣpQe

e′Qe

2

= O


1
p2


,

Var(Y4,n) =
e′QΣpQe
n(e′Qe)2

= O


1
np


,

where A ◦ B = (aijbij) for matrices A = (aij) and B = (bij). This leads to

Y1,n =
n
p
µ′Qµ + Op


1

√
p


, Y2,n =

1
p
tr(ΣpQ ) + Op


1

√
np


,

Y3,n =
n(µ′Qe)2

pe′Qe
+ Op


1
p


, Y4,n =

e′Qu
e′Qe

+ Op


1

√
np


.

For α̂∗ and β̂∗, we have

α̂∗
− α∗

=

n
pπ2 + Op


1

√
p


n
pπ1 +

n
pπ2 + Op


1

√
p

 −

n
pπ2

n
pπ1 +

n
pπ2

=


n
pπ2 +

n
pπ1


Op


1

√
p




n
pπ1 +

n
pπ2 + Op


1

√
p

 
n
pπ1 +

n
pπ2


= Op

 1
√
p


n
pπ1 +

n
pπ2




= Op


1

√
p


,

and
β̂∗

− β∗
= (1 − α̂∗)Y4,n − β∗

= (1 − α∗)


Y4,n −

e′Qu
e′Qe


− (α̂∗

− α∗)Y4,n

= Op


1

√
np


+


e′Qu
e′Qe

+ Op


1

√
np


Op

 1
√
p


n
pπ1 +

n
pπ2




= Op


1

√
np


+ Op

 e′Qu

p3/2


n
pπ1 +

n
pπ2


 .

A.3. Proof of Theorem 3.2

First consider (µ∗
− µ)′Q (µ∗

− µ). Note that
(µ∗

− µ)′Q (µ∗
− µ) = (α∗(X̄ − µ) + β∗e + (α∗

− 1)µ)′Q (α∗(X̄ − µ) + β∗e + (α∗
− 1)µ)

= (α∗)2


1
n2

n
k=1

ϵ′

kΣ
1/2
p QΣ1/2

p ϵk +
1
n2


i≠j

ϵ′

iΣ
1/2
p QΣ1/2

p ϵj



+
2α∗

n
(β∗e + (α∗

− 1)µ)′QΣ1/2
p

n
k=1

ϵk + (β∗e + (α∗
− 1)µ)′Q (β∗e + (α∗

− 1)µ).



Author's personal copy

C. Wang et al. / Journal of Multivariate Analysis 125 (2014) 222–232 231

Then,

Var((µ∗
− µ)′Q (µ∗

− µ)) ≤ 2(α∗)4


2
n2

tr(ΣpQΣpQ ) +
∆

n3

p
k=1

φ2
kk



+
8(α∗)2(1 − α∗)2

n


µ −

e′Qµ

e′Qe
e
′

QΣpQ


µ −
e′Qµ

e′Qe
e


,

where Σ
1/2
p QΣ

1/2
p = (φij)p×p.

By the definitions of π1 and π2, it is easy to verify that

α∗
=

π2

π1 + π2
,

E(µ∗
− µ)′Q (µ∗

− µ) =
π1π2

π1 + π2
,

Var((µ∗
− µ)′Q (µ∗

− µ)) ≤
C1

n
π1π

4
2 + π2

1π3
2

(π1 + π2)4
=


π1π2

π1 + π2

2

O

1
p


.

Therefore,

(µ∗
− µ)′Q (µ∗

− µ) =
π1π2

π1 + π2


1 + Op


1

√
p


. (A.13)

By Theorem 3.1, we have

µ̂∗
= µ∗

+ Op


1

√
p


X̄ +


Op


1

√
np


+ Op


e′Qu
p3/2


e.

Note that

β̂∗
− β∗

= (1 − α̂∗)Y4 − (1 − α∗)
e′Qu
e′Qe

= (α∗
− α̂∗)

e′Qu
e′Qe

+ (1 − α̂∗)


Y4 −

e′Qu
e′Qe


,

β̂∗
+ β∗

= (1 − α̂∗)Y4 + (1 − α∗)
e′Qu
e′Qe

= (2 − α∗
− α̂∗)

e′Qu
e′Qe

+ (1 − α̂∗)


Y4 −

e′Qu
e′Qe


.

We have

(µ̂∗
− µ)′Q (µ̂∗

− µ) − (µ∗
− µ)′Q (µ∗

− µ) = (µ̂∗
− µ∗)′Q (µ̂∗

+ µ∗
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
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, (A.14)
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where we used the facts that

(X̄ − µ)′Q (X̄ − µ) = π1


1 + Op


1

√
p


,

(X̄ − µ)′Q

e′Qµ

e′Qe
e − µ


= Op


π2

n


,

(X̄ − µ)′Qe = Op


p
n


,

and

α̂∗
− α∗

= Op

 1
√
p


n
pπ1 +

n
pπ2


 .

Finally, by (A.13) and (A.14) we have

(µ̂∗
− µ)′Q (µ̂∗

− µ) = π1


π2

π1 + π2
+ Op


1

√
p


. (A.15)

This completes the proof of Theorem 3.2.
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