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a b s t r a c t

In this paper, we consider semiparametric varying coefficient partially linear models when
the predictor variables of the linear part are ultra-high dimensional where the dimension-
ality grows exponentially with the sample size. We propose a profile forward regression
(PFR) method to perform variable screening for ultra-high dimensional linear predictor
variables. The proposed PFR algorithm can not only identify all relevant predictors consis-
tently even for ultra-high semiparametric models including both nonparametric and para-
metric parts, but also possesses the screening consistency property. To determine whether
or not to include the candidate predictor in the model of selected ones, we adopt an ex-
tended Bayesian information criterion (EBIC) to select the ‘‘best’’ candidate model. Simula-
tion studies and a real data example are also carried out to assess the performance of the
proposed method and to compare it with existing screening methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, high-dimensional data analysis has become increasingly frequent and important in a large variety of
areas such as health sciences, economics, finance, and epidemiology. The analysis of high-dimensional data poses many
challenges for statisticians and thus calls for new statistical methodologies as well as theories; see Fan and Li [10].

To address these challenges, variable screening is an effective method of using a ranking criterion to select significant
variables, particularly for statistical models with nonpolynomial dimensionality or ‘‘large p, small n’’ paradigms when p can
be as large as an exponential of the sample size n; see Li et al. [25]. The main idea is to first apply a fast, reliable and efficient
method to reduce the ultra-high dimensionality p from a large or huge scale to a relatively large scale s (say s ≤ n), and then
apply some well-developed variable selection techniques to perform the final variable selection and parameter estimation
simultaneously. In the first screening step, the sure screening property introduced by Fan and Lv [11] needs to be satisfied
such that all truly important predictors can be selected with probability tending to 1 as the sample size goes to infinity.

Since Fan and Lv [11] proposed the sure independence screening (SIS) procedure for ultra-high linear models, many
authors had further developed the SIS method and applied it to various statistical models. For illustration, Fan et al. [13]
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and Fan and Song [14] extended SIS to generalized linear models. Wang [33] proposed a forward regression algorithm
for ultra-high dimensional variable screening. Fan et al. [8] studied nonparametric independence screening (NIS) in sparse
ultra-high dimensional additive models. Cui et al. [6] and Zhu et al. [45] proposed model-free variable screening methods,
respectively. Li et al. [25,26] proposed a robust rank correlation screening (RRCS) procedure based on Kendall’s rank
correlation coefficient. Li et al. [28] developed the sure independence screening procedure based on the distance correlation
(DC-SIS) under general parametricmodels. Fan et al. [12] and Liu et al. [30] extended theNIS to sparse ultra-high dimensional
varying coefficient models.

In this paper, we propose a new method for variable screening in the ultra-high dimensional semiparametric varying
coefficient partially linear model (VCPLM). Suppose that Y is a response variable and (U,X⊤, Z⊤) are the associated
covariates, where ⊤ denotes transposition. The VCPLM takes the form

Y = X⊤α(U) + Z⊤β + ε, (1.1)

where α(·) = (α1(·), . . . , αq(·))
⊤ is a q-dimensional vector of unknown regression functions, β = (β1, . . . , βp)

⊤ is a
p-dimensional vector of unknown regression coefficients, ε is independent of (U,X⊤, Z⊤) and follows a distribution with
mean 0 and variance σ 2, and U is a univariate variable on the compact support Ω . From prior knowledge, we assume
that some of the true predictors may have varying effects while the others have constant effects to the response variable.
We further assume that the predictor variable X has fixed dimension q, while the predictor variable Z has ultra-high
dimensionality or nonpolynomial dimensionality such that ln p = O(nκ) for some κ > 0.

Model (1.1) retains the flexibility of the nonparametric regression model and has also the nice interpretability of the
linear regressionmodel. When the dimension p is fixed, model (1.1) has been extensively studied in the literature including,
e.g., Ahmad et al. [1], Fan and Huang [9], Li et al. [20], Li et al. [21], Li et al. [22], Li and Liang [23], Wu et al. [35], Xia et al. [36],
Xue and Zhu [37], You and Chen [38], Zhang et al. [40], Zhou and Liang [44]. When the dimension p grows with the sample
size n, Lam and Fan [19] considered a generalized varying coefficient partially linear model, and studied the asymptotic
properties of the profile likelihood estimator. Li et al. [24] proposed the bias-corrected empirical likelihoodmethod to study
the VCPLM with a diverging number of parameters.

Variable selection for Model (1.1) is challenging because it involves both nonparametric and parametric parts. We note
that penalized variable selectionmethods have been successfully applied toModel (1.1)when p < n, such as Hong et al. [16],
Kai et al. [18], Li et al. [27], Wang et al. [34], Zhao and Xue [41], and Zhao et al. [42]. Nevertheless, when p > n or even grows
exponentiallywith n, the aforementioned penalized variable selectionmethodsmaynotwork for the ultra-high dimensional
VCPLM (1.1) due to the simultaneous challenges of computational expediency, statistical accuracy and algorithm stability.

To cater for the demand, an alternative popular and classical variable screening method, namely the forward regression
(FR) approach, has recently been proposed for ultra-high dimensional linear regression models in Wang [33] and Cheng
et al. [3]. Zhong et al. [43] proposed a stepwise procedure, correlation pursuit, for variable selection and screening under
the sufficient dimension reduction framework. Cheng et al. [4] extended the FR algorithm of variable screening to sparse
ultra-high dimensional varying coefficient models. Liang et al. [29] proposed the profile forward regression (PFR) algorithm
of variable screening to ultra-high dimensional semiparametric partially linear models. Such methods enjoy desirable
theoretical properties, including the screening consistency property, and have advantages from numerical aspects. Inspired
by these advantages, we develop a new PFR algorithm of variable screening for the semiparametric varying coefficient
partially linear models with ultra-high dimensional covariate for the linear part, where the dimension can be much larger
than the sample size. The proposed PFRmethod can not only identify all relevant predictors consistently even for ultra-high
semiparametric models including both nonparametric and parametric parts, but also possesses the screening consistency
property.

For ease of notation, we use the boldface roman B to represent a matrix, boldface italics B to represent a vector, and Bik
to represent the (i, k)th entry of the matrix B throughout this paper. The remainder of this paper is organized as follows. In
Section 2, the PFR procedure of variable screening is introduced. In Section 3, the asymptotic properties are derived under
some regularity conditions. In Section 4, simulation studies are carried out to assess the performance of the proposedmethod
and to compare it with existing methods. A real data example is used for illustration in Section 5. The technical proofs of the
main results and some lemmas are given in the Appendix.

2. Profile forward regression method

We first present the main profile idea in the population form. Assuming that β is known, Model (1.1) becomes the
following varying coefficient model:

Y − Z⊤β = X⊤α(U) + ε.

For any given U , we can solve the following profile estimation equation:

E[X{Y − Z⊤β − X⊤α(U)}|U] = 0.

For simplicity, let

η(U) = {E(XX⊤
|U)}−1E(XY |U), µ(U) = {E(XX⊤

|U)}−1E(XZ⊤
|U).
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Then

α(U, β) = {E(XX⊤
|U)}−1E(XY |U) − {E(XX⊤

|U)}−1E(XZ⊤
|U)β

= η(U) − µ(U)β. (2.1)

Replacing α(U) in Model (1.1) by (2.1), we get

Y − X⊤η(U) = {Z − µ⊤(U)X}
⊤β + ε. (2.2)

Note that Model (2.2) reduces to the linear model with the unknown nonparametric functions E(XX⊤
|U), E(XY |U)

and E(XZ⊤
|U), which can be estimated consistently by using the kernel smoothing method, respectively. When the

dimension p of the linear component β is fixed, many authors have shown that the profile least squares estimator of β
is semiparametrically efficient in large samples; see, e.g., Theorem 4.1 in Fan and Huang [9]. For this reason, Li et al. [24]
showed thatµ⊤(U)X is the projection of Z onto the space spanned by X , and Z −µ⊤(U)X is orthogonal to X⊤ for any given
U . That is,

E[{Z − µ⊤(U)X}X⊤
|U] = 0.

In other words, this orthogonality will play a key role for the semiparametric efficiency (see Fan and Huang [9]) and for the
asymptotic normality of the bias-corrected empirical log-likelihood ratio (see Li et al. [24]).

Let {(Yi;X⊤

i , Z⊤

i ,Ui) : 1 ≤ i ≤ n} be an independent and identically distributed random sample from Model (1.1) with
predictor variable Xi having the fixed dimension q and predictor variable Zi having the ultra-high dimension p ≫ n as
n → ∞. For ease of notation, let Xi = (Xi1, . . . , Xiq)

⊤
∈ Rq and Zi = (Zi1, . . . , Zip)⊤ ∈ Rp be the predictor variables. Define

Y = (Y1, . . . , Yn)
⊤

∈ Rn as the response vector, X = (X1, . . . ,Xn)
⊤

∈ Rn×q and Z = (Z1, . . . , Zn)
⊤

∈ Rn×p as two matrices
of explanatory variables, and ε = (ε1, . . . , εn)

⊤ as the vector of random error.
In order to perform variable screening for the linear part conveniently, we take Zij as a relevant predictor variable if

βj ≠ 0; otherwise we refer to Zij as an irrelevant predictor variable if βj = 0. Let M = {j1, . . . , jp∗} denote an arbitrary
model with Zij1 , . . . , Zijp∗ as relevant predictors, and let MF = {1, . . . , p} and MT = {j : βj ≠ 0} represent the full model
and the true model, respectively. In this paper, we use |M| to denote the size of model M. Thus, |MF | = p and |MT | = p0,
where p0 is the size of the true model or the number of relevant predictors in the true model. For any candidate model M,
we use Zi(M) = {Zij : j ∈ M} to represent the subvector of Zi corresponding to M, and Z(M) = {Zij : i = 1, . . . , n, j ∈ M}

to denote the matrix consisting of the column of Z with indices in M. Similarly, let βM denote the vector consisting of the
corresponding components of β.

In the sample form, Model (2.2) can be written as

Yi − X⊤

i η(Ui) = {Zi − µ⊤(Ui)Xi}
⊤β + εi, (2.3)

where

η(Ui) = {E(XiX⊤

i |Ui)}
−1E(XiYi|Ui), µ(Ui) = {E(XiX⊤

i |Ui)}
−1E(XiZ⊤

i |Ui).

The functions η(Ui) and µ(Ui) contain the unknown nonparametric functions E(XiX⊤

i |Ui), E(XiYi|U) and E(XiZ⊤

i |Ui), which
need to be estimated by some nonparametric smoothing methods. For convenience, we define the following notations:

Du =


X⊤

1
U1 − u

h
X⊤

1

...
...

X⊤

n
Un − u

h
X⊤

n

 , Wu = diag{Kh(U1 − u), . . . , Kh(Un − u)},

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is the bandwidth. We further define the smoothing matrix by

S =

(X⊤

1 0⊤)(D⊤

u1Wu1Du1)
−1D⊤

u1Wu1
...

(X⊤

n 0⊤)(D⊤

unWunDun)
−1D⊤

unWun

 , (2.4)

where 0 is a q-dimensional vector of zeros. It is easy to see that the smoothing matrix S depends only on the observations
{(Ui,Xi) : 1 ≤ i ≤ n}. Similar to the results in Fan and Huang [9] and Li et al. [24], X⊤

i η(Ui) and µ⊤(Ui)Xi can be directly
estimated by, respectively,

X⊤

i η(Ui) =

n
k=1

SikYk, µ⊤(Ui)Xi =

n
k=1

SikZk, (2.5)

where Sik is the (i, k)th entry of the smoothingmatrix S. To facilitate the notation, we denoteY = (In−S)Y = (Y1, . . . ,Yn)
⊤,Z = (In − S)Z = (Z1, . . . ,Zn)

⊤, where In is an n × n identity matrix. This leads to the linear model asYi ≈Z⊤

i β + εi, i = 1, . . . , n, (2.6)
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or, in matrix form,Y ≈ Zβ + ε. For the ultra-high dimensional semiparametric varying coefficient partially linear Model
(1.1), we have transformed the model into the ultra-high dimensional linear model (2.6) by using the profile technique.
Thus, we can apply the forward regression method inWang [33] to identify all relevant predictor variables in the linear part
of model (1.1). The proposed algorithm is as follows.

(1) Initially we specify a null model M(0), which can be taken as M(0)
= ∅.

(2) (Profile forward regression screening)
(a) (Evaluation). In Step k (k ≥ 1), the model M(k−1) is given based on a priori knowledge. Then, for every j ∈

MF /M(k−1), construct a candidate model as M
(k−1)
j = M(k−1)

{j}, whose lack of fit can be quantified by

RSS(k−1)
j = Y⊤


In − H

(M
(k−1)
j )

Y ,

where
H

(M
(k−1)
j )

=Z
(M

(k−1)
j )

Z⊤

(M
(k−1)
j )

Z
(M

(k−1)
j )

−1Z⊤

(M
(k−1)
j )

.

(b) (Screening). Find
ak = argminj∈MF /M(k−1) RSS(k−1)

j (2.7)
and update the candidate model as M(k)

= M(k−1)
{ak}.

(3) (Solution path). Iterate Step 2 for n times, then a total of n nested candidate models are obtained by the solution path
S = {M(k)

: 1 ≤ k ≤ n}, where M(k)
= {a1, . . . , ak}.

3. Theoretical properties

Before we derive the theoretical properties, we present some regularity conditions. Throughout the paper, we denote
γmin(A) and γmax(A) as the smallest and largest eigenvalues of an arbitrary positive definitematrixA, respectively.We define
the profile response and the profile predictor as Y ∗

= Y − X⊤η(U) and Z∗
= Z − µ⊤(U)X = (Z∗

1 , . . . , Z∗
p )⊤, respectively.

(C1) The random variable U has a compact support Ω . The density function f (u) of U has a continuous second derivative
and is uniformly bounded away from zero and infinity.

(C2) The q×qmatrix E(XX⊤
|U) is non-singular for eachU ∈ Ω . E(XX⊤

|U), E(XZ⊤
|U) and {E(XX⊤

|U)}−1 are functions about
U and all Lipschitz continuous. Further, assume that all the elements of {E(XX⊤

|U)}−1 and E(XZ⊤
|U) are bounded.

(C3) α1(·), . . . , αq(·) have continuous second derivatives in u ∈ Ω .
(C4) The kernel K(·) is a bounded symmetric density function with bounded support.
(C5) The bandwidth h satisfies that nh6

→ 0 and nh3/(ln n)3 → ∞.
(C6) Assume that Σ is the covariance matrix of the profile predictor Z∗, and is a positive definite matrix. There exist two

positive constants τmin and τmax satisfying 0 < τmin < τmax < ∞, such that 2τmin < γmin(Σ) ≤ γmax(Σ) < 2−1τmax.
(C7) Assume that ∥β∥ ≤ Cβ for some constant Cβ > 0 and βmin ≥ νβn−ξmin for some ξmin > 0 and νβ > 0, where ∥ · ∥

denotes the standard L2 norm and βmin = minj∈MT |βj|.
(C8) (Divergence speed of p and p0) There exist positive constants ξ, ξ0 and ν, such that ln p ≤ min(νnξ , n3/10), p0 ≤ νnξ0 ,

and ξ + 6ξ0 + 12ξmin < 1.
(C9) (Moment constraint) Assume that max0≤j≤p E{exp(u|Z∗

j |)} < ∞ for all 0 ≤ u ≤ t0/σv , where t0 and σv are positive
constants, and the moment generating functionsMj(u) of Z∗

j for j = 0, . . . , p satisfy

max
0≤j≤p

sup
0≤u≤t0

 d3du3
ln{Mj(u)}

 < ∞.

Further, assume that max0≤j≤p E|Z∗

j |
2k

≤ σ 2
v for some k > 2, and assume that ε follows a normal distribution.

Note that the above conditions are assumed to be held uniformly in u ∈ Ω . Conditions (C1)–(C4) are common in
semiparametric varying coefficient partially linear models. These conditions are mild and can be easily satisfied; see Fan
and Huang [9], Li et al. [24], and You and Zhou [39]. Condition (C5) was used in Li et al. [24], and the range from O(n−1/3 ln n)
to O(n−1/6) includes the optimal bandwidth. Conditions (C6)–(C8) are technical requirements for the model selection or
variable selection; see Liang et al. [29], and Wang [33]. Condition (C9) was used in Liang et al. [29] to obtain an exponential
inequality for the sum of random variables; see the details in Chernoff [5].

Theorem 3.1. Under regularity conditions (C1)–(C9), as n → ∞, we have

Pr

MT ⊂ M([Knξ0+4ξmin ])


−→ 1,

where MT = {j : βj ≠ 0} denotes the true model, and M([Knξ0+4ξmin ]) denotes the selected [Knξ0+4ξmin ]th model in the solution
path S. The constant K = 4τmaxτ

−2
minC

2
βν−4

β ν is independent of the sample size n, the constants τmax, τmin, Cβ, νβ and ν are defined
in Conditions (C6), (C7) and (C8), and [t] denotes the smallest integer not less than t.
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Remark 1. When q = 1 and X ≡ 1, Model (1.1) is reduced to an ultra-high dimensional partially linear model. Thus, the
result in Liang et al. [29] will be the special case of Theorem 3.1. Theorem 3.1 shows that the profile forward regression
method can identify all relevant predictors within O(nξ0+4ξmin) steps, which is smaller than the sample size n, with
probability tending to 1.

Since the solution path S consists of n nestedmodels, we need to determinewhich selectedmodel includes the candidate
predictor Zk∗ in the model of selected ones. To this end, we adopt an extended Bayesian information criterion (EBIC) as
follows:

EBIC(M) = ln(σ 2
(M)) + n−1

|M| (ln n + 2ζ ln p) , (3.1)

where ζ is a fixed constant, M is an arbitrary candidate model with |M| ≤ n,σ 2
(M) = n−1RSS(M) = Y⊤

{In − H(M)}
Y/n, H(M) =Z(M){

Z⊤

(M)
Z(M)}

−1Z⊤

(M).

When ζ = 1, the EBIC criterion has been used by Chen and Chen [2], Liang et al. [29], and Wang [33]. Let m =

argmin1≤k≤n EBIC(M(k)), then the selected model is M(m). Then we may want to know whether the model chosen by the
EBIC criterion can contain the true model with probability tending to 1. The following theorem answers the question: the
EBIC criterion enjoys the screening consistency property.

Theorem 3.2. Under regularity conditions (C1)–(C9), as n → ∞, we have

Pr(MT ⊂ M(m)) −→ 1. (3.2)

4. Numerical studies

In this section, we present the results of Monte Carlo simulations to evaluate the finite-sample performance of the
proposed PFR algorithm of ultra-high dimensional variable screening. Throughout this section, we use the Epanechnikov
kernel K(u) = 0.75(1−u2)+. For each setting, we repeat the experiment 200 times and compare the proposed PFRmethod
with the FR method inWang [33]. The FR method is treated as a standard method, and the results are obtained by assuming
that the coefficient function vector α(U) in (4.1) is known, then the response variable becomes Ỹ = Y − X⊤α(U).

Consider the following varying coefficient partially linear model:

Y = X⊤α(U) + Z⊤β + ε, (4.1)

where the nonparametric componentα(U) = (α1(U), α2(U))⊤ with q = 2. In Examples 1–3,we takeα1(U) = 4+sin(2πU)
andα2(U) = 2U(1−U), where the covariateU is uniformly distributed on [0, 1], X1 = 1, and X2 follows the standard normal
distribution except for Example 2. In all examples, the noise ε is generated from the normal distribution with mean 0 and
variance σ 2. We consider different noise level to obtain different signal-to-noise ratio R2

= var{X⊤α(U) + Z⊤β}/var(Y ).
For the linear part, we consider the following three commonly adopted data structures.

Example 1 (Independent Predictors). In this example, the linear predictor Z is an independent and standard normal random
vector. The size of the true model is chosen to be p0 = 8 with βj = (−1)Vj(4 ln n/

√
n + |Tj|), where Vj is a binary random

variable with Pr(Vj = 1) = 0.4 and Tj is a standard normal random variable. The variance σ 2 of model error ε is selected so
that the resulting theoretical R2 is approximately 50%, 70% and 90%, respectively, to represent the different signal-to-noise
ratios from weak to strong. For comparison, we consider three sample sizes (n = 100, 150 and 200) and three predictor
dimensions (p = 500, 1000 and 2000) for the linear part.

Wemainly demonstratewhether or not the PFRmethod can identify the relevant predictors aswell as the FRmethod even
if the model involves the nonparametric components. Letβ(k) = (β1(k), . . . ,βp(k))

⊤
∈ Rp denote the estimator obtained in

the kth simulation replication. Based on the EBIC, we use the proposed PFR algorithm to select the final candidate model.
The selected model is taken as M(k) = {j ∈ {1, . . . , p} : |βj(k)| > 0}. Similar to Liang et al. [29] and Wang [33], we compute
the following seven performance measures to evaluate the PFR method.

(1) The average model size (AMS) is computed as

1
200

200
k=1

| M(k)|.

(2) The coverage probability (CP) is computed as

1
200

200
k=1

1(MT ⊂ M(k)),

which is used to measure how likely all relevant predictors will be discovered by the PFR method.
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Table 1
Simulation results for Example 1 based on various bandwidths.

c n p = 500 p = 1000
CP CZ IZ CF AMS AEE CP CZ IZ CF AMS AEE

1
100 3.0 99.95 60.8 2.0 3.370 16.092 0.0 99.9 70.0 0.0 2.745 21.122
150 32.5 99.9 20.1 29.0 6.540 7.584 20.5 99.9 26.1 18.0 6.030 8.433
200 71.5 99.9 5.4 69.5 7.615 3.129 59.5 99.9 8.0 55.5 7.425 4.160

1.5
100 3.5 99.9 60.6 3.5 3.430 10.458 1.0 99.9 70.9 1.0 2.515 16.913
150 35.0 99.9 18.3 32.5 6.635 5.959 26.0 99.9 23.8 23.5 6.170 6.211
200 63.5 99.9 6.7 60.5 7.495 3.054 57.5 99.9 7.7 55.0 7.420 2.780

2
100 3.0 99.96 59.9 1.0 3.410 13.484 0.5 99.9 69.1 0.0 2.625 15.341
150 32.0 99.9 18.6 29.5 6.590 5.772 24.0 99.9 25.1 22.0 6.060 5.898
200 71.0 99.9 5.4 70.0 7.585 2.215 61.0 99.9 7.6 58.0 7.445 3.459

(3) The percentage of correct zeros (CZ), which is used to characterize the PFR method’s capability in producing sparse
solutions, can be computed by

100
200(p − p0)

200
k=1

p
j=1

1(βj(k) = 0) × 1(βj = 0).

(4) The percentage of incorrect zeros (IZ), which is used to characterize the PFR method’s under-fitting effects, can be
computed by

100
200p0

200
k=1

p
j=1

1(βj(k) = 0) × 1(βj ≠ 0).

(5) The percentage of correctly fitted (CF), which is used to measure the capability in identifying the true model correctly,
can be computed by

1
200

200
k=1

1( M(k) = MT ).

(6) The percentage of submodels M(k) contains the jth covariate (Pj), which is used to measure the capability that the jth
covariate will be discovered by the PFR method.

(7) The average estimation error (AEE) is computed by the L2 error

1
200

200
k=1

∥β(k) − β∥2.

For getting the consistent estimators of the unknown nonparametric functions including E(XiX⊤

i |Ui), E(XiYi|Ui) and
E(XiZ⊤

i |Ui) by using the nonparametric smoothingmethods, we need to choose an appropriate bandwidth. In the simulation
studies, the rule of thumb is used to choose the bandwidth for convenience, that is, h = cσUn−1/5, whereσU denotes the
sample standard deviation of U . To check the effect of the bandwidth, we consider Example 1 and take c = 1, 1.5, 2, three
sample sizes n = 100, 150 and 200 and two predictor dimensions p = 500 and 1000. The simulation results are presented
in Table 1. It is evident that the proposed method is not sensitive to the choice of the bandwidth.

Next, we provide the finite-sample performance of the proposed PFR method and the FR method under different signal-
to-noise ratios R2, different dimensions p and different sample sizes n. The corresponding simulation results are reported in
Table 2.

From Table 2, we can find the following results according to the effects of the signal-to-noise ratios:

(1) For three different signal-to-noise ratios, the PFR and FR methods can almost truly identify the inactive variables, and
have the higher percentage of correct zeros (CZ). This shows that two methods can produce sparse solutions with
probability tending to one.

(2) The signal-to-noise ratios have certain effect for the PFR and FR methods’ performance in terms of the results of the
coverage probability (CP), the percentage of incorrect zeros (IZ), the percentage of correctly fitted (CF), the average
model size (AMS) and the average estimation error (AEE). For the low signal-to-noise ratio (R2

= 50%), neither PFR
nor FR performs well in terms of the coverage probability. Wang [33] also find the FR method performs worse for the
low signal-to-noise ratios. For the high signal-to-noise ratio (R2

= 90%), the PFR and FR methods perform better. The
coverage probabilities approach 100% with the sample size n. We also note that the results are similar in other settings
from Table 2.

To reduce the computational burden, we fix c = 1.5 in the bandwidth choice and the signal-to-signal ratio is 70% for
comparing the proposed PFR method with the FR method proposed in Wang [33] in the following three examples.
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Table 2
Simulation results for Example 1 based on the PFR and FR methods.

R2 p n PFR FR
CP CZ IZ CF AMS AEE CP CZ IZ CF AMS AEE

0.5

500
100 0.0 99.9 85.1 0.0 1.375 19.760 0.0 99.9 85.8 0.0 1.245 16.900
150 0.5 99.9 70.4 0.5 2.415 12.553 0.5 99.9 71.8 0.5 2.275 10.742
200 0.8 99.9 53.4 0.8 3.760 8.225 2.0 99.9 52.4 2.0 3.835 8.061

1000
100 0.0 99.9 87.7 0.0 1.230 25.468 0.0 99.9 87.4 0.0 1.135 19.119
150 0.0 99.9 77.6 0.0 1.865 13.643 0.0 99.9 77.5 0.0 1.820 11.250
200 0.5 99.9 56.6 0.5 3.530 10.110 0.5 99.9 57.8 0.5 3.410 9.229

2000
100 0.0 99.9 90.8 0.0 1.170 30.087 0.0 99.9 89.2 0.0 1.105 22.968
150 0.0 99.9 80.5 0.0 1.655 13.993 0.0 99.9 80.3 0.0 1.625 12.348
200 0.0 99.9 63.3 0.0 2.995 10.112 0.0 99.9 64.6 0.0 2.870 10.067

0.7

500
100 3.5 99.9 60.6 3.5 3.430 10.458 4.5 99.9 59.9 4.5 3.230 9.626
150 35.0 99.9 18.3 32.5 6.635 5.959 40.0 99.9 16.0 38.0 6.765 4.686
200 63.5 99.9 6.7 60.5 7.495 3.054 67.0 99.9 5.7 65.5 7.565 2.523

1000
100 1.0 99.9 70.9 1.0 2.515 16.913 1.5 99.9 69.9 1.5 2.480 12.789
150 26.0 99.9 23.8 23.5 6.170 6.211 29.5 99.9 25.4 20.5 6.012 5.909
200 57.5 99.9 7.7 55.0 7.420 2.780 60.5 99.9 8.0 60.0 7.375 2.958

2000
100 0.0 99.9 76.4 0.0 2.120 19.060 0.7 99.9 77.2 0.7 1.915 13.741
150 14.5 99.9 33.8 12.0 5.410 8.713 23.5 99.9 31.0 21.0 5.380 6.731
200 50.0 99.9 10.5 48.0 7.205 3.995 53.5 99.9 11.4 52.5 7.100 2.646

0.9

500
100 98.5 99.9 0.25 80.5 8.190 4.083 100.0 99.9 0.0 93.5 8.075 2.788
150 100.0 99.9 0.0 93.5 8.070 1.965 100.0 99.9 0.0 97.5 8.025 1.365
200 100.0 99.9 0.0 95.0 8.055 1.345 100.0 99.9 0.0 97.5 8.025 0.810

1000
100 97.5 99.9 0.9 73.5 8.255 5.043 98.0 99.9 0.9 88.0 8.035 3.018
150 100.0 99.9 0.0 91.5 8.100 2.871 100.0 99.9 0.0 96.5 8.035 1.474
200 100.0 99.9 0.0 95.5 8.045 1.813 100.0 99.9 0.0 97.5 8.025 1.208

2000
100 94.0 99.9 3.3 71.5 8.070 6.135 98.0 99.9 0.8 88.0 8.065 3.801
150 99.5 99.9 0.6 97.0 8.055 2.073 99.5 99.9 0.6 97.0 8.020 1.127
200 100.0 99.9 0.0 95.5 8.045 1.194 100.0 99.9 0.0 99.0 8.010 0.773

Table 3
Simulation results for Example 2.

p n CP CZ IZ CF AMS P1 P2 P3 AEE

Method: PFR

500
100 15.0 99.9 35.0 14.5 2.125 98.5 31.0 65.5 6.260
150 53.0 99.9 16.0 52.5 2.615 99.5 61.0 91.5 3.202
200 78.0 99.9 7.5 76.0 2.835 100.0 81.0 96.5 1.949

1000
100 9.5 99.9 38.0 9.5 2.020 96.5 26.5 63.0 6.251
150 39.0 99.9 21.3 38.5 2.535 100.0 50.5 85.5 5.602
200 77.0 99.9 8.0 76.0 2.810 100.0 80.5 95.5 3.026

2000
100 7.0 99.9 42.2 7.0 1.940 95.5 19.0 59.0 6.996
150 37.0 99.9 22.2 36.5 2.475 99.0 42.5 92.0 4.671
200 68.0 99.9 10.8 67.0 2.745 100.0 71.0 96.5 2.788

Method: FR

500
100 22.0 99.9 31.3 21.5 2.130 99.0 34.0 73.0 4.383
150 60.5 99.9 13.5 60.0 2.625 100.0 63.0 96.5 2.439
200 82.0 99.9 6.2 80.0 2.840 100.0 82.0 100.0 1.406

1000
100 16.0 99.8 25.4 14.5 2.025 98.5 28.0 72.0 3.659
150 52.5 99.9 17.0 52.0 2.545 100.0 57.0 92.0 3.535
200 79.5 99.9 7.1 78.5 2.815 100.0 81.0 98.0 2.723

2000
100 15.5 99.9 36.5 15.5 1.945 98.5 23.5 68.5 3.621
150 49.0 99.9 17.7 48.5 2.485 100.0 53.0 94.0 1.657
200 74.5 99.9 8.5 73.5 2.755 100.0 75.0 99.5 1.027

Example 2 (Autoregressive Correlation). The covariate (Z⊤,X⊤) is a (p+2)-dimensionalmultivariate normal random vector
with mean zero and covariance matrix Σ = (σij) with element σij = 0.5|i−j| for 1 ≤ i, j ≤ p + 2. The 1st, 4th and 7th
components of β are 3, 1.5 and 2, respectively. Other elements of β are fixed to be zero. For comparison, we consider three
sample sizes (n = 100, 150 and 200) and three predictor dimensions (p = 500, 1000 and 2000) for the linear part. The
simulation results are reported in Table 3.
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Table 4
Simulation results for Example 3.

p ρ CP CZ IZ CF AMS P1 P2 P3 AEE

Method: PFR

500
0.1 99.0 99.9 0.3 91.5 3.090 99.5 100.0 99.5 9.458
0.5 26.0 99.9 31.2 24.0 2.445 69.0 68.5 69.0 28.747
0.9 1.0 99.8 92.2 0.0 1.050 8.0 8.0 7.5 116.017

1000
0.1 99.0 99.9 0.3 93.0 3.050 99.5 99.5 100.0 6.636
0.5 24.0 99.9 37.0 23.0 2.430 62.5 64.5 62.0 40.541
0.9 0.6 99.9 95.5 0.0 1.065 3.5 5.0 5.0 126.787

2000
0.1 97.0 99.9 1.2 88.5 3.070 98.0 99.5 99.0 9.001
0.5 11.5 99.9 50.0 9.5 2.345 50.0 48.0 52.0 47.778
0.9 0.4 99.9 97.3 0.0 1.015 3.0 2.0 3.0 130.374

Method: FR

500
0.1 99.5 99.9 0.2 97.5 3.025 99.5 100.0 100.0 4.846
0.5 34.5 99.94 26.8 34.5 2.465 76.0 71.0 72.5 24.039
0.9 2.0 99.8 91.5 0.1 1.035 10.5 8.0 7.0 111.833

1000
0.1 99.5 99.9 0.5 95.5 3.015 99.5 99.0 100.0 5.671
0.5 27.0 99.9 33.2 26.5 2.380 65.5 70.0 65.0 33.586
0.9 1.0 99.9 93.8 0.0 1.010 7.0 6.5 5.0 124.342

2000
0.1 99.0 99.9 0.3 96.5 3.015 99.5 100.0 99.5 4.752
0.5 16.0 99.9 42.5 14.5 2.275 54.5 58.0 60.0 40.715
0.9 0.7 99.9 95.2 0.0 1.005 4.5 5.5 4.5 130.393

Example 3 (Compound Symmetry). In this simulation, we consider the covariance structure of the linear part is compound
symmetry. Specially, the covariate Z has a p-dimensional multivariate normal distribution N (0, Σ). The covariance matrix
has entries σii = 1 for all i ∈ {1, . . . , p} and σij = ρ, i ≠ j. Furthermore, the nonzero coefficients βj = 5 for j = 1, 2, 3.
For comparison, we consider n = 100 and three predictor dimensions (p = 500, 1000 and 2000) for the linear part, and
ρ = 0.1, 0.5, 0.9. The simulation results are reported in Table 4.

In the following example, we evaluate the performance of our PFR method in the setting that Z is highly correlated with
X , and meanwhile, is highly correlated with U .

Example 4. LetW = (W1, . . . ,Wp+2)
⊤ be an independent and standardnormal randomvector, and (T1, T2)be independent

and standard uniformly distributed random variables. We construct (U,X⊤, Z⊤) as follows:

Xi =
Wi + t1T1
1 + t1

, Zj =
Wj+2 + t1T1

1 + t1
, U =

T2 + t2T1
1 + t2

,

where i = 1, 2 and j ∈ {1, . . . , p}. Let the nonparametric component α(U) = (α1(U), α2(U))⊤ in (4.1), where

α1(U) = (U + 1)2, α2(U) =
4 sin(2πU)

2 − sin(2πU)
,

and the nonzero coefficients βj be 3 for j = 1, 2. We take (t1, t2) = (2, 1) and (3, 1), corresponding to the correlation
coefficient matrix of (X⊤, Z⊤) with non-diagonal elements being 0.25 and 0.43, and the correlation coefficient matrix of
(X⊤,U) and (Z⊤,U)with non-diagonal elements being 0.35 and 0.46, respectively. For comparison,we consider two sample
sizes (n = 100, 150) and three predictor dimensions (p = 500, 1000 and 2000) for the linear part. The simulation results
are reported in Table 5.

From Tables 2–5, we have the comparison results as follows.

(1) The proposed PFR method is comparable with the FR method proposed by Wang [33], which is treated as a standard
method. These simulation results numerically confirm that the proposed PFR method is screening consistent. As a
byproduct of the screening consistency property, the percentage of incorrect zeros (IZ) approaches quickly toward 0
as the sample size increases.

(2) For fixed p, the proposed PFR performs better as the sample size increases. For example, the coverage probabilities
become largewith the sample size increasing. But the coverage probabilities are not enough large for the signal-to-noise
ratioR2

= 70%, the reasonmaybe that the signal-to-noise ratio is also not large and the sample size is not enough large to
obtain a satisfactory coverage probability.We can clearly find that the coverage probabilities change substantially as the
sample size increases. As long as the sample size is enough large, the coverage probabilities can approach approximately
100%. As is known to all, it is not sufficient that we only use the coverage probability to assess the screening consistency
of the proposed PFR method, we can also use the other assessment criteria to illustrate the screening consistency, such
as the capability of identifying the correct zero. It is easy to see that the proposed PFR method identifies correct zeros
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Table 5
Simulation results for Example 4.

p n (t1, t2) CP CZ IZ CF AMS AEE P1 P2

Method: PFR

500 100 96.5 99.9 2.0 91.5 2.035 4.213 98.5 97.5
150 100.0 99.9 0.0 94.0 2.360 3.181 100.0 100.0

1000 100 (2, 1) 96.0 99.9 2.0 93.5 2.020 4.441 100.0 96.0
150 100.0 99.9 0.0 98.0 2.025 2.443 100.0 100.0

2000 100 93.5 99.9 3.3 87.0 2.015 4.622 98.0 95.5
150 100.0 99.9 0.0 96.0 2.040 2.123 100.0 100.0

500 100 78.0 99.9 12.0 77.0 1.850 6.944 90.5 85.5
150 97.5 99.9 1.3 96.0 2.010 3.514 98.5 99.0

1000 100 (3, 1) 76.0 99.9 13.0 74.5 1.835 9.178 88.0 86.0
150 96.5 99.9 1.8 93.5 2.005 3.784 97.0 99.5

2000 100 68.0 99.9 18.0 63.0 1.845 10.086 82.0 82.0
150 94.5 99.9 2.8 91.0 2.000 4.161 97.5 97.0

Method: FR

500 100 99.5 99.9 0.2 97.0 2.025 1.721 100.0 99.5
150 100.0 99.9 0.0 97.5 2.025 2.064 100.0 100.0

1000 100 (2, 1) 99.0 99.9 0.3 97.0 2.015 3.217 99.5 99.5
150 100.0 99.9 0.0 97.5 2.025 2.227 100.0 100.0

2000 100 97.5 99.9 1.5 96.5 2.020 3.489 99.0 98.0
150 100.0 99.9 0.0 99.0 2.010 1.309 100.0 100.0

500 100 92.0 99.9 4.0 90.0 2.015 7.077 97.5 94.5
150 99.5 99.9 0.1 98.0 2.015 3.229 100.0 99.5

1000 100 (3, 1) 89.0 99.9 6.3 87.5 1.995 7.453 93.0 94.5
150 99.5 99.9 0.5 96.5 2.030 2.235 100.0 99.5

2000 100 84.0 99.9 9.5 82.5 1.985 10.238 90.0 91.0
150 99.0 99.9 0.8 96.5 2.030 2.445 100.0 99.0

almost 100%. In addition, the average model size is small, and is close to the true model size when the sample size
increases. Consequently, the average estimation error decreases as the sample size increases.

(3) For the fixed sample size n, we consider the performance of the proposed PFR method for the different dimension p
of the linear predictors. It is easy to see that the finite sample performance becomes worse as the dimension p of the
covariates increases. Then we may focus on the variation rate, which does not deteriorate rapidly, when the dimension
of the covariates increases. For example, Table 4 shows that the coverage probability drops from 78% to 68% as the
dimension of the covariates increases from 500 to 4× 500 = 2000 with n = 200. For comparison, we fix the dimension
p = 2000, but increases the sample size from n = 50 to n = 4 × 50 = 200, the coverage probability is computed. We
find that the coverage probability (CP) increases from 4.5% to 68.0%. These results show that the sample size n is more
important than the dimension of the covariates for ultra-high dimensional variable screening.

(4) We also compare the finite sample performance of the proposed PFR method in Table 4 when the correlation between
covariates drops from high to low.We find that the coverage probabilities deteriorate rapidly, for example, the coverage
probability drops from99.0% to 1%, as the correlation increases from0.1 to 0.9with the dimension of linear part p = 500.

(5) We evaluate the finite sample performance of the proposed PFRmethodwhen Z is highly correlated with the covariates
(X,U) in Table 5. We find that the finite performance becomes worse as the correlation becomes higher. For example,
the coverage probability drops from 96.5% to 78% as the value of (t1, t2) ranges from (2, 1) to (3, 1) for p = 500 and
n = 100.

For other assessment criteria, we can find similar simulation results as in Tables 2–5. In conclusion, the numerical results
demonstrate that the proposed PFR method performs better than existing methods.

5. Application to birth weight data

We demonstrate the effectiveness of the proposed PFR method by an application to the birth weight data. Votavová
et al. [32] collected the samples of peripheral blood, placenta and cord blood from 91womenwho gave birth to a baby in the
Česke Budějovice Hospital (Czech Republic) from November 2008 toMarch 2009. Based on the smoking history, the women
were divided into two groups, 20 smokers and 52 non-smokers, while 19 passive smokers were excluded from the study.
Gene expression profiles were assayed using HumanRef-8 v3 Expression BeadChips with 24,526 transcripts. The study was
approved by the Local Institutional Review Board. All participants provided the written informed consent and completed an
extensive questionnaire. Birth weight of baby (BW, in kilograms) was recorded along with mother’s age (MOA), gestational
age (GEA),mother’s bodymass index (BMI), and parity,measurement of the amount of cotinine, a chemical found in tobacco,
in the blood. Of interest in this empirical analysis is to identify which genes are strongly associated with the birth weight of
baby (BW).



142 Y. Li et al. / Journal of Multivariate Analysis 155 (2017) 133–150

Table 6
The top ten genes and the corresponding ID numbers selected by the PFR method.

Genes NTN3 SPDYE1 FRK OR5P2 MRO
ID numbers 1656040 2250830 1727605 2059464 1800874

Genes UTS2B KCNC4 RGS9 LAGE1 CDC25A
ID numbers 2180232 1727850 2389984 1803412 1733396

Fig. 1. The fitted coefficient functionsα1(u),α2(u) andα3(u) from the left panel to the right panel, respectively.

The blood and placental samples include n = 64 subjects after dropping those with incomplete information. Dudoit
et al. [7] proposed a three-step procedure to preprocess the gene expression data: remove genes having little variation in
intensity, transform intensities to base 2 logarithms, and normalize each data vector to have sample mean 0 and standard
deviation 1. This procedure results in p = 5869 genes. Based on the results in Votavová et al. [32], we consider the varying
coefficient partially linear model to fit the birth weight data as follows:

BW = α1(U) + α2(U)GEA + α3(U)BMI +
5869
j=1

βjGEj + ε, (5.1)

where the variable U = MOA, GEj is the jth gene, and GEA and BMI are normalized variables with sample mean 0 and
standard deviation 1.

Epanechnikov kernel K(u) = 0.75(1 − u2)+ and the bandwidth h = cσUn−1/5 are used to fit the coefficient functions,
whereσU denotes the sample standard deviation of U . The proposed PFR algorithm is used to select the candidate model,
and the selected top ten genes and their corresponding ID numbers are listed in Table 6.

We note that the gene OR5P2 is also identified in Sherwood and Wang [31], and the gene OR5P2 is lied on chromosome
11. Chromosome 11 contains the gene PHLDA2, which is reported in Ishida et al. [17]. Ishida et al. [17] found that the gene
PHLDA2 is highly expressed in mothers that have children with low birth weight. Gilliam et al. [15] pointed out that the
gene RGS9 plays a role in obesity and the parental obesity may have influence on the birth weight of baby (BW).

The EBIC criterion is used to select the top two genes (NTN3 and SPDYE1) in the solution path. We find that the gene
NTN3 encodes a novel human netrin mapping to the autosomal dominant polycystic kidney disease region on chromosome
16p13.3, and the gene SPDYE1 is located at chromosome 7p13which is close to theWilliams Beuren syndrome chromosome
region 7q11.23. It remains to be validatedwhether it is really relatedwith the birthweight of baby (BW) by biologists. Please
refer to https://www.ncbi.nlm.nih.gov/gene for the more details of other genes.

The estimated coefficient functions are reported in Fig. 1. The latter shows the mother’s age (MOA) has a positive impact
on the birth weight of baby (BW) before age 30, and has a negative impact on the birth weight of baby (BW) after age 30.
The fitted curveα2(u) is always positive and has a rapid increasing after age 35. This implies that the variable GEA has a
positive effect on the birth weight of baby (BW), and the value of effect increases rapidly after age 35. This also coincides
with the intuition that the birth weight of baby (BW) increases with the variable GEA and premature birth is often strongly
associated with low birth weight of baby. The fitted curveα3(u) is decreasing with the mother’s age (MOA), and turns to
negative about age 35. This implies that BMI has a positive effect on the birth weight of baby (BW) before age 35, and has a
negative effect after age 35. Our findings are consistent with the results in Gilliam et al. [15]. Hence, from a practical point
of view, we have demonstrated that the proposed PFR method is an efficient method for analyzing the varying coefficient
partially linear model.
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Appendix

For the sake of convenience, let C ∈ (0, ∞) denote a constant not depending on n and p, but may take difference values
at each appearance. We introduce the following notations to simplify our presentation. Let Γ (u) = E(XX⊤

|U = u),
Ψ (u) = E(XY |U = u) and Φ(u) = E(XZ⊤

|U = u). Let Y ∗

i = Yi − X⊤

i η(Ui) be the profiled response variable and
Z∗

i = Zi − µ(Ui)
⊤Xi = (Z∗

i1, . . . , Z
∗

ip)
⊤ be the profiled predictors. Define Y ∗

= (Y ∗

1 , . . . , Y ∗
n )⊤ ∈ Rn as the profiled

response vector, and Z∗
= (Z∗

1 , . . . , Z∗
n )⊤ ∈ Rn×p as the matrix of the profiled predictors. Further define Σ = Z⊤Z/n

and Σ∗
= Z∗

⊤Z∗/n. For any candidate model M, define Σ(M) = {Σij | i, j ∈ M}.

A.1. Some lemmas

Lemma A.1. Let W1, . . . ,Wn be independent and identically distributed random variables with E(Wi) = 0 and var(Wi) = 1.
M(t) = E{exp(tWi)} is the moment generating function of Wi, for each i ∈ {1, . . . , n}, and assume that there exists a positive
constant t0 such that E{exp(t|Wi|)} < ∞ for all t ∈ [0, t0]. Let ank, for any 1 ≤ k ≤ n, be a sequence of constants and
A, A1, A2, . . . be a sequence of constants satisfying

An ≥

n
k=1

a2nk and A ≥ max
k

|ank|/An.

If

M∗
= sup

0≤t≤t0

 d3dt3
lnM(t)

 < ∞,

then, for 0 < ξ < t0/A, we have

Pr

 n
k=1

ankWk

 > ξ


≤ 2 exp


−

ξ 2

2An


1 −

1
3
AM∗ξ


.

Lemma A.2. Let W1, . . . ,Wn be independent random variables with mean E(Wi) = 0 and variance var(Wi) = σ 2
i . If

E|Wi|
m

≤ (m!/2)σ 2
i t

m−2 for 1 ≤ i ≤ n, 0 < t < ∞, and some m > 2, then for any δ > 0,

Pr

 n
i=1

Wi

 > δ


≤ 2 exp

−
δ2

2


n
i=1

σ 2
i + tδ


 .

Lemma A.3. Let (Xi,Ui) be independent and identically distributed random variable vector, where Xi = (Xi1, . . . , Xip)
⊤

∈ Rp,
and Ui is a univariate variable for each i ∈ {1, . . . , n}. Define Gj(Ui) = E(Xij|Ui) for each j ∈ {1, . . . , p}. The weight functions
wnk, 1 ≤ k ≤ n, satisfy, with probability tending to 1,

max
1≤k≤n

n
i=1

wnk(Ui) = O(1), max
1≤i,k≤n

wnk(Ui) = o(n−4/5)

and

max
1≤k≤n

n
k=1

wnk(Ui)1(|Ui − Uk| > cn) = o(cn),

then we have

max
1≤i≤n

max
1≤j≤p

Gj(Ui) −

n
k=1

wnk(Ui)Gj(Uk)

 = oP(cn),

with cn = n−1/4 ln−1 n.
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The proofs of Lemmas A.1–A.3 can be found in Liang et al. [29]; hence we omit the details.

Lemma A.4. Suppose Conditions (C1)–(C5) and (C8)–(C9) hold. We haveY − Y ∗
= oP(1), (A.1)Z − Z∗
= oP(1). (A.2)

Proof. The aim of the lemma is to show that the estimators of the profiled response vector Y ∗ and the profiled predictors
matrix Z∗ are consistent. Since the proof of (A.1) is similar to that of (A.2), we only present the proof of (A.2). If each element
ofZ − Z∗ is oP(1), then we can claim that the estimator of the profiled predictor is consistent. In other words, we only need
to prove

max
1≤i≤n

max
1≤j≤p

|Zij − Z∗

ij | = oP(1).

Note thatZij − Z∗

ij = −µ⊤

j (Ui)Xi + µ⊤

j (Ui)Xi, where µj(Ui) is the jth column of µ(Ui), and its estimator is µj(Ui). By
Condition (C2), it is easy to show that

max
1≤i≤n

max
1≤j≤p

|Zij − Z∗

ij | = max
1≤i≤n

max
1≤j≤p

µj(Ui) − µj(Ui)
⊤ Xi


≤ q max

1≤i≤n
max
1≤j≤p

max
1≤ℓ≤q

{µℓj(Ui) − µℓj(Ui)}Xil


= q max
1≤i≤n

max
1≤j≤p

max
1≤ℓ≤q

µℓj(Ui) − µℓj(Ui)
 {1 + OP(1)}. (A.3)

Since q is fixed, we only need to prove

max
1≤i≤n

max
1≤j≤p

µℓj(Ui) − µℓj(Ui)
 = oP(1)

for each 1 ≤ ℓ ≤ q. For convenience, we first introduce some notations as follows:Γ (u) = nf (u)[Iq, 0q](D⊤

u WuDu)
−1

= (Γ1(u), . . . ,Γq(u))⊤,Γℓ(u) =
Γℓ1(u), . . . ,Γℓ2q(u)

⊤
, 1 ≤ ℓ ≤ q,

Γ̃ (u) = [Iq, 0q]Γ
−1(u) ⊗


1 0
0 µ−1

2


= (Γ̃1(u), . . . , Γ̃q(u))⊤,

Γ̃ℓ(u) = (Γ̃ℓ1, . . . , Γ̃ℓ2q)
⊤, 1 ≤ ℓ ≤ q,

Φ(u) =
1

nf (u)
D⊤

u WuZ = (Φ1(u), . . . ,Φ2q(u))⊤,

Φm(u) = (Φm1(u), . . . ,Φmp(u))⊤, 1 ≤ m ≤ 2q,

Φ̃(u) = Φ(u) ⊗ (1, 0)⊤ = (Φ̃1(u), . . . , Φ̃2q(u))⊤,

Φ̃m(u) = (Φ̃m1(u), . . . , Φ̃mp(u))⊤, 1 ≤ m ≤ 2q,

where ⊗ is the Kronecker product, µ2 =

u2K(u)du, Iq is a q × q identity matrix, and 0q is a q × q zero matrix. We then

find that, for each 1 ≤ ℓ ≤ q,

max
1≤i≤n

max
1≤j≤p

µℓj(Ui) − µℓj(Ui)
 = max

1≤i≤n
max
1≤j≤p

 2q
m=1

{Γℓm(Ui)Φmj(Ui) − Γ̃ℓm(Ui)Φ̃mj(Ui)}

 . (A.4)

It is easy to see that (A.4) is bounded by the following three parts:

I1 = max
1≤i≤n

max
1≤j≤p

 2q
m=1

Γ̃ℓm(Ui){Φmj(Ui) − Φ̃mj(Ui)}

 ,
I2 = max

1≤i≤n
max
1≤j≤p

 2q
m=1

{Γℓm(Ui) − Γ̃ℓm(Ui)}Φ̃mj(Ui)

 ,
I3 = max

1≤i≤n
max
1≤j≤p

 2q
m=1

{Γℓm(Ui) − Γ̃ℓm(Ui)}{Φmj(Ui) − Φ̃mj(Ui)}

 .
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In the following, we mainly consider the convergence rate of I1. The convergence rates of I2 and I3 can be obtained in a
similar way. Note that

Φmj(Ui) =


n

t=1

wnt(Ui)XtmZtj, 1 ≤ m ≤ q,

n
t=1

wnt(Ui)Xt(m−q)Ztj, q + 1 ≤ m ≤ 2q,

with

wnt(Ui) =


{nf (Ui)}

−1Kh(Ut − Ui), 1 ≤ m ≤ q,
{nhf (Ui)}

−1(Ut − Ui)Kh(Ut − Ui), q + 1 ≤ m ≤ 2q.

We also note that Φ̃mj(Ui) = Φmj(Ui) for 1 ≤ m ≤ q and Φ̃mj(Ui) = 0 for q + 1 ≤ m ≤ 2q. Then, we can show that I1 is
bounded above by

I11 = max
1≤i≤n

max
1≤j≤p

 q
m=1

Γ̃ℓm(Ui){Φmj(Ui) − Φmj(Ui)}


and

I12 = max
1≤i≤n

max
1≤j≤p

 2q
m=q+1

Γ̃ℓm(Ui)Φmj(Ui)

 .
From Condition (C2), we get

I11 ≤ C max
1≤i≤n

max
1≤j≤p

max
1≤m≤q

 n
t=1

wnt(Ui){XtmZtj − Φmj(Ut)}


+ C max

1≤i≤n
max
1≤j≤p

max
1≤m≤q

 n
t=1

wnt(Ui)Φmj(Ut) − Φmj(Ui)

 . (A.5)

As wnt(Ui), 1 ≤ t ≤ n, satisfy the conditions of Lemma A.3, we obtain that the convergence rate of the second term of (A.5)
is oP(cn).

Next we consider the convergence rate of the first term of (A.5). To this end, let A be a constant such that A ≥

n4/5 max1≤t≤n wnt(Ui)/C with An = Cσ 2
v n

−4/5. It is easy to show that An and A satisfy the conditions of Lemma A.1. For
each 1 ≤ m ≤ q, we have

Pr


max
1≤i≤n

max
1≤j≤p

 n
t=1

wnt(Ui)

XtmZtj − Φmj(Ut)

 > cn



≤ pn Pr

 n
t=1

wnt(Ui)

XtmZtj − Φmj(Ut)

 > cn



≤ 2pn exp

−

c2n
2An

(1 − AMνcn)


≤ 2pn exp


−
c2n
2An


= 2 exp


−

c2n
2An

+ ln(pn)


= 2 exp

−n3/10 ln−2(n/C) + ln(pn)


. (A.6)

Then, based on Condition (C8), we see that the convergence rate of the first term of (A.5) is oP(cn). By the above results, then
I12 is bounded above by

I12 ≤ C max
1≤i≤n

max
1≤j≤p

max
1≤m∗≤q

 n
t=1

wnt(Ui)(Xtm∗
Ztj − µm∗j)

+ C max
1≤i≤n

max
1≤j≤p

max
1≤m∗≤q

 n
t=1

wnt(Ui)µm∗j

 , (A.7)

where m∗ = m − q with q + 1 ≤ m ≤ 2q, and µm∗j = E(Xtm∗
Ztj). Invoking a similar argument for I11, we can obtain the

convergence rate of I12 = oP(cn). Combined with the convergence rate of I11, this yields I1 = oP(cn) for each 1 ≤ ℓ ≤ q.
Again using the same argument, we can prove that I2 = oP(cn) and I3 = oP(cn) for each 1 ≤ ℓ ≤ q. This completes the proof
of (A.2). �
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Lemma A.5. Suppose Conditions (C1)–(C9) hold, and let m̃ = O(n2ξ0+4ξmin) with probability tending to 1, then we have

2τmin < min
|M|≤m̃

γmin{Σ(M)} ≤ max
|M|≤m̃

γmax{Σ(M)} < 2−1τmax. (A.8)

Proof. Let a = (a1, . . . , ap)⊤ be an arbitrary p-dimensional vector and a(M) be the subvector corresponding to M. From
Condition (C6), we get

2τmin < min
M∈MF

inf
∥a(M)∥=1

a⊤

(M)Σ(M)a(M)

≤ max
M∈MF

sup
∥a(M)∥=1

a⊤

(M)Σ(M)a(M) < 2−1τmax.

Here we first consider to prove the maximum eigenvalue of ΣM for |M| ≤ m̃ satisfying (A.8), the result of the minimum
eigenvalue of Σ(M) for |M| ≤ m̃ can similarly be proved. In other words, we need to show that

Pr


max
|M|≤m̃

sup
∥a(M)∥=1

a⊤

(M){
Σ(M) − Σ(M)}a(M)

 > ϵ


−→ 0, (A.9)

where ϵ is an arbitrary positive number. Note that

Pr


max
|M|≤m̃

sup
∥a(M)∥=1

a⊤

(M){
Σ(M) − Σ(M)}a(M)

 > ϵ


≤ Pr


max
|M|≤m̃

sup
∥a(M)∥=1

a⊤

(M){
Σ(M) − Σ∗

(M)}a(M)

 >
ϵ

2



+ Pr


max
|M|≤m̃

sup
∥a(M)∥=1

a⊤

(M){Σ
∗

(M) − Σ(M)}a(M)

 >
ϵ

2


. (A.10)

Now we consider the first term of the right-hand side of (A.10). Note that

Σ(M) − Σ∗

(M) =
1
n
{Z⊤

(M)
Z(M) − Z∗

⊤

(M)Z
∗

(M)}

=
1
n
{Z(M) − Z∗

(M)}
→

{Z(M) − Z∗

(M)} +
1
n
{Z(M) − Z∗

(M)}
⊤Z∗

(M) +
1
n
Z∗

⊤

(M){
Z(M) − Z∗

(M)}. (A.11)

For any M with |M| ≤ m̃, we get

1
n

a⊤

(M)


Z∗T

(M){
Z(M) − Z∗

(M)}

a(M)

 =
1
n


k,j∈M

akZ∗
⊤

(k){
Z(j) − Z∗

(j)}aj


≤

1
n


k,j∈M

|ak|
Z∗

⊤

(k){
Z(j) − Z∗

(j)}

 |aj|

=
|M|

n
max
1≤i≤n
j∈M

|Zij − Z∗

ij |

k∈M

a2k {1 + OP(1)} . (A.12)

Then, by Lemma A.4 and the Cauchy–Schwarz inequality, we have

1
n

max
|M|≤m̃

sup
∥a(M)∥=1

a⊤

(M)[Z
∗
⊤

(M){
Z(M) − Z∗

(M)}]a(M)

 = oP(cn).

Using the same argument, we can prove that

1
n

max
|M|≤m̃

sup
∥a(M)∥=1

a⊤

(M)[{
Z(M) − Z∗

(M)}
⊤Z∗

(M)]a(M)

 = oP(cn),

1
n

max
|M|≤m̃

sup
∥a(M)∥=1

a⊤

(M)[{
Z(M) − Z∗

(M)}
⊤
{Z(M) − Z∗

(M)}]a(M)

 = oP(cn).

For an arbitrary positive number ϵ, invoking the above results, we have

Pr


max
|M|≤m̃

sup
∥a(M)∥=1

a⊤

(M){
Σ(M) − Σ∗

(M)}a(M)

 >
ϵ

2


−→ 0.
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Next we consider the second term of the right-hand side of (A.10). Lemma A.2 relaxes the normality assumption on the
covariates imposed in Wang [33] and provides an exponential inequality for the sum of random variables. Therefore, using
a similar technique as in Lemma 1 of Wang [33] and Lemma A.2, for an arbitrary positive number ϵ, we have

Pr


max
|M|≤m̃

sup
∥a(M)∥=1

a⊤

(M){Σ
∗

(M) − Σ(M)}a(M)

 >
ϵ

2


−→ 0.

Using the same argument, we can obtain the result of the minimum eigenvalue in (A.8). This completes the proof of
Lemma A.5. �

A.2. Proof of Theorem 3.1

Letm∗ , [Knξ0+4ξmin ]. For each k ≤ m∗, after some algebraic operations, we have

Ω(k) , RSS(M(k)) − RSS(M(k+1)) = ∥H(k)
ak+1

Q(M(k))
Y∥

2, (A.13)

where

Q(M(k)) = In − H(M(k)), H(M(k)) =Z(M(k))(
Z⊤

(M(k))
Z(M(k)))

−1Z⊤

(M(k))
,

H(k)
j =Z(k)

(j)
Z(k)⊤

(j) ∥Z(k)
(j) ∥

−2, Z(k)
(j) = {In − H(M(k))}

Z(j),

and ak+1 = argminj∈MF /M(k) RSS(k)
j , hereZ(j) is the jth column ofZ. Supposing MT ⊄ M(m∗), we get

Ω(k) ≥ max
j∈M∗

k

∥H(k)
j Q(M(k))Ŷ∥

2
≥ ∥H(k)

ĵ
Q(M(k))Ŷ∥

2,

where M∗

k = MT /M(k)
≠ ∅, and

ĵ = argmax
j∈M∗

k

∥H(k)
j Q(M(k)){Z

∗

(MT )βMT
}∥

2.

Thus, we have

∥H(k)
ĵ

Q(M(k))Ŷ∥
2

≥ ∥H(k)
ĵ

Q(M(k)){Z
∗

(MT )βMT
}∥

2
− ∥H(k)

ĵ
Q(M(k))ε∥

2
− ∥H(k)

ĵ
Q(M(k))(Ŷ − Y ∗)∥2

≥ max
j∈M∗

k

∥H(k)
j Q(M(k)){Z

∗

(MT )βMT
}∥

2
− max

j∈MT

∥H(k)
j Q(M(k))ε∥

2
− max

j∈MT

∥H(k)
j Q(M(k))(Ŷ − Y ∗)∥2. (A.14)

Since H(k)
j and Q(M(k)) are projection matrices, it follows from Lemma A.4 that the third term on the right-hand side of

(A.14) is bounded above by ∥Ŷ −Y ∗
∥
2

= n oP(c2n ). Thus, we only need to consider the first two terms on the right-hand side
of (A.14).

Now we deal with the first term on the right-hand side of (A.14). Given that Ẑ(k)T
(j) Q(M(k)) = Ẑ⊤

(j)Q(M(k)), we get

max
j∈M∗

k

∥H(k)
j Q(M(k)){Z

∗

(MT )β(MT )}∥
2

= max
j∈M∗

k

∥H(k)
j Q(M(k)){Z

∗

(M∗
k )β(M∗

k )}∥
2

= max
j∈M∗

k


∥Ẑ(k)

(j) ∥
−2
Ẑ(k)⊤

(j) Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}

2
≥ ∥Ẑ(k)

(j∗)∥
−2
Ẑ⊤

(j∗)Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}

2
≥ min

j∈M∗
k


∥Ẑ(k)

(j) ∥
−2
 Ẑ⊤

(j∗)Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}

2
= max

j∈M∗
k


∥Ẑ(k)

(j) ∥
2
−1 Ẑ⊤

(j∗)Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}

2
≥


max
j∈M∗

k

∥Ẑ(j)∥
2

−1

max
j∈M∗

k

Ẑ⊤

(j)Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}

2 , (A.15)

where j∗ = argmaxj∈M∗
k
|Ẑ⊤

(j)Q(M(k)){Z∗

(M∗
k )

β(M∗
k )}|

2, and (A.15) is due to the fact that ∥Ẑ(j)∥ ≥ ∥Ẑ(k)
(j) ∥. Note that

∥Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}∥
2

=


j∈M∗

k

βj[Z∗⊤

(j) Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}].
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By Condition (C7), and invoking the Cauchy–Schwarz inequality, we can further get

∥Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}∥
2

≤


j∈M∗

k

β2
j

1/2
j∈M∗

k

|Z∗⊤

(j) Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}|
2
1/2

≤ Cβp
1/2
0 max

j∈M∗
k

|Z∗⊤

(j) Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}|. (A.16)

On the other hand, we can see that

max
j∈M∗

k

Z∗⊤

(j) Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}

 = max
j∈M∗

k

{Z∗

(j) − Ẑ(j) + Ẑ(j)}
⊤Q(M(k)){Z

∗

(M∗
k )β(M∗

k )}


≤ max

j∈M∗
k

Ẑ⊤

(j)Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}

+ max
j∈M∗

k

{Z∗

(j) − Ẑ(j)}
⊤Q(M(k)){Z

∗

(M∗
k )β(M∗

k )}

 . (A.17)

By Lemma A.4, it is easy to show that, with probability tending to 1,

∥Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}∥
2

≤ Cβp
1/2
0 max

j∈M∗
k

Ẑ⊤

(j)Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}

 . (A.18)

Then, by (A.18) along with Lemma A.5 and Conditions (C7)–(C8), it is easy to show that the right-hand side of (A.15) is
bounded below by

max
j∈M∗

k

∥Ẑ(j)∥
2
−1

[∥Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}∥
2C−1

β p−1/2
0 ]

2
≥

1
2
n−1τ−1

maxp
−1
0 C−2

β ∥Q(M(k)){Z
∗

(M∗
k )β(M∗

k )}∥
4. (A.19)

Together (A.15) and (A.19) with Conditions (C7)–(C8), this leads to the conclusion that

max
j∈M∗

k

∥H(k)
j Q(M(k)){Z

∗

(MT )β(MT )}∥
2

≥
1
2
C−2

β τ−1
maxτ

2
minν

4
βν

−1n1−ξ0−4ξmin . (A.20)

Next we consider the second term on the right-hand side of (A.14). A simple calculation shows that

max
j∈MT

∥H(k)
(j) Q(M(k))ε∥

2
= max

j∈MT

∥Ẑ(k)
(j) ∥

−4
∥Ẑ(k)

(j) Ẑ
(k)⊤
(j) Q(M(k))ε∥

2

≤ τ−1
minn

−1 max
j∈MT

max
|M|≤m∗

{Z∗⊤

(j) Q(M)ε}
2. (A.21)

It is noteworthy that Z∗⊤

(j) Q(M)ε is a normal random variable with mean 0 and variance ∥Q(M)Z∗

(j)∥
2

≤ ∥Z∗

(j)∥
2. Thus, the

right-hand side of (A.21) can be bounded above by

τ−1
minn

−1 max
j∈MT

∥Z∗

(j)∥
2σ 2 max

j∈MT

max
|M|≤m∗

χ2
1 ,

where χ2
1 stands for a chi-squared random variable with one degree of freedom. As is shown in Wang [33],

maxj∈MT max|M|≤m∗ χ2
1 is less than 3Kνnξ+ξ0+4ξmin with probability tending to 1. From Lemma A.5, we know that

max
j∈MT

∥Z∗

(j)∥
2

≤ 2−1nτmax.

Then the second term of (A.14) is bounded by 2−1τmaxτ
−1
min3Kνnξ+ξ0+4ξminσ 2. Combining this result with (A.14) and (A.20),

we have

1
n
Ω(k) ≥

τ 2
minν

4
β

2ντmaxC2
β

n−ξ0−4ξmin


1 −

τ 2
maxC

2
βν2

τ 3
minν

4
β

3σ 2Knξ+2ξ0+8ξmin−1


(A.22)

uniformly for k ≤ m∗. Under Condition (C8), and recalling that K = 4ντmaxC2
β/(τ 2

minν
4
β), we have

n−1
∥Ŷ∥

2
≥ n−1

[Knξ0+4ξmin ]
k=1

Ω(k) ≥ 2


1 −

τ 2
maxC

2
βν2

τ 3
minν

4
β

3σ 2Knξ+2ξ0+8ξmin−1


P
−→ 2. (A.23)

Without loss of generality, we further assume that var(Y ∗

i ) = 1. Then according to Lemma A.4, we have n−1
∥Ŷ∥

2 P
−→ 1,

which contradicts the result of (A.23). Based on the assumption that MT ⊄ M(m∗) with m∗ , [Knξ0+4ξmin ], we reach a
contradiction, i.e., the assumption is false which means that MT ⊂ M(m∗) with probability tending to 1. Therefore, the
proof of Theorem 3.1 is complete. �
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A.3. Proof of Theorem 3.2

By Theorem 3.1, we know that MT ⊂ M[Knξ0+4ξmin ] with probability tending to 1. Thus we only need to show that

Pr


min

M∗
k ≠∅,k≤m∗

{BIC(k) − BIC(k + 1)} > 0


→ 1, (A.24)

where M∗

k = MT /M(k)
≠ ∅ and m∗

= [Knξ0+4ξmin ]. Note that

BIC(M(k)) − BIC(M(k+1)) = ln

 σ 2
(M(k))σ 2

(M(k+1))


− n−1(ln n + 2ζ ln p)

≥ ln


1 +

σ 2
(M(k))

−σ 2
(M(k+1))σ 2

(M(k+1))


− n−1(1 + 2ζ ) ln p, (A.25)

where, for the last inequality, we have used the assumption of p > n. It is easy to see that σ 2
(M(k+1))

≤ n−1
∥Y∥

2, and by

Lemma A.4, we have n−1
∥Y∥

2 P
−→ 1. Then with probability tending to 1, the right-hand side of (A.25) is bounded below by

ln{1 + 2−1n−1Ω(k)} − n−1(1 + 2ζ ) ln p,

where the definition of Ω(k) is given in (A.13). According to the element inequality ln(1 + x) ≥ min(ln 2, x/2) and the
inequality (A.22), the right-hand side of (A.25) is no less than, with probability tending to 1,

min{ln 2, 4−1n−1Ω(k)} − n−1(1 + 2ζ ) ln p ≥ min{ln 2, 5−1K−1n−ξ0−4ξmin} − n−1(1 + 2ζ ) ln p. (A.26)

Note that, under Condition (C8), the right-hand side of (A.26) is positive with probability tending to 1 uniformly for
k ≤ m∗, M∗

k ≠ ∅. Hence the proof is complete. �
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