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a b s t r a c t

In this paper, we propose a robust method for the estimation of regression function.
By symmetric addition, we change platykurtic errors into leptokurtic errors; and then
estimate the nonparametric function by the local polynomial least absolute deviation re-
gression. Different from the local polynomial least squares estimator, the new estimator
is robust for outliers and heavy-tailed errors even if the error variance does not exist;
different from the usual local polynomial least absolute deviation estimator and the
composite quantile regression estimator, it does not depend on the finite density values
at chosen quantile points, but relies on the expectation of the error density. To improve
the finite sample performance, two bias-reduced versions are further proposed under
different smoothness conditions. For the equidistant designs, the asymptotic properties
are established. In simulations, the new estimator has the less mean square errors than
its main competitors in the presence of platykurtic and heavy-tailed errors.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In nonparametric estimation of regression function, the local polynomial least squares (LS) regression is a successful
and popular method, and its asymptotic theory has been well studied in the literature (Fan and Gijbels, 1996). If the errors
are normally distributed, the LS estimator is the most efficient estimator and has the likelihood interpretation (Fan et al.,
1998). Facing the outliers and heavy-tailed errors, the LS estimator is not robust and its efficiency cannot be guaranteed,
i.e., for the Cauchy distribution. Therefore, it is important to develop robust and efficient estimation methods for many
applications such as finance and economics (Zhao and Xiao, 2014).

Traditionally, there were two kinds of robust procedures: locally weighted LS regression and local least absolute
deviation (LAD) regression. Locally weighted LS procedure aims to reduce the influence of outliers by assigning the down-
weight to outliers, and in spirit is locally linear, including locally weighted polynomial LS fitting (Cleveland, 1979), kernel
M-smoother method (Härdle and Gasser, 1984), and spline smoother (Silverman, 1985). Local LAD regression is a different
procedure. Tukey (1977) proposed various modifications of local median smoothing, Fan and Hall (1994) proposed a
framework and gave its asymptotic efficiency. Wang and Scott (1994) proposed the local polynomial LAD regression to
further reduce the bias. Welsh (1996) considered the estimation of the regression function and spread functions and their
derivatives. Brown et al. (2008) further proposed the wavelet median regression. These methods are robust for outliers and
heavy-tailed errors, meanwhile need to satisfy an implied condition to keep the estimation efficiency: the error density
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s leptokurtic. If the density function value at median becomes smaller, the estimation variance becomes larger and thus
he estimation efficiency is lower.

To improve the efficiency, the quantile regression (Koenker and Bassett, 1978; Koenker, 2005) provides a useful
echnique. Yu and Jones (1998) and Härdle et al. (2013) proposed the local quantile regression. For certain distributions,
quantile estimator at non-median may deliver a more efficient estimator than the LAD estimator. Since quantile

egression provides a way of exploiting the distribution information, combining information over multiple quantiles may
mprove the estimation efficiency. Kai et al. (2010) proposed the local composite quantile regression (CQR) estimator by
imple averaging multiple quantile regression estimators, which is asymptotically equivalent to the local LS estimator
s the number of quantiles goes to infinity. Fan et al. (2018) generalized CQR to the single-index model. Zhao and
iao (2014) proposed the locally weighted quantile average (WQA) estimator by optimally weighting multiple quantile
egression estimators, which achieves the Cramer–Rao lower bound of variance as the number of quantiles goes to infinity.
owever, the asymptotic properties of CQR and WQA estimators depend on the information at all quantile points. In
ractical applications, both estimators are a generalization of the LAD estimator, from one quantile to finite quantiles.
he estimation efficiency depends on the error density values at finite quantiles.
In this paper, we propose a new and robust method to deal with platykurtic errors and outliers. By the additive

ransformation of the original data, we change platykurtic errors into peak errors; then we use the local LAD regression to
stimate the regression function. The new function estimation is robust for outliers and heavy-tailed errors, meanwhile
mprove the estimation efficiency for platykurtic errors.

. Estimation methodology

Consider the nonparametric regression model

Yi = m(xi) + ϵi, 0 ≤ i ≤ n, (1)

where xi = i/n are the equidistant design points, m(·) is an unknown smooth regression function, and ϵi are independent
and identically distributed (i.i.d.) random errors with median 0 and a symmetric density function f (·).

2.1. An illustration

In the past ten years, the China house prices change dramatically, which go through three-time fast increasing. Facing
the dramatic changes, Wang et al. (2019) proposed a robust and efficient method to estimate the relative growth rate,
which is equivalent to estimate the first-order derivative. In this paper, we propose a new method to estimate the price
curves robustly (see Section 5).

To show the new idea, we consider four error distributions: Uniform[−1, 1] and 50%N(−d, 1) + 50%N(d, 1) with
d = 1, 2, 3. The four distributions have small density values at median 0. For independent ϵ1, ϵ2 in each of the four
distributions, we construct the new error η = (ϵ1 + ϵ2)/2. The new errors η with median 0 have larger peak values in
Fig. 1. This toy example shows that the error with platy kurtosis can change into the peak kurtosis error by addition.

2.2. Estimation methodology

Define the symmetric (about i) first-order addition sequence as

Y (1)
ij = (Yi−j + Yi+j)/2, 1 ≤ j ≤ k, (2)

where k is a positive integer with k + 1 ≤ i ≤ n − k. Assume that m(·) is continuously differentiable. Then the first-order
Taylor expansions of m(xi±j) around xi are

m(xi±j) = m(xi) ± m(1)(xi)
j
n

+ o
(

j
n

)
.

We decompose Y (1)
ij into two parts as follows

Y (1)
ij =

m(xi−j) + m(xi+j)
2

+
ϵi−j + ϵi+j

2

= m(xi) + ηij + o
(

j
n

)
,

here ηij = (ϵi−j + ϵi+j)/2 with median(ηij) = 0. Thus the median of Y (1)
ij is

Median[Y (1)
ij ] = m(xi) + o

(
j
n

)
≈ m(xi),

where j = o(n). We estimate the constant by the local LAD regression.
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Fig. 1. Densities of original errors (black line) and new errors (green line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

In order to deduce the accurate estimation bias, we further assume that m(·) is two times continuously differentiable.
Following the paradigm of Wang and Scott (1994) and Wang et al. (2019), we discard the higher-order terms of m(·) and
locally assume the approximate model is

Y (1)
ij = βi20 + βi22x2j + ηij, 1 ≤ j ≤ k, (3)

where βi2 = (βi20, βi22)T = (m(xi),m(2)(xi)/2)T are the unknown coefficients of the true underlying quadric function. Now
we apply the local constant LAD regression to estimate the constant as

b̂i0 = argmin
bi0

k∑
j=1

|Y (1)
ij − bi0|,

and define the regression function estimator as

m̂(xi) = b̂i0. (4)

The robust estimator m̂(xi) will not converge to m(xi), but rather to βi1, where

βi1 ≜ argmin
ci1

k∑
j=1

⏐⏐ci1 − (βi20 + βi22x2j )
⏐⏐ .

Note that as k → ∞, βi1 is close to m(xi). Next we first establish the asymptotic normality of m̂(xi).

Theorem 1. Assume that ϵi are i.i.d. random errors with median 0 and a continuous symmetric density f (·). For the equidistant
esign and true model (3), as k → ∞ and k/n → 0, the robust error estimator m̂(xi) in (4) is normally distributed

2k1/2g(0)(m̂(xi) − βi1)
d

−→ N (0, 1) ,

here g(0) = 2
∫

∞

−∞
f 2(x)dx, and

d
−→ denotes convergence in distribution.
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emark 1. We assume that the error distribution is symmetric. Such a condition is only used to ensure that the quantity
o which the new estimator converges is the conditional mean function. This is similar to the case when using the local
AD with median 0 to estimate the conditional mean function. In other words, we need assume that the mean and median
f the error distribution coincide. The same assumption is used in Kai et al. (2010).

Now we give the asymptotic properties of m̂(xi).

Theorem 2. Under the assumptions of Theorem 1, the bias and variance of the robust estimator in (4) are, respectively,

Bias[m̂(xi)] ≜ E[m̂(xi)] − m(xi) ≈
m(2)(xi)

6
k2

n2 , Var[m̂(xi)] ≈
1

4g(0)2k
.

The optimal k that minimizes the asymptotic mean square error (AMSE) is

kopt ≈

(
9

4g(0)2m(2)(xi)2

)1/5

n4/5,

nd, consequently, the minimum AMSE is

AMSE[m̂(xi)] ≈ 0.27
(
m(2)(xi)2

g(0)8

)1/5

n−4/5.

emark 2. As for the choice of the tuning parameter, there are two standard approaches: plug-in approach and cross-
alidation approach. Since our estimation method leaves Yi out to estimate m(xi), we can adopt the leave-one-out
ross-validation to estimate k. The criterion is

ĥ = argmin
n∑

i=1

(Yi − m̂(xi))2.

he more details refer to Härdle and Marron (1985) and Li and Racine (2004).

Since the higher-order terms have no effect on the asymptotic results including the bias and the variance, thus the
obust estimator (4) has asymptotic property in the nonparametric model (1) .

orollary 1. For the nonparametric regression model (1), as k → ∞ and k/n → 0, the robust estimator in (4) is normal
istributed

2k1/2g(0)(m̂(xi) − m(xi) −
m(2)(xi)

6
k2

n2 )
d

−→ N (0, 1) ,

s k → ∞ and k5/n4
→ 0, the robust estimator in (4) is normal distributed

2k1/2g(0)
(
m̂(xi) − m(xi)

) d
−→ N (0, 1) .

Remark 3. As for the choice of addition sequence, we can define the difference sequence Y (2)
ij = (Yi−j − 2Yi + Yi+j)/2.

Decompose Y (2)
ij into two parts and simplify it to

Y (2)
ij =

m(xi−j) − 2Yi + m(xi+j)
2

+
ϵi−j − 2ϵi + ϵi+j

2

= −ϵi + ηij + o
(

j
n

)
.

Since i is fixed as j changes, we estimate ϵi as

ϵ̂i = argmin
ϵi

k∑
j=1

|Y (2)
ij − (−ϵi)|.

efine the regression function estimator as

m̂(xi) = Yi − ϵ̂i, (5)

due to m(xi) = Yi − ϵi (Wang et al., 2017; Wang and Yu, 2017). The same asymptotic results for m̂(xi) in (5) can be
established as in Theorem 2 according to m̂(xi) − m(xi) = −(ϵ̂i − ϵi).
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2.3. Estimation methodology with random addition

In order to improve the estimation efficiency, we define the first-order random addition sequence as

Y (1)
ijl =

Yi+j + Yi+l

2
, −k ≤ j < l ≤ k, (6)

somewhat like random difference for derivative estimation in Wang et al. (2019). For the first-order Taylor expansion, we
simplify it to

Y (1)
ijl = m(xi) + m(1)(xi)xijl + ηijl + o

(
j
n

+
l
n

)
, −k ≤ j < l ≤ k, (7)

where ηijl = (ϵi+j + ϵi+l)/2 and xijl =
xi+j+xi+l−2xi

2 =
xj+xl
2 . Since i is fixed as j and l change and Median(ηijl) = 0, then

Median(Y (1)
ijl ) ≈ m(xi) + m(1)(xi)xijl.

ow we adapt the local LAD to estimate parameters

(α̂i0, α̂i1)T = arg min
αi0,αi1

∑
−k≤j<l≤k

|Y (1)
ijl − αi0 − αi1xijl|, (8)

nd define the estimator of m(xi) as

m̂(xi) = α̂i0. (9)

The asymptotic results are as follows.

Theorem 3. Under the assumptions of Theorem 1, the bias and variance of the robust estimator in (9) are, respectively,

Bias[m̂(xi)] ≜ E[m̂(xi)] − m(xi) ≈
m(2)(xi)

6
k2

n2 , Var[m̂(xi)] ≈
1

6g(0)2k
.

Remark 4. From Theorems 2 and 3, the bias of the estimation by random addition is the same as the estimation
by symmetric addition; while the variance of the estimation by random addition reduces to 2/3 of the estimation by
symmetric addition. Thus random addition is helpful to improve the efficiency. This idea in spirit is similar to the one-
sample Hodges–Lehmann estimator of the center of a distribution (Hodges and Lehmann, 1956; Hershberger, 2011), which
was defined as the median of the set of n(n + 1)/2 Walsh averages, where each Walsh average is the arithmetic average
of two observations.

3. Comparison to existing local linear estimators

For the overall comparison, we briefly review some popular nonparametric estimation methods. For simplicity, we
adopt the uniform kernel for all local methods and then h = k/n.

Fan and Gijbels (1996) proposed the local linear LS regression to estimate the nonparametric function,

(β̂ ls
i0, β̂

ls
i1)

T
= argmin

k∑
j=−k

(
Yi+j − βi0 − βi1xj

)2
.

Define the local linear LS estimator as

m̂ls(xi) = β̂ ls
i0. (10)

Based on the technique of Wang and Lin (2015), we have the following corollary under equidistant design. When the
errors are Gaussian, the local LS estimator is the most efficient corresponding to the local likelihood criterion (Fan et al.,
1998).

Corollary 2. Assume that ϵi are i.i.d. random errors with mean 0 and variance σ 2 for the nonparametric regression model
(1). Then the bias and variance of the LS estimator in (10) are, respectively,

Bias[m̂ls(xi)] =
m(2)(xi)

6
k2

n2 , Var[m̂ls(xi)] ≈
σ 2

2k
.

Wang and Scott (1994) proposed the local linear LAD method such that

(β̂ lad
i0 , β̂ lad

i1 )T = argmin
k∑ ⏐⏐Yi+j − βi0 − βi1xj

⏐⏐ ,

j=−k
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here the similar procedure was proposed by Fan and Hall (1994) and Welsh (1996). Define the LAD estimator as

m̂lad(xi) = β̂ lad
i0 . (11)

he asymptotic properties are given as follows.

orollary 3. Assume that ϵi are i.i.d. random errors with median 0 and a symmetric density function f (·) for the nonparametric
egression model (1). Then the bias and variance of the LAD estimator in (11) are, respectively,

Bias[m̂lad(xi)] =
m(2)(xi)

6
k2

n2 , Var[m̂lad(xi)] ≈
1

8kf (0)2
.

Quantile regression technique (Koenker and Bassett, 1978; Koenker, 2005) exploits the distribution information to
mprove the estimation efficiency. Based on the CQR (Zou and Yuan, 2008), Kai et al. (2010) proposed the local linear CQR
uch that

({β̂i0h}
q
h=1, β̂i1)T = argmin

q∑
h=1

⎛⎝ k∑
j=−k

ρτh (yi − βi0h − βi1xi+j)

⎞⎠ ,

where τh = h/(q + 1), and ρτ (x) = τx − xI(x < 0) is the check loss function. Define the CQR estimator as

m̂cqr (xi) =
1
q

q∑
h=1

β̂i0h. (12)

Based on Theorem 1 of Kai et al. (2010), we have the following corollary.

Corollary 4. Assume that ϵi are i.i.d. random errors with mean 0, a symmetric density function f (·) and the cumulative
distribution function F (·) for the nonparametric regression model (1). Then the bias and variance of the CQR estimator in (12)
are, respectively,

Bias[m̂cqr (xi)] =
m(2)(xi)

6
k2

n2 , Var[m̂cqr (xi)] ≈
R1(q)
2k

,

where R1(q) =
1
q2

∑q
l=1

∑q
l′=1

τll′
f (cl)f (cl′ )

, cl = F−1(τl), and τll′ = min{τl, τl′} − τlτl′ . As q → ∞, we have that

R1(q) → σ 2,

ssuming the error variance σ 2 exists.

Corollary 4 implies the local linear CQR estimator has the same asymptotic behavior with the local linear LS estimator
s the quantile number q becomes larger. For the CQR estimator with fixed q, its behavior depends on finite density
unction values from the expression of R1(q).

Zhao and Xiao (2014) proposed the WQA estimator to further improve the estimation efficiency. Firstly, they use the
ocal linear quantile regression (Yu and Jones, 1998) to estimate the τh quantile of m(xi)

(β̂wqa
i0h , β̂

wqa
i1h ) ≜ argmin

k∑
j=−k

ρτh (yi − βi0h − βi1hxi+j),

nd then define the WQA estimator as

m̂wqa(xi) =

q∑
h=1

whβ̂
wqa
i0h , (13)

here wh =
H−1eq

eTqH−1eq
is the optimal weights, H =

{
min{τl,τl′ }−τlτl′

f (cl)f (cl′ )

}
depends on the density function f (·), and eq =

1, . . . , 1)q×1. The asymptotic properties are as follows.

orollary 5. Assume that ϵi are i.i.d. random errors with mean 0, a symmetric density function f (·) for the nonparametric
egression model (1). Then the bias and variance of the WQA estimator in (13) are, respectively,

Bias[m̂wqa(xi)] =
m(2)(xi)

6
k2

n2 , Var[m̂wqa(xi)] ≈
R2(q)
2k

,

where R2(q) = wT
qHwq = (eTqH

−1eq)−1. As q → ∞, we have that

R2(q) → I(fϵ)−1,

where I(f ) is the Fisher information of f .
ϵ ϵ
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For the LS, LAD, CQR, WQA and new estimators, the asymptotic biases are all the same; while the asymptotic variances
re σ2

2k ,
1

8kf (0)2
, R1(q)

2k , R2(q)
2k , and 1

4 kg(0)2
, respectively. In fact, the comparative components are σ 2, 1

4f (0)2
, R1(q), R2(q), and

1
2g(0)2

.
As q → ∞, we have R1(q) → σ 2 and R2(q) → I(fϵ)−1. The CQR estimator is asymptotically equal to the LS estimator;

the WQA estimator is the most efficient, just like the local maximum likelihood estimator in Fan et al. (1998). However,
the WQA needs to know the error density function in advance or to be estimated accurately; otherwise, it is invalid.

When q is fixed, the CQR and WQA estimators depend on finite values of unknown density function fϵ . Thus the
stimation efficiency is uncertain. For the LS, LAD and new estimators, their asymptotic efficiencies do not depend on
quantiles but keep constant. In the presence of platykurtic and heavy-tailed errors, the new estimator will have high
fficiency. In addition, the new estimator relies on g(0) = 2E[f (x)], which includes all information of the density f (·). The
erm E[f (x)] appears in Theorem 3.1 of Zou and Yuan (2008) for the regression coefficients estimation except the constant
erm. For the nonparametric regression function estimation in Kai et al. (2010) as well as Zhao and Xiao (2014), there is
o similar result.

. Bias-reduced estimators

In order to improve the finite-sample performance for high-oscillate nonparametric functions, we further consider the
igher-order Taylor expansion to reduce the estimation bias. Assume that m(·) is four times continuously differentiable
nd the true model is

Y (2)
ij = βi40 + βi42d2j + βi44d4j + ηij, (14)

here βi4 = (βi40, βi42, βi44)T = (−ϵi,m(2)(xi)/2,m(4)(xi)/24)T are the unknown coefficients. Now we use the local LAD
uadratic regression to estimate the error, that is

b̂i2 ≜ argmin
bi2

k∑
j=1

|Y (2)
ij − DT

2jbi2|,

here D2j = (1, d2j )
T , and bi2 = (bi20, bi22)T .

Define the estimators of ϵi and m(xi), respectively, as

ϵ̂i = −b̂i20, m̂(xi) = Yi + b̂i20. (15)

he robust error estimator ϵ̂i will converge to −βi30, where

βi3 ≜ (βi30, βi32)T ≜ arg min
ci20,ci22

k∑
j=1

|(ci20 + ci22d2j ) − (βi40 + βi42d2j + βi42d4j )|.

Next we establish the asymptotic normality of ϵ̂i in (15), and derive the asymptotic properties of m̂(xi).

Corollary 6. Assume that ϵi are i.i.d. random errors with median 0 and a continuous, symmetric density f (·). For the equidistant
design and the true model (14), as k → ∞ and k/n → 0, the bias and variance of the robust estimator in (15) are, respectively,

Bias[m̂(xi)] ≈
m(4)(xi)
280

k4

n4 , Var[m̂(xi)] ≈
9
4

1
4g(0)2k

.

The optimal k that minimizes the asymptotic mean square error (AMSE) is

kopt ≈ 2.60
(

1
g(0)2m(4)(xi)2

)1/9

n8/9,

nd consequently, the minimum AMSE is

AMSE[m̂(xi)] ≈ 0.21
(
m(4)(xi)2

g(0)16

)1/9

n−8/9.

In the nonparametric regression model (1), the robust estimator m̂(xi) in (15) is normal distributed.
Further assume that m(·) is six times continuously differentiable, and the true model is

Y (2)
ij = βi60 + βi62d2j + βi64d4j + βi66d6j + ηij,

here βi6 = (βi60, βi62, βi64)T = (−ϵi,m(2)(xi)/2,m(4)(xi)/24,m(6)(xi)/720)T . Now we use the local LAD quartic regression

b̂i4 ≜ argmin
bi4

k∑
|Y (2)

ij − DT
4jbi4|,
j=1
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Table 1
The bias and variance for three new estimators.

1 3 5

Bias m(2)

6
k2

n2
m(4)

280
k4

n4
m(6)

33264
k6

n6

Variance 1
4g(0)2k

9
4

1
4g(0)2k

255
64

1
4g(0)2k

where D4j = (1, d2j , d
4
j )

T , and bi4 = (bi40, bi42, bi44)T . Define the estimator of m(xi) as

m̂(xi) = Yi + b̂i40. (16)

he asymptotic normality is valid by a similar discussion above. Next we only give the asymptotic bias and variance.

orollary 7. The bias and variance of the robust estimator in (16) are, respectively,

Bias[m̂(xi)] ≈
m(6)(xi)
33264

k6

n6 , Var[m̂(xi)] ≈
225
64

1
4g(0)2k

.

For convenience, we summary the bias and variance for three estimators in Table 1.

. Simulation studies and data analysis

.1. Simulation studies

In this subsection, we conduct some simulations to compare the performance of the following estimators: LS,
AD (Wang and Scott, 1994), Huber (based on Huber loss function), Tukey (based on Tukey’s bisquare loss function)
nd our NEW-S (based on symmetric difference) and NEW-R (based on random difference). We specify the regression
unction as the periodic function

m(x) = sin(2πx). (17)

he error distributions are as follows: the normal distribution E1 = N(0, 12), the mixed normal distributions E2 =

0.9N(0, 12)+ 0.1N(0, 102) and E3 = 0.5N(−3, 12)+ 0.5N(3, 12), the mixed Laplace distribution E4 = 0.5Laplace(−2, 1)+
0.5Laplace(2, 1), and the asymmetric distribution E5 = χ2(4) − 4 with mean zero. As for the sample size, we consider
n = 50, 200. To compare the performance of these estimators, we adopt the adjusted mean absolute error (AMAE) as

AMAE(k) =
1

n − 2k

n−k∑
i=k+1

|m̂(xi) − m(xi)|,

ith fixed k = n/10.
Table 2 reports the results of simulations based on 1000 repetitions, in which the numbers outside and inside the

rackets represent the mean and standard deviation of the AMAEs, respectively. In summary, our proposed NEW-R is
obust and efficient for all errors; the NEW-R has a better performance uniformly than the NEW-S, which coincides with
ur theoretical results. For the error E1, the LS has a little better performance than the others, and the others have the
imilar performance except LAD. For the heavy-tailed error E2, the LS estimator performs worse than the others, and the
ukey is better. For the platykurtic errors E3, the NEW-R is the best, and the LAD breaks down. For the infinite-variance
rror E4, the Tukey is the best, and the LS breaks down. For asymmetric error E5 with mean zero, the LS is best due to its
nbiasedness, and the others perform a litter worse due to their systematic deviations.
To show the importance of bias-correction, we specify that the regression function is m(x) = 10 sin(2πx), which

orresponds to the high-oscillation function. The error is 0.8N(0, 0.12) + 0.2N(0, 12) in this setting. Fig. 2 shows that
he new bias-reduced estimator has the better performance, where NEW1, NEW2 and NEW3 are the new estimators with
aylor expansion of first-order, third-order and fifth-order, respectively. To choose p and k simultaneously, we provide
he following criterion for real data

argmin
p,k

1
n

n∑
i=1

|Yi − m̂(xi; p, k)|.

5.2. House price of China in latest ten years

In reality, there are many data sets recorded by equidistance and equitime. For example, image data is recorded by
cell-grid, and temperature is recorded by hour, day or month. In this section, we apply our new method to the data set
of house price in the capital of China, Beijing. The monthly data is borrowed from Wang et al. (2019), which last from
January 2008 to July 2018 and have size 127.
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Table 2
AMAE for the existing estimators with n = 50, 200.
n Error LS NEW − S NEW − R

50 E1 0.237 (0.223) 0.302 (0.300) 0.248 (0.239)
E2 0.744 (0.326) 0.399 (0.115) 0.348 (0.127)
E3 0.770 (0.216) 0.897 (0.236) 0.805 (0.274)
E4 3.380 (5.250) 1.035 (0.235) 0.890 (0.271)
E5 0.664 (0.204) 0.863 (0.170) 0.713 (0.197)

200 E1 0.131 (0.038) 0.162 (0.031) 0.135 (0.037)
E2 0.404 (0.141) 0.190 (0.036) 0.159 (0.041)
E3 0.408 (0.147) 0.382 (0.129) 0.326 (0.144)
E4 4.282 (15.22) 0.518 (0.113) 0.428 (0.113)
E5 0.367 (0.112) 0.523 (0.129) 0.466 (0.148)

n Error LAD Huber Tukey

50 E1 0.305 (0.290) 0.247 (0.239) 0.253 (0.242)
E2 0.351 (0.096) 0.336 (0.119) 0.309 (0.100)
E3 1.566 (0.294) 0.867 (0.270) 0.931 (0.297)
E4 1.076 (0.227) 0.882 (0.260) 0.849 (0.234)
E5 0.929 (0.214) 0.713 (0.200) 0.786 (0.229)

200 E1 0.163 (0.043) 0.135 (0.037) 0.136 (0.037)
E2 0.175 (0.044) 0.156 (0.041) 0.142 (0.042)
E3 1.230 (0.262) 0.416 (0.156) 0.447 (0.167)
E4 0.683 (0.159) 0.426 (0.129) 0.408 (0.119)
E5 0.691 (0.195) 0.461 (0.145) 0.522 (0.162)

Fig. 2. The comparison among the existing estimators.

With the rapid development of China’s economy, people’s demand for housing quality is becoming higher and higher.
s a result, the house prices also grew rapidly. Meanwhile, the Chinese government has promulgated a number of housing
olicies to keep the stability of house prices in latest ten years. The house price data has large oscillation amplitude locally,
nd our new method is suitable for the house price data. We apply our method to estimate the regression function in
ig. 3. In the last ten years, the house price goes through tricycle fast increasing, and the increasing rate of the latter is
aster than that of the former.

. Conclusion and discussion

In the presence of the platykurtic and heavy-tailed errors, we propose an addition-sequence method for the robust
stimation of regression function. The new method consists of three main steps: construct a sequence of symmetric or
andom addition, estimate the errors using the LAD regression, and obtain the robust function estimation. Under different
moothness conditions, we proposed three estimators for improving the finite-sample performance.
In this paper, we focus on the nonparametric function estimation with equidistant designs. The method can be

xtended to random designs with minor changes, which is similar to fixed design except the kernel estimation method.
ssume the Xi is a random variable with density function f (·). We focus on the estimation of m(x0) at the design point
0. Firstly, we define the first-order random addition sequence as

Y (1)
=

Yj + Yl
, {j, l : |Xj − x0| ≤ h, |Xl − x0| ≤ h},
jl 2
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Fig. 3. The robust estimator for the house price of Beijing.

here h = o(1) is a bandwidth. Secondly, assume that m(·) is one-time continuously differentiable. Then the first-order
aylor expansions of m(Xj) and m(Xl) around x0 are

m(Xj) = m(x0) + m(1)(x0)(Xj − x0) + o(Xj − x0),

m(Xl) = m(x0) + m(1)(x0)(Xl − x0) + o(Xl − x0).

Thus, in the neighborhood of x0 with radius h, we have

Y (1)
jl = m(x0) + m′(x0)xjl + ηjl + o

(
xjl

)
,

where ηjl = (ϵj + ϵl)/2 with Median(ηjl) = 0, and xjl =
Xj+Xl−2x0

2 with |xjl| ≤ h, and

Median(Y (1)
jl ) ≈ m(x0) + m′(x0)xjl.

Thirdly, we adopt the locally weighted least absolute deviation regression to estimate parameters

(α̂i0, α̂i1)T = arg min
αi0,αi1

∑
1≤j<l≤n

|Y (1)
jl − αi0 − αi1xjl|Kh(Xj − x0)Kh(Xl − x0),

here Kh(·) = K (·/h) is a kernel function with the bandwidth h. Define the estimator of m(x0) as

m̂(x0) = α̂i0.

It is interesting to consider the robustness properties in nonparametric models: the breakdown point (Hampel, 1968;
uber and Ronchetti, 2009) and the influence function (Hampel, 1974; Ichimura and Newey, 2017).
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ppendix A. Lemmas

roposition 1. Assume that the errors ϵi are i.i.d. with median 0 and a continuous density function f (·), then ηij =

ϵi−j + ϵi+j)/2 (j = 1, . . . , k) are i.i.d. with median 0 and a continuous density g(·), where

g(x) = 2
∫

∞

−∞

f (2x − ϵ)f (ϵ)dϵ = E[f (2x − ϵ)].

urther assume that f (·) is symmetric, then

g(0) = 2
∫

∞

−∞

f 2(ϵ)dϵ = 2E[f (ϵ)].

roof. The distribution of ηij = (ϵi−j + ϵi+j)/2 is

F (x) = P((ϵ + ϵ )/2 ≤ x)
ηij i−j i+j
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=

∫∫
ϵi+j≤2x−ϵi−j

f (ϵi+j)f (ϵi−j)dϵi+jdϵi−j

=

∫
∞

−∞

{

∫ 2x−ϵi−j

−∞

f (ϵi+j)dϵi+j}f (ϵi−j)dϵi−j

=

∫
∞

−∞

Fϵ(2x − ϵi−j)f (ϵi−j)dϵi−j.

Then the density of ηij is

g(x) ≜
dFδ̃ij

(x)

dx
= 2

∫
∞

−∞

f (2x − ϵi−j)f (ϵi−j)dϵi−j.

By the symmetry of the density function, we have

Fηij (0) =

∫
∞

−∞

Fϵ(−ϵi−j)f (ϵi−j)dϵi−j

= (Fϵ −
1
2
F 2
ϵ (ϵi−j)) |

∞

−∞

=
1
2
,

g(0) = 2
∫

∞

−∞

f 2(ϵi−j)dϵi−j. □

Lemma 1. Suppose that the errors ϵi are iid with median 0 and a continuous positive density f (·) in a neighborhood of zero.
Define the function

M(s, t) = E[
⏐⏐ϵi + s − t

⏐⏐ −
⏐⏐ϵi + s

⏐⏐].
Then M has a unique minimum at point (0, 0), and furthermore in a neighborhood of (0, 0),

M(s, t) = f (0)t2 − 2f (0)st + o(s2 + t2).

Proof. See Wang and Scott (1994). □

Lemma 2 (Convexity Lemma). Let {λi(θ ) : θ ∈ Θ} be a sequence of random convex functions defined on a convex open subset
Θ of Rd. Suppose that λ is a real-valued function on Θ for which λi(θ )

p
→ λ(θ ), for each θ in Θ . Then for every compact subset

K of Θ ,

sup
θ∈K

⏐⏐λi(θ ) − λ(θ )
⏐⏐ p
→ 0.

The function λ is necessarily convex on Θ .

Proof. See Pollard (1991). □

Appendix B. Proof of Theorem 1

Following the techniques by Pollard (1991) and Wang and Scott (1994), we have an analogous proof. The details are
as follows. Write zj = (k)−1/2, then

∑k
j=1 z

2
j = 1 and max |zj| → 0. Define uij = βi20 − βi1 + βi22d2j and

Gk(θi) =

k∑
j=1

(|ηij + uij − zjθi| − |ηij + uij|)

Due to Lemmas 1 and 2, we have

θ̂i = (k)1/2(b̂i0 − bi0) = argminGk(θi),

where b̂ = argmin
∑k

|Y (2)
− b |.
i0 j=1 ij i0
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Define

Γ (θi) = E[Gk(θi)]

=

k∑
j=1

M(zjθi, uij)

= g(0)θ2
i − 2g(0)k−1/2θi

k∑
j=1

uij.

Let Dj = χ [ηij + uij < 0] − χ [ηij + uij > 0], where χ denotes the indicator function. Then define

Rij(θi) = |ηij + uij − zjθi| − |ηij + uij| − (Dj − E[Dj])zjθi,

and W =
∑k

j=1(Dj − E[Dj])zj. Due to E[W ] = 0, we finally write

Gk(θi) = Γ (θi) + Wθi +

k∑
j=1

(Rj(θi) − E[Rj(θi)])zj.

For the fixed θi, the sum of centered terms ζij = Rij(θi) − E[Rij(θi)] contributes only an op(1) to Gk. Define

R̃ij(θi) = (|ηij + uij − zjθi| − |ηij + uij| − Djzjθi) − E[|ηij + uij − zjθi| − |ηij + uij| − Djzjθi],

and then ζij = R̃ij(θi) − E[R̃ij(θi)]. Due to the Cauchy–Schwarz inequality and the fact that max |zj| → 0, we have

E[|
k∑

j=1

R̃2
ij(θi)|] =

k∑
j=1

Var[R̃ij(θi)]

≤ 4
k∑

j=1

θ2
i E{χ [|ηij + uij| ≤ |zjθi|}]

≤ 4
k∑

j=1

θ2
i U(|zjθi|)

≤ 4
k∑

j=1

θ2
i U(|θi|max |zj|)

→ 0.

where U(t) → 0 as t → 0.
Rewrite

Gk(θi) = g(0)θ2
i − 2g(0)k−1/2θi

k∑
j=1

uij + o(1) + Wθi + op(1).

Define

λk(θi) = Gk(θi) + 2g(0)k−1/2θi − Wθi,

λ(θi) = g(0)θ2
i ,

we establish the uniform convergence on a compact set due to Convexity Lemma. Finally define the approximating
function as

φ(θi) = g(0)θ2
i − 2g(0)k−1/2θi

k∑
j=1

uij,

k∑
j=1

uij + Wθi,

and find the minimizer θ̃i = −W/2g(0) + k−1/2 ∑k
j=1 uij by taking the derivative and setting it equal to 0

∂φ(θi)
∂θi

= 0.

The central limit theorem ensures that W has asymptotically the normal distribution.
Rewrite W in terms of the minimizer θ̃i as

W = −2g(0)θi + 2g(0)k−1/2
k∑

uij,
j=1
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w

w

w

and thus

Gk(θi) = g(0)(θi − θ̃i)2 − g(0)θ̃2
i + r(θi),

where for each compact set K , supK |r(θi)|
p

→ 0. We verify that θ̃i lies close enough to θ̃i to be asymptotically normal, thus
we show that

θ̃i − θ̂i → 0.

Now we prove that for every δ, P(|θ̃i − θ̂i|) → 0. On the close ball B(θ̃i, δ) with center θ̃i and radius δ, Because θ̃i converges
in distribution, it is stochastically bounded. The compact set K can be chosen to contain B(θ̃i, δ) with probability arbitrarily
close to 1, which implies

∆(θi) = sup
B(θ̃i,δ)

|r(θi)|
p

→ 0.

Appendix C. Proof of Theorem 2

Define φij = βi10 − (βi00 + βi02d2j ). Using the similar discussion in Wang and Scott (1994), we have

E[b̂i0 | ϵi] − k−1
∑
1≤j≤k

φij
p

→ βi10,

which simplifies to

E[b̂i0 | ϵi] − βi00
p

→ k−1
∑
1≤j≤k

βi02d2j .

Thus the bias of m̂(xi) is

Bias[m̂(xi)] = E[m̂(xi)] − m(xi) = E[b̂i0 | ϵi] − βi00 ≈
m(2)(xi)

6
k2

n2 .

From Theorem 1, we have the variance of m̂(xi) is

Var[m̂(xi)] = Var[b̂i0 | ϵi] ≈
1

4g(0)2k
.

Appendix D. Proof of Theorem 3

Following the techniques by Wang et al. (2019), we have an analogous proof. Rewrite the objective function as a
U-process

Sn(α) =

∑
−k≤j<l≤k

fn(Yi+j, Yi+l|α),

where

fn(Yi+j, Yi+l|α) = |
Yi+j + Yi+l

2
− αi0 − αi1

xj + xl
2

|
1
h2 1(|xj| ≤ h)1(|xl| ≤ h),

ith α = (αi0, αi1)T and h = k/n. Define Un(α) =
2

n(n−1)Sn(α), H = diag{1, h}, and Xjl = (1, xj+xl
2 )T . Note that

argmin Sn(α) = argminUn(α) = argmin[Un(α) − Un(β)],

here β = (m(xi),m′(xi))T .
We first show that H(α̂ − β) = op(1). We use Lemma 4 of Porter and Yu (2015) to show the consistency. Essentially,

e need to show that

(i) supα∈B |Un(α) − Un(β) − E[Un(α) − Un(β)]|
p

→ 0, where B is a compact parameter space for α;
(ii) inf∥H(α̂−β)∥>δ E[Un(α) − Un(β)] > ϵ for n large enough, where δ and ϵ are fixed positive small numbers.

We use Theorem A.2 of Ghosal et al. (2000) to show (i), where

Fn = {fn(Yi+j, Yi+l|α) − fn(Yi+j, Yi+l|β)|α ∈ B}.

Note that Fn forms an Euclidean-class of functions by applying Lemma 2.13 of Pakes and Pollard (1989), where α = 1,
f (·, t0) = 0, φ(·) = ∥Xjl∥

1
h2
1(|xj| ≤ h)1(|xl| ≤ h) and the envelope function is Fn(·) = Mφ(·) for some finite constant M . It

follows that

N(ϵ∥F ∥ ,F, L (Q )) ≲ ϵ−C

n Q ,2 2
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w
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or any probability measure Q and some positive constant C , where ≲ means the left side is bounded by a constant times
he right side. Hence,

1
n
E[

∫
∞

0
logN(ϵ∥Fn∥Q ,2,F, L2(Un

2 ))] ≲
1
n
(E[F 2

n ])1/2
∫

∞

0
log

1
ϵ
dϵ = O(

1
n
),

where Un
2 is the random discrete measure putting mass 1

n(n−1) on each of the points (Yi+j, Yi+l). Next, by Lemma A.2
of Ghosal et al. (2000), the projections

f̄n(Yi+j|α) =

∫
fn(Yi+j, Yi+l|α)dFYi+l

satisfy

sup
Q

N(ϵ∥F̄n∥Q ,2, F̄n, L2(Q )) ≲ ϵ−2C ,

where F̄n = {f̄n(Yi+j|α) − f̄n(Yi+j|β)|α ∈ B}, and F̄n is an envelope of F̄n. Thus,

n−1/2E[
∫

∞

0
logN(ϵ, F̄, L2(Pn))]dϵ ≲ n−1/2(E[F̄ 2

n ])1/2
∫

∞

0
log

1
ϵ
dϵ = O(

1
n1/2 ).

By Theorem A.2 and Markov’s inequality, condition (i) is satisfied.
As for condition (ii), by Proposition 1 of Wang and Scott (1994),

E[Un(α) − Un(β)]

≈
2

n(n − 1)

∑
j<l

g(0)
2

[XT
jl H

−1H(α − β)]2
1
h2 1(|xj| ≤ h)1(|xl| ≤ h)

−
2

n(n − 1)

∑
j<l

g(0)[m(xi+j) − m(xi+l) − XT
jl β][XT

jl H
−1H(α − β)]

1
h2 1(|xj| ≤ h)1(|xl| ≤ h)

≳δ2 − h5δ.

Next, we derive the asymptotic distribution of
√
nhH(α̂ − β). Firstly, we approximate the first-order conditions by

Theorem A.1 of Ghosal et al. (2000). Secondly, we derive the asymptotic distribution of
√
nhH(α̂ − β) by the empirical

rocess.
Firstly, the first-order conditions can be written as

2
n(n − 1)

∑
j<l

sign(Yi+j + Yi+l − ZT
jl Hα̂)Zjl

√
h

h2 1(|xj| ≤ h)1(|xl| ≤ h) = op(1),

here Zjl = H−1Xjl. By Example 2.9 of Pakes and Pollard (1989), F ′
n forms an Euclidean-class of functions with envelope

′
n = ∥Zjl∥

√
h

h2
1(|xj| ≤ h)1(|xl| ≤ h), where

F ′

n = {f ′

n(Yi+j, Yi+l|α) : α ∈ B},

so

N(ϵ∥F ′

n∥Q ,2,F ′

n, L2(Q )) ≲ ϵ−V

for any probability measure Q and some positive constant V . By Theorems A.1 and A.2 of Ghosal et al. (2000), it follows
that

nE{ sup
f ′n∈F ′

n

|Un
2 f

′

n − 2Pn(Ē2[f ′

n(Yi+j, Yi+l|α)]) − Ē[f ′

n(Yi+j, Yi+l|α)]|}

≲E[
∫

∞

0
logN(ϵ,F ′

n, L2(U
n
2 ))dϵ] ≲

∫ 1

0
log(ϵ−V )dϵ

√
E[(F ′

n)2] ≲ h−1/2,

here Pn is the empirical measure of the original data, Ē2[·] takes expectation on Yi+l and also averages over dl, and Ē[·]
akes expectation on (Yi+j, Yi+l) and also averages over (Xj, Xl). Thus,

n1/2 sup
f ′n∈F ′

n

|Un
2 f

′

n − 2Pn(Ē2[f ′

n(Yi+j, Yi+l|α)]) + Ē[f ′

n(Yi+j, Yi+l|α)]| = op(1),

which implies

n1/2
{−2P (Ē [f ′(Y , Y |α̂)]) + Ē[f ′(Y , Y |α̂)]} = o (1),
n 2 n i+j i+l n i+j i+l p
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{

s

where

Ē2[f ′

n(Yi+j, Yi+l|α)]

=

√
h

nh2

∑
l

[2Fϵ(Yi+j − m(di+l) − ZT
jl Hα) − 1]Zjl1(|xj| ≤ h)1(|xl| ≤ h)

with Fϵ(·) being the cumulative distribution function of ϵ. In other words,

2Gn(Ē2[f ′

n(Yi+j, Yi+l|α̂)]) + Ē[f ′

n(Yi+j, Yi+l|α̂)] = op(1),

where Gn(f ) =
√
n(Pn − P)f is the standardized empirical process. By Lemma 2.13 of Pakes and Pollard (1989), F ′

1n =

Ē2[f ′
n(Yi+j, Yi+l|α) : α ∈ B]} is Euclidean with envelope F1n =

√
h

h2
Zjl

∑
l ∥Zjl∥1(|xj| ≤ h)1(|xl| ≤ h), so by Lemma 2.17

of Pakes and Pollard (1989), and H(α̂ − β) = op(1), we have

Gn(Ē2[f ′

n(Yi+j, Yi+l|α̂)]) = Gn(Ē2[f ′

n(Yi+j, Yi+l|β)]) + op(1).

Thus,

2Gn(Ē2[f ′

n(Yi+j, Yi+l|β)]) + Ē[f ′

n(Yi+j, Yi+l|α̂)]

=2
√
nPn(Ē2[f ′

n(Yi+j, Yi+l|β)]) − 2Ē[f ′

n(Yi+j, Yi+l|β)]

+
√
n(Ē[f ′

n(Yi+j, Yi+l|α̂)] − Ē[f ′

n(Yi+j, Yi+l|β)]) +
√
nĒ[f ′

n(Yi+j, Yi+l|β)]

=2
√
nPn(Ē2[f ′

n(Yi+j, Yi+l)]) + 2Pn(Ē2[f ′

n(Yi+j, Yi+l|β)] − Ē2[f ′

n(Yi+j, Yi+l)])

+
√
n(Ē[f ′

n(Yi+j, Yi+l|α̂)] − Ē[f ′

n(Yi+j, Yi+l|β)]) +
√
nĒ[f ′

n(Yi+j, Yi+l|β)]

=2
√
nPn(Ē2[f ′

n(Yi+j, Yi+l)]) +
√
n(Ē[f ′

n(Yi+j, Yi+l|α̂)] − Ē[f ′

n(Yi+j, Yi+l|β)])

+
√
nĒ[f ′

n(Yi+j, Yi+l|β)]
=op(1),

where

Ē2[f ′

n(Yi+j, Yi+l)] =

√
h

nh2

∑
l

[2Fϵ(ϵi+j) − 1]Zjl1(|xj| ≤ h)1(|xl| ≤ h)

atisfies E[Ē2[f ′
n(Yi+j, Yi+l)]] = 0, and the second to last equality is from

√
n{Pn(Ē2[f ′

n(Yi+j, Yi+l|β)]) − Pn(Ē2[f ′

n(Yi+j, Yi+l)])} ≈
√
nĒ[f ′

n(Yi+j, Yi+l|β)].

Since

Ē[f ′

n(Yi+j, Yi+l|α)] =

√
h

nh2

∑
l,j

Zjl1(|xj| ≤ h)1(|xl| ≤ h)

× [2
∫

Fϵ(ϵ + m(xi+j) + m(xi+l) − ZT
jl Hα) − 1]f (ϵ)dϵ,

we have
√
n(Ē[f ′

n(Yi+j, Yi+l|α̂)] − Ē[f ′

n(Yi+j, Yi+l|β)]) ≈ −
√
nhg(0)(

1
n2h2

∑
l,j

ZjlZT
jl )H(α̂ − β),

√
nĒ[f ′

n(Yi+j, Yi+l|β)] ≈
√
nhg(0)

1
n2h2

∑
l,j

Zjl(x2j + x2l )
m(2)(xi)

2!
.

In summary,
√
nh{H(α̂ − β) − (

1
n2h2

∑
l,j

ZjlZT
jl )

−1(
1

n2h2

∑
l,j

Zjl(x2j + x2l ))
m(2)(xi)

2!
}

≈2g(0)−1(
1

n2h2

∑
l,j

ZjlZT
jl )

−1√nPn(Ē2[f ′

n(Yi+j, Yi+l)]).

Thus, the asymptotic bias is

eTH−1(
1

n2h2

∑
ZjlZT

jl )
−1(

1
n2h2

∑
Zjl(x2j + x2l ))

m(2)(xi)
2!

=
m(2)(xi)

6
k2

n2 ,
l,j l,j
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a

w

nd the asymptotic variance is
4

kg(0)2
eTH−1G−1VG−1H−1e =

1
6g(0)2k

,

here e = (1, 0)T , G =
1
k2

∑
l,j ZjlZ

T
jl , and V =

1
3k

∑
j(

1
k

∑
l Zjl)(

1
k

∑
l Zjl)

T with Var[2Fϵ(ϵi+j) − 1] = 1/3.
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