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Abstract
In this paper, we propose a shrinkage framework for jointly estimatingmultiple covari-
ance matrices by shrinking the sample covariance matrices towards the pooled sample
covariance matrix. This framework allows us to borrow information across different
groups. We derive the optimal shrinkage parameters under the Stein and quadratic
loss functions, and prove that our derived estimators are asymptotically optimal when
the sample size or the number of groups tends to infinity. Simulation studies demon-
strate that our proposed shrinkagemethod performs favorably compared to the existing
methods.

Keywords Covariance matrices · Joint estimation · Optimal estimator · Quadratic
loss function · Shrinkage parameter · Stein loss function

1 Introduction

Estimation of the covariance matrices plays an important role in various areas such
as principal component analysis, graphical models and outlier detection. In many
applications the data may be comprised of several distinct groups. One such example
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is gene expression data where researchers collect gene expression profiles for different
cancer tissue samples. To analyze the co-expression network for each of the cancer
samples, one needs to estimate several covariance matrices simultaneously. If the
number of observations in each group is small, the estimates of the covariancematrices
based on data from each individual group are not reliable. On the other hand, if
we estimate the covariance matrices by the pooled sample covariance matrix, the
differences among the tissues will be ignored leading to biased estimators when the
covariance matrices are not all the same.

Various methods have been proposed to estimate the covariance matrices jointly. In
general, certain decompositions were used to deal with positive semi-definite covari-
ance matrices. For example, Boik (2002, 2003) used the spectral decomposition while
Manly and Rayner (1987) and Barnard et al. (2000) used the variance-correlation
decomposition. However, the estimates of the orthogonal and correlation matrices
appeared in the spectral and variance-correlation decomposition often involve com-
putationally challenging constrained optimization problems. Another constraint-free
decomposition is the Cholesky decomposition. Pourahmadi et al. (2007) developed
the maximum likelihood estimates with a pre-specified common structure. Daniels
(2006), Hoff (2009) and Gaskins and Daniels (2016) proposed Bayesian priors on the
Cholesky decomposed terms where the Markov chain Monte Carlo algorithm may
become computationally intractable when the number of groups or the dimension of
the covariance matrix is large. Recently, Guo et al. (2011), Danaher et al. (2014), Le
and Hastie (2016) and Cai et al. (2016) proposed penalized likelihood methods that
induce a sparsity structure in the precision matrices across groups. Price et al. (2015)
suggested to add a ridge penalty and a ridge fusion penalty to the log-likelihood
which yields another regularization for multiple precision matrices. Friedman (1989)
and Ramey et al. (2016) proposed a regularized discriminant analysis, in which they
replaced the unknown covariance matrices by a linear combination of sample covari-
ances, the identity matrix, and the pooled sample covariance matrix.

In this paper, rather than decomposing and imposing structure assumption on
the covariance matrices, we consider a shrinkage approach to jointly estimate the
multiple covariance matrices. Unlike estimators under pre-specified structures where
the imposed structures are usually hard to verify in practice, our new method can
systematically borrow information across groups through a shrinkage framework.
Specifically, let Xgi = (X1gi , . . . , X pgi )

T be independent and identically distributed
(i.i.d.) random vectors from the multivariate normal distribution Np(µg,Σg), where
i = 1, . . . , N , g = 1, . . . ,G,µg are themean vectors, andΣg are the p× p covariance
matrices. We propose the following shrinkage estimators:

̂Σg = α
Sg
n

+ (1 − α)̂Σpool, 0 ≤ α ≤ 1, (1)

where n = N − 1, ̂Σpool = ∑G
g=1 Sg/(nG), Sg = ∑N

i=1(Xgi − Xg)(Xgi − Xg)
T ,

Xg is the sample mean of the gth group, and α is a shrinkage parameter. When α = 1,
we estimate the covariance matrices by the sample covariance matrices. When α = 0,
we estimate all the covariance matrices by the pooled sample covariance matrix. The
optimal shrinkage parameter is defined such that the average risk of the estimators is
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minimized under a specific loss function. We note that when 0 ≤ α < 1, an optimal
combination between the sample covariancematrices and the pooled covariancematrix
will use all the information among theG groups rather than using only the information
within the gth group, and hence reduces the total variation of the sample covariance
matrices.

Since the first proposal by Stein (1956) for the estimation of means, the shrink-
age methods have been extensively studied and extended to estimate other parameters
including the variances (Tong and Wang 2007; Tong et al. 2012). Ledoit and Wolf
(2004), Schäfer and Strimmer (2005) and Ledoit and Wolf (2012) have developed
shrinkage estimators for a single high-dimensional covariance matrix. In this paper,
we consider the shrinkage estimation of multiple covariance matrices from a decision-
theoretic point of view that has not been studied before. It is well known that the
conventional quadratic discriminant analysis (QDA) classifier computes the sample
covariance matrices for each group. If the training set is not large, QDA may perform
poorly due to a large variation of sample covariance matrices. To improve the perfor-
mance, regularization was suggested for a proper compromise between the bias and
variance of the classifier (Friedman 1989; Ramey et al. 2016; Le and Hastie 2016).
Our proposed shrinkage estimators in this paper provide an explicit analytical solution
for the optimal regularization in QDA.

The remainder of the paper is organized as follows. In Sect. 2, we derive the opti-
mal shrinkage estimators for the covariance matrices under the Stein and quadratic
loss functions, respectively. We also propose estimators for the optimal shrinkage
parameters and investigate their asymptotic properties. We then conduct simulations
in Sect. 3 to evaluate the finite sample performance of the proposed estimators and
compare them with some existing methods. We conclude the paper in Sect. 4 with
some discussions. Technical proofs are given in Sect. 5.

2 Joint estimation of the covariancematrices

As defined in Sect. 1, our proposed shrinkage estimators of the covariance matrices
are

̂Σg = α
Sg
n

+ (1 − α)̂Σpool

=
{α

n
+ (1 − α)

nG

}
N
∑

i=1

(Xgi − Xg)(Xgi − Xg)
T

+1 − α

nG

G
∑

k �=g

N
∑

j=1

(Xk j − Xk)(Xk j − Xk)
T ,

where α controls the level of shrinkage. In particular, the estimators only employ
the observations within each group when α = 1, and all estimates are shrunken to
the pooled sample covariance matrix when α = 0. If α ∈ [0, 1), the gth shrinkage
estimator borrows information from other groups.
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To find the optimal shrinkage parameter, we consider to minimize the average risk
of the covariance matrix estimators under the Stein loss function

L1(̂Σ,Σ) = tr(̂ΣΣ−1) − log det(̂ΣΣ−1) − p,

and the quadratic loss function

L2(̂Σ,Σ) = tr(̂ΣΣ−1 − I )2,

where I is the identity matrix, det(·) and tr(·) denote the determinant and trace of a
covariance matrix, respectively. Note that these two loss functions are commonly used
in the covariance matrix estimation Haff (1980, 1991); Yang and Berger (1994).

For ease of notation, let A = [Ai j ] ∈ R
p×p be a p × p matrix, where Ai j are

the components of A. The Frobenius norm is defined as ‖A‖ = {tr(AAT )}1/2 =
(
∑p

i=1

∑p
j=1 A

2
i j )

1/2. For any random matrix A and positive integer k, E‖A‖k < ∞
is equivalent to E |Ai j |k < ∞ for any i, j ∈ {1, . . . , p}. Throughout this paper, for
any symmetric matrix A, A > 0 means that A is a positive definite matrix. In addition,
we let Σ = {Σ1, . . . , ΣG} be a set of covariance matrices corresponding to the G
groups, and ̂Σ = {̂Σ1, . . . , ̂ΣG} be an estimate of Σ .

2.1 Optimal estimator under the Stein loss function

Under the loss function L1, the average risk is

R1(α, ̂Σ,Σ) = 1

G

G
∑

g=1

EL1(̂Σg,Σg)

= 1

G

G
∑

g=1

E tr
(

̂ΣgΣ
−1
g

)

− 1

G

G
∑

g=1

E
{

log det(̂ΣgΣ
−1
g )
}

− p

= 1 − α

G2 tr
{

(

G
∑

g=1

Σg
)(

G
∑

g=1

Σ−1
g

)

}

− 1

G

G
∑

g=1

E log det
[

{

αSg/n + (1 − α)̂Σpool
}

Σ−1
g

]

− (1 − α)p.

Let R′
1(α, ̂Σ,Σ) and R′′

1 (α, ̂Σ,Σ) be the first and second derivatives of
R1(α, ̂Σ,Σ) with respect to α. Let α∗

1 be the optimal shrinkage parameter such that
R1(α, ̂Σ,Σ) achieves the minimum value for α ∈ [0, 1]. We have the following two
theorems.

Theorem 1 For any fixed G, p and n > p + 1, R1(α, ̂Σ,Σ) is a strictly convex
function of α on [0, 1] that satisfies
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(a) R′
1(α, ̂Σ,Σ)|α=0 ≤ 0, where the equality holds if and only if Σ1 = · · · = ΣG,

and
(b) R′

1(α, ̂Σ,Σ)|α=1 > 0.

Theorem 2 For any fixed G and p, as n → ∞, we have

(a) R1(α, ̂Σ,Σ) tends to a constant function of α when Σ1 = · · · = ΣG, and
(b) α∗

1 → 1 when Σg are not all the same.

The proofs of Theorems 1 and 2 are given in Sects. 5.1 and 5.2, respectively.
Theorem 1 states that there exists a unique optimal shrinkage parameter α∗

1 < 1,
which implies that the conventional sample covariance matrices are not admissible
under the Stein loss function. In addition, if Σg are all the same, we have α∗

1 = 0
and hence the optimal shrinkage estimators for the covariance matrices are exactly
the pooled sample covariance matrix. Theorem 2 implies that if the sample size is
sufficiently large, it is no longer necessary to borrow information across other classes
for unequal covariance matrices.

In practice, the optimal shrinkage parameter α∗
1 is unknown since it depends on

some unknown parameters. The following theorems provide an estimator of α∗
1 and

also derive its asymptotic properties. The proofs of Theorems 3 to 5 are given in Sects.
5.3 to 5.5, respectively.

Theorem 3 For any fixed G, p and n > p + 1, let

̂R′
1(α, ̂Σ,Σ) = p − tr

[( 1

G

G
∑

g=1

Sg/n
){ 1

G

G
∑

g=1

(n − p − 1)S−1
g

}]

− 1

G

G
∑

g=1

tr
[

(

Sg/n − ̂Σpool
){

αSg/n + (1 − α)̂Σpool
}−1
]

− p(p + 1)

nG
.

Then

(a) ̂R′
1(α, ̂Σ,Σ) is an unbiased estimator of R′

1(α, ̂Σ,Σ), and is strictly increasing
with respect to α on the interval [0, 1].

(b) If ̂R′
1(α, ̂Σ,Σ)|α=0 ≤ 0, there exists a unique α that satisfies ̂R′

1(α, ̂Σ,Σ) = 0
and we denote the solution as α̂∗

1 . Otherwise, we let α̂
∗
1 = 0.

Theorem 4 For any fixed G and p, as n → ∞, we have α̂∗
1

a.s.−→ 1 when Σg are not

all the same, where
a.s.−→ denotes the almost sure convergence.

According to Theorem 4, if we plug α̂∗
1 into (1), then for any fixed G and p, we

have

̂Σg|α=α̂∗
1

= α̂∗
1 Sg/n + (1 − α̂∗

1)
̂Σpool

a.s.−→ Σg as n → ∞,

for g = 1, . . . ,G. Therefore, the optimal shrinkage estimators of the covariance
matrices under the Stein loss remain to be consistent.

To investigate the asymptotic properties of α̂∗
1 as G → ∞, we assume that Σg

i .i .d.∼
U , where U is a probability measure supported on H+ := {Ap×p : A > 0}.
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Theorem 5 For any fixed n and p with n > p + 3, assuming that E‖S1‖7 < ∞,
E‖S−1

1 ‖7 < ∞, E‖Σ1‖7 < ∞ and E‖Σ−1
1 ‖7 < ∞, we have R′

1(α, ̂Σ,Σ) −
̂R′
1(α, ̂Σ,Σ)

a.s.−→ 0 uniformly for α ∈ [0, 1] as G → ∞. In addition, we have

α̂∗
1 − α∗

1
a.s.−→ 0 as G → ∞.

According to Theorem 5, under some mild conditions, we can borrow information
across groups to get a consistent estimator of the optimal shrinkage parameter.

2.2 Optimal estimator under the quadratic loss function

Under the loss function L2, the average risk is

R2(α, ̂Σ,Σ) = 1

G

G
∑

g=1

EL2(̂Σg,Σg) = α2a1 + 2αa2 + a3,

where

a1 =
G
∑

g=1

E tr
{

(Sg/n − ̂Σpool)Σ
−1
g

}2
/G,

a2 =
G
∑

g=1

E tr
{

(Sg/n − ̂Σpool)Σ
−1
g (̂ΣpoolΣ

−1
g − I )

}

/G,

a3 =
G
∑

g=1

E tr
(

̂ΣpoolΣ
−1
g − I

)2
/G. (2)

According to Sect. 5.6, a1 and a2 can be rewritten as

a1 = 1

G

G
∑

g=1

tr
{

(Σg − Σ)Σ−1
g

}2 + (G − 1)2(p2 + p)

nG2

+ 1

nG3

G
∑

g=1

∑

g′ �=g

[

tr
{

(Σg′Σ−1
g )2

}

+
{

tr(Σg′Σ−1
g )
}2]

(3)

and

a2 = −a1 + (G − 1)(p2 + p)/n, (4)

where Σ = ∑G
g=1 Σg/G. Let α∗

2 be the optimal shrinkage parameter such that

R2(α, ̂Σ,Σ) achieves the minimum value for α ∈ [0, 1]. We have the following
two theorems.
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Theorem 6 For any fixed G, p and n > p + 1, R2(α, ̂Σ,Σ) is a strictly convex
function of α on [0, 1] with the unique minimum point at α∗

2 = −a2/a1 ∈ [0, 1). In
the special case, when Σg are all the same, we have α∗

2 = 0.

Theorem 7 For any fixed G and p, as n → ∞, we have

(a) R2(α, ̂Σ,Σ) tends to a constant function of α when Σ1 = · · · = ΣG, and
(b) α∗

2 → 1 when Σg are not all the same.

The proofs of Theorems 6 and 7 are given in Sects. 5.7 and 5.8, respectively.
According to Theorem 6, the optimal shrinkage parameter α∗

2 is less than 1, which
implies that the conventional sample covariance matrices are not admissible under
the quadratic loss function. In the special case when Σg are all the same, the opti-
mal shrinkage estimators for the covariance matrices are given as the pooled sample
covariance matrix. Theorem 7 indicates that if the sample size is sufficiently large, it is
no longer necessary to borrow information across other classes for unequal covariance
matrices.

To estimate the optimal shrinkage parameter α∗
2 , we need an estimator of

b = 1

G

G
∑

g=1

tr
{

(Σg − Σ)Σ−1
g

}2
. (5)

The following theorem is to find an estimator of b.

Theorem 8 Assume that n > p + 3, for any fixed constant matrix Σ0, we have

E
[

tr
(

I − rΣ0S
−1
g

)2 − r
{

tr(Σ0S
−1
g )2 + {tr(Σ0S

−1
g )
}2
}]

= tr
{

(Σg − Σ0)Σ
−1
g

}2
,

(6)

where r = n − p − 1. Consequently,

tr
(

I − rΣ0S
−1
g

)2 − r
{

tr(Σ0S
−1
g )2 + {tr(Σ0S

−1
g )
}2
}

is an unbiased estimator of tr
{

(Σg − Σ0)Σ
−1
g

}2
.

The proof of Theorem 8 is given in Sect. 5.9. According to this theorem, by using
̂Σpool to estimate Σ and noting that b ≥ 0, we can define an estimator of b in (5) as

̂b = max

{

0,
1

G

G
∑

g=1

[

tr(I − r ̂ΣpoolS
−1
g )2 − r

{

tr(̂ΣpoolS
−1
g )2 + {tr(̂ΣpoolS

−1
g )
}2
}]

}

.

Then we can estimate a1 and a2, respectively, by
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â1 =̂b + (G − 1)2(p2 + p)

nG2 + r2

n3G3

G
∑

g=1

∑

g′ �=g

{

tr(Sg′ S−1
g )2 + {tr(Sg′ S−1

g )
}2
}

,

â2 = −â1 + (G − 1)(p2 + p)

nG
. (7)

It is easy to see that −â2 < â1. Therefore, the optimal shrinkage estimators can be
given by α̂∗

2 = max{0,−â2/̂a1} and α̂∗
2 < 1.

Theorem 9 For any fixed G and p, as n → ∞, we have α̂∗
2

a.s.−→ 1 when Σg are not
all the same.

The proofs of Theorem 9 is given in Sects. 5.10. According to this theorem, if we plug
α̂∗
2 into (1), then for any fixed G and p, we have

̂Σg|α=α̂∗
2

= α̂∗
2 Sg/n + (1 − α̂∗

2)
̂Σpool

a.s.−→ Σg as n → ∞,

for g = 1, . . . ,G. In other words, the optimal shrinkage estimators of the covariance
matrices under the quadratic loss remain to be consistent.

To investigate the asymptotic properties of α̂∗
2 as G → ∞, we assume that Σg

i .i .d.∼
U , where U is a probability measure supported on H+ := {Ap×p : A > 0}.
Theorem 10 For any fixed n and p with n > p + 3, assuming that E‖S1‖2 < ∞,

E‖S−1
1 ‖2 < ∞, E‖Σ1‖2 < ∞, and E‖Σ−1

1 ‖2 < ∞, we have α̂∗
2 − α∗

2
a.s.−→ 0 as

G → ∞.

The proof of Theorem 10 is given in Sect. 5.11. Based on this theorem, under some
mild conditions, we can borrow information across groups to get a consistent estimator
of the optimal shrinkage parameter.

3 Numerical studies

In this section, we conduct simulations to assess the performance of the proposed
shrinkage estimators. As the shrinkage parameter plays an important role in the shrink-
age method, we first provide some insight into the limiting behaviors of α̂∗

1 and α̂∗
2 as

the number of groups increases.
In the first simulation, we consider equal covariance matrices. We first generate

a random matrix W1 ∼ Wishart(d f ,W0), where d f = 2(p + 1) is the degrees of
freedom, W0 = diag(1/d f , . . . , 1/d f ) is a diagonal matrix, and p is the dimension
ofW0. We then let R1 = {diag(W1)}−1/2W1{diag(W1)}−1/2 be the correlation matrix.
Finally, we generate a diagonal matrix D1 such that D1 = diag(σ1,11, . . . , σ1,pp)

where σ 2
1,i i

i.i.d.∼ Scale-inv-χ2(ν, τ 2) with the degrees of freedom ν = 5 and the

scaling parameter τ 2 = 1, and set Σ1 = · · · = ΣG = D1R1D1. In the second
simulation,we consider unequal covariancematriceswhereΣ1, . . . , ΣG are generated
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to be different. Specifically, we first generate the correlation matrices R1, . . . , RG

independently with the diagonal matrices D1, . . . , DG following the same algorithm
as in the first study.We then letΣg = DgRgDg for g = 1, . . . ,G. In each scenario, we
consider p = 100 and N = 120. Then for each group, we generate the data {Xgi }Ni=1
i.i.d. from Np(0,Σg).

Figure 1 displays the average values of the shrinkage parameter estimates, together
with the upper and lower (mean±1.96∗standard error) bounds, for different numbers
of groups under the Stein and quadratic loss functions. With the results based on 500
simulations, we have the main findings as follows.

(I) Under the Stein loss function (see the first row of Fig. 1), when the covariance
matrices are all equal, α̂∗

1 tends to 0 as the number of groups tends to large. This
phenomenon is consistent with the results in Theorems 1 and 5. As described in
Theorem 1, if Σg are all equal, the optimal shrinkage parameter is α∗

1 = 0. Then
according to Theorem 5, under some mild conditions, we have α̂∗

1 − α∗
1 = 0 as

G → ∞. This leads to α̂∗
1 → 0 as G → ∞. On the other hand, if the covariance

matrices are not all equal, the optimal shrinkage parameter will be larger than 0.
Consequently, α̂∗

1 will become more stable and is close to α∗
1 when the number of

groups is large.
(II) Under the quadratic loss function (see the second row of Fig. 1), the optimal

shrinkage parameter estimator, α̂∗
2 , behave similarly as α̂∗

1 . According to Theorem
6, ifΣg are all equal, the optimal shrinkage parameter α∗

2 = 0; otherwise, we have
α∗
2 ∈ (0, 1). Also by Theorem 10, we have α̂∗

2 → α∗
2 as G → ∞. This leads to

α̂∗
2 → 0 as G → ∞. On the other hand, if the covariance matrices are not all

equal, α̂∗
2 will converge to α∗

2 > 0.

Next, to visualize the risk functions for more insights, we also plot the average
values of R1(α, ̂Σ,Σ) and R2(α, ̂Σ,Σ) along with different values of p, G and N .
Specifically in Fig. 2, the simulated curves of the risk functions are displayed with
p = G = 5 and N = 8, 100 or 1000. It is evident that R1(α, ̂Σ,Σ) and R2(α, ̂Σ,Σ)

are strictly convex functions, which are the same as described in Theorems 1 and
6, respectively. In addition, from the top two panels of Fig. 2 with equal covariance
matrices, both R1(α, ̂Σ,Σ) and R2(α, ̂Σ,Σ) converge to a constant function of α

when N is large, which coincides with part (a) in Theorems 2 and 7, respectively.
Whereas from the bottom two panels of Fig. 2 with unequal covariance matrices, the
optimal shrinkage parameters, α∗

1 and α∗
2 , both converge to 1 when N is large, which

also coincides with part (b) in Theorems 2 and 7, respectively.
In what follows, we conduct simulations to evaluate the numerical performance

of our new estimators and compare them with some existing methods. Specifically,
we consider two linear shrinkage methods proposed by Ledoit and Wolf (2004) and
Schäfer and Strimmer (2005), one nonlinear shrinkage method proposed by Ledoit
and Wolf (2012), one joint estimation method based on the Cholesky decomposition
(Pourahmadi et al. 2007), the method of estimating the covariance matrices all by
the conventional pooled sample covariance matrix. Here, for the two linear and the
one nonlinear shrinkage methods we perform shrinkage on each group individually.
For convenience, we denote these five estimators as ̂Σls, ̂Σstrim, ̂Σnls, ̂Σchol and ̂Σpool,
respectively. For the dimension and the sample size,we consider three scenarios: (i) p is
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Fig. 1 Plots of the average values of α̂∗
1 (top panels) and α̂∗

2 (bottom panels), together with the upper and
lower bounds under the settings of equal and unequal covariance matrices, where G ranges from 2 to 2000

much smaller than N with three combinations as (p = 2, N = 20), (p = 2, N = 50)
and (p = 2, N = 100); (ii) p is half of N with three combinations as (p = 20, N =
40), (p = 50, N = 100) and (p = 100, N = 200); (iii) p is close to N with three
combinations as (p = 50, N = 70), (p = 100, N = 120) and (p = 300, N = 320).
In addition, we consider five numbers of groups as G = 2, 5, 20, 100 and 500. As in
Ledoit and Wolf (2004), we consider the percentage relative improvement in average
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Fig. 2 Plots of the average values of R1(α, ̂Σ, Σ) and R2(α, ̂Σ, Σ) under the settings of equal (top panels)
and unequal (bottom panels) covariance matrices, where α ranges from 0 to 1

loss (PRIAL) over the sample covariance matrices in our comparison. Specifically,
for the loss function across G groups defined by Lall(̂Σ,Σ) =∑G

g=1 L(̂Σg,Σg)/G,
where L(·, ·) is a specified risk function such as L1(·, ·) or L2(·, ·), the PRIAL is given
as

PRIAL(̂Σ, ̂Σsam) =
{

1 − AL(̂Σ,Σ)

AL(̂Σsam,Σ)

}

× 100%,
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where ̂Σsam = {S1/n, . . . , SG/n}, AL(̂Σ,Σ) = ∑M
k=1 L

(k)
all /M is the average of

Lall after M simulation repetitions. For simplicity, we denote PRIAL(̂Σ, ̂Σsam) as
PRIAL(̂Σ). Therefore, the PRIAL of ̂Σsam is 0%, meaning no improvement, by con-
trast, a positive PRIAL indicates that the evaluated estimator performs better than the
sample covariance matrices. We set M = 500 throughout the simulations.

Figures 3 and 4 show the PRIALs for each of the three scenarios under the Stein
and quadratic loss functions, respectively. First of all, we note that PRIAL(̂Σpool) and
PRIAL(̂Σchol) are always far below 0, and hence do not present their simulation results
in the figures (for details, see Tables 1 and 2 in online Appendix). From Fig. 3, it is
evident that the new estimator outperforms the other five estimators in most settings.
In particular, when p is relatively small and N is large, the new estimator is nearly
as good as the sample covariance matrices in ̂Σsam. Based on Theorem 2, when the
sample size is large, there is no need to borrow information across other groups. When
p = N/2, we note that the new estimator does borrow information across groups so
that the loss can be reduced substantially across all different values of G. In the setting
that p is close to N , the new proposed estimator can still consistently outperforms the
other five estimators when G > 5. This is mainly because that the sample covariance
matrices are not stable when p is close to N , and hence borrowing information across
a large number of groups can reduce loss substantially.

Figure 4 shows the PRIALs relative to ̂Σsam under the quadratic loss function.
Overall, the new method presents a favorable performance when compared with the
existing approaches. In particular, when p = N/2, the new estimator, ̂Σnew, is the
only one that provides a better performance than the sample covariance matrices. In
addition, when the dimension is large but close to the sample size (e.g., p = 300, N =
320), our new estimator outperforms the other five estimators except for the sample
covariance matrices. However, as the number of groups is large, the new estimator
still has the best performance. One reason for this is that when getting an estimator
of b in (5), we need to replace the unknown parameter Σ by ̂Σpool. Therefore, as the
dimension of covariance matrices goes to high, it is necessary to borrow information
from a large number of groups. As we can see, when the number of groups goes to
large, our optimal shrinkage estimator consistently has the best performance among
the six estimators including ̂Σls, ̂Σstrim, ̂Σnls, ̂Σchol, ̂Σpool and ̂Σsam.

4 Conclusion

In this paper, we develop a shrinkage framework for jointly estimating multiple
covariance matrices across groups. We derive the optimal shrinkage parameters under
the Stein and quadratic loss functions. We also propose estimators for the optimal
shrinkage parameters, and study their asymptotic behaviors under different scenarios.
Simulation results demonstrate that, when the number of groups is large, our proposed
optimal shrinkage estimators perform better than the existing methods including the
estimators of the covariance matrices based on the individual estimation as well as
other existing joint estimators. In addition, unlike the structure specified estimators
in which the imposed structure assumption is often hard to verify, our new method
can automatically borrow information across groups through a shrinkage framework
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Fig. 3 Plots of PRIALs under the Stein loss function. Lines with “1” to “4” are the PRIALs of ̂Σnew, ̂Σls,
̂Σstrim, and ̂Σnls, respectively, where G ranges from 2 to 500. Rows from top to bottom correspond to three
scenarios: (i) p is much smaller than N ; (ii) p is half of N ; (iii) p is close to N . The horizontal black lines
present PRIAL = 0

without any structure assumption. Our additional simulations in the online Appendix
also demonstrate that the structure specified estimators may perform poorly when the
imposed structure is incorrect.

In this paper, we have focused on a balanced sample size and a common shrinkage
intensity for all groups. In practice, however, the sample size and the shrinkage intensity
may vary across groups. For example, when the sample covariance matrix in the
gth group has a higher estimation risk, a smaller shrinkage intensity αg ought to
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Fig. 4 Plots of PRIALs under the quadratic loss function. Lines with “1” to “4” are the PRIALs of ̂Σnew,
̂Σls, ̂Σstrim, and ̂Σnls, respectively, where G ranges from 2 to 500. Rows from top to bottom correspond to
three scenarios: (i) p is much smaller than N ; (ii) p is half of N ; (iii) p is close to N . The horizontal black
line presents PRIAL = 0

be preferred. One possible direction may use Bayesian shrinkage and impose some
priors for αg , g = 1, . . . ,G. Consequently, the shrinkage intensities can be estimated
via the posterior distribution. In addition, deriving the boundaries for the estimated
shrinkage intensities may be an interesting future work. The derivation may involve
the individual probability distribution under a finite sample size. Specifically, the
probability distributions of the shrinkage intensities are determined by the sample
size, the number of groups and the scalar functions of the true (yet unobservable)
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covariance matrices,Σ1, . . . , ΣG , which are intractable under a finite sample size and
groups. Future research is warranted.

5 Proofs

To prove Theorems 1 to 10, we first show some results on matrix calculation, together
with some key lemmas. For any p × p matrix A, when the eigenvalues of A are all
reals, we denote them as

λ1(A) ≥ · · · ≥ λp(A).

It is well known that if A is a symmetric matrix, then all its eigenvalues are reals, and
further more, we have λp(A) > 0 for any A > 0. By theWeilandt–Hoffman inequality
(see (1.67) in Tao (2012), page 55),

|λp(A + B) − λp(A)|2 ≤
p
∑

i=1

|λi (A + B) − λi (A)|2 ≤ ‖B‖2 (8)

holds for any symmetric matrices A and B.

Lemma 1 For any p × p matrices A and B, we have

|tr(A)| ≤ √
p ‖A‖, ‖AB‖2 ≤ ‖A‖2‖B‖2.

Proof By the Cauchy–Schwarz inequality,

|tr(A)| ≤
p
∑

i=1

|aii | ≤
√

√

√

√p
p
∑

i=1

a2i i ≤ √
p ‖A‖

and

‖AB‖2 =
p
∑

i, j=1

(AB)2i j =
p
∑

i, j=1

(
p
∑

k=1

Aik Bk j

)2 ≤
p
∑

i, j=1

(
p
∑

k=1

A2
ik

p
∑

l=1

B2
l j

)

=
p
∑

i=1

p
∑

k=1

A2
ik

p
∑

j=1

p
∑

l=1

B2
l j = ‖A‖2‖B‖2.

The proof of Lemma 1 is complete. �
Lemma 2 Let A > 0 and B > 0, then

tr{(A − B)(B−1 − A−1)} ≥ 0, (9)

where the equality holds if and only if A = B.
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Proof Since A > 0 and B > 0, we have tr((A − B)(B−1 − A−1)) = tr((A −
B)B−1(A − B)A−1) = tr(A−1/2(A − B)B−1(A − B)A−1/2) > 0.

Lemma 3 Assume that αA + B > 0 for any α ∈ [0, 1] and define

f (α) = log det
(

αA + B
)

.

Then for any α ∈ [0, 1], we have f ′′(α) < 0 and

f ′(α) = tr
{

A(αA + B)−1}. (10)

Proof Let ζ1, . . . , ζp be the eigenvalues of AB−1. Then I + B−1/2AB−1/2 has eigen-
values {1 + ζ1, . . . , 1 + ζp}. Since I + B−1/2AB−1/2 > 0, we have 1 + ζi > 0 for
i = 1, . . . , p. Let also

g(α) = log det
{

(αA + B)B−1} = log det
(

I + αAB−1) =
p
∑

i=1

log
(

1 + αζi
)

.

Then we have

f ′(α) = g′(α) =
p
∑

i=1

ζi

1 + αζi

= tr(B−1/2AB−1/2(I + αB−1/2AB−1/2)) = tr(A(A + B)−1),

f ′′(α) = g′′(α) = −
p
∑

i=1

ζ 2
i

(1 + αζi )2
≤ 0. (11)

The proof of Lemma (3) is complete. �
Lemma 4 For any A, B,C > 0 and 0 ≤ α ≤ 1, we have

(A − B)
{

αA + (1 − α)B
}−1 − (A − C)

{

αA + (1 − α)C
}−1

= A
{

αA + (1 − α)B
}−1

(C − B)
{

αA + (1 − α)C
}−1

. (12)

Proof For α = 1, (12) is clear. When α �= 1, by noting that

(A − B){αA + (1 − α)B}−1

=
[

(1 − α)−1A − 1

1 − α
{αA + (1 − α)B}

]

{αA + (1 − α)B}−1

= (1 − α)−1A{αA + (1 − α)B}−1 − (1 − α)−1 I ,

and, similarly, (A − C){αA + (1 − α)C}−1 = (1 − α)−1A{αA + (1 − α)C}−1 −
(1 − α)−1 I , we have

(A − B){αA + (1 − α)B}−1 − (A − C){αA + (1 − α)C}−1
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= 1

1 − α
A{αA + (1 − α)B}−1 − 1

1 − α
A{αA + (1 − α)C}−1

= 1

1 − α
A{αA + (1 − α)B}−1{αA + (1 − α)C}{αA + (1 − α)C}−1

− 1

1 − α
A{αA + (1 − α)B}−1{αA + (1 − α)B}{αA + (1 − α)C}−1

= A{αA + (1 − α)B}−1(C − B){αA + (1 − α)C}−1.

�
Lemma 5 For any A > 0 and B > 0, we have

sup
0≤α≤1

∥

∥{αA + (1 − α)B}−1
∥

∥ ≤ √
p
∥

∥A−1
∥

∥

(

1 + ∥∥A∥∥ ∥∥B−1
∥

∥

)

. (13)

Proof By the minimax formula for eigenvalues (see Theorem 1.3.2 in Tao (2012),
page 49)

∥

∥{αA + (1 − α)B}−1
∥

∥

2 = tr
[

{

αA + (1 − α)B
}−2
]

= tr
(

A−1/2W A−1W A−1/2)

≤ p max‖v‖=1
vT A−1/2W A−1W A−1/2v

≤ p max‖v‖=1
vT A−1v max‖v‖=1

vT A−1/2W 2A−1/2v

vT A−1v

max‖v‖=1

vT A−1/2W A−1W A−1/2v

vT A−1/2W 2A−1/2v

≤ p max‖v‖=1
vT A−1v max‖v‖=1

vT W 2v max‖v‖=1
vT A−1v

= p
{

λ1
(

A−1)
}2

λ1

(

{

α I + (1 − α)A−1/2BA−1/2}−2
)

= p
{

λ1
(

A−1)
}2{

α + (1 − α)λp
(

A−1/2BA−1/2)
}−2

, (14)

where W = W (α, A, B) = {α I + (1 − α)A−1/2BA−1/2}−1 > 0, v =
(v1, . . . , vn)

T ∈ R
p, ‖v‖ = (v21 + · · · + v2n)

−1/2. By using the similar method as
that in (14), we can get that λp

(

A−1/2BA−1/2
) = min‖v‖=1 vT A−1/2BA−1/2v ≥

min‖v‖=1 vT Bvmin‖v‖=1 vT A−1v = λp(B)λp(A−1). Hence

sup
0≤a≤1

∥

∥{αA + (1 − α)B}−1
∥

∥ ≤ √
pλ1
(

A−1) sup
0≤a≤1

{α + (1 − α)λp
(

B
)

λp
(

A−1)}−1

= √
pλ1
(

A−1)max
{

1,
1

λp(B)λp(A−1)

}

≤ √
pλ1
(

A−1)
{

1 + λ1(A)λ1
(

B−1)
}
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≤ √
p ‖A−1‖(1 + ‖A‖ ‖B−1‖),

where we have used λ1(A) ≤ ‖A‖ for any A > 0 since (8). The proof is complete. �

5.1 Proof of Theorem 1

Now for any g ∈ {1, . . . ,G}, applying Lemma 3 with A = Sg/n− ̂Σpool, B = ̂Σpool,
we have that for α ∈ [0, 1],

[

log det
[{

αSg/n + (1 − α)̂Σpool
}

Σ−1
g

]

]′
α

= [ log det {αSg/n + (1 − α)̂Σpool
}]′

α

= tr
[

(Sg/n − ̂Σpool)
{

αSg/n + (1 − α)̂Σpool
}−1]

,

and

[

log det
[{

αSg/n + (1 − α)̂Σpool
}

Σ−1
g

]

]′′
α

= [ log det {αSg/n + (1 − α)̂Σpool
}]′′

α
< 0.

Hence

R′′
1 (α, ̂Σ,Σ) = − 1

G

G
∑

g=1

E
[

log det
[{

αSg/n + (1 − α)̂Σpool
}

Σ−1
g

]

]′′
α

> 0,

which implies that R1(α, ̂Σ,Σ) is a strictly convex function on [0, 1], and

R′
1(α, ̂Σ,Σ) = p − tr

⎧

⎨

⎩

( 1

G

G
∑

g=1

Σg

)( 1

G

G
∑

g=1

Σ−1
g

)

⎫

⎬

⎭

− 1

G

G
∑

g=1

trE
[(

Sg/n − ̂Σpool
){

αSg/n + (1 − α)̂Σpool
}−1]

.

Specially,

R′
1(α, ̂Σ,Σ)|α=0 = p − tr

{( 1

G

G
∑

g=1

Σg

)( 1

G

G
∑

g=1

Σ−1
g

)}

, (15)

and

R′
1(α, ̂Σ,Σ)|α=1 = trE

{( 1

G

G
∑

g=1

Sg
)( 1

G

G
∑

g=1

S−1
g

)}
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− tr
{( 1

G

G
∑

g=1

Σg

)( 1

G

G
∑

g=1

Σ−1
g

)}

. (16)

For any g, g′ ∈ {1, . . . ,G}, byLemma2,we have tr[(Σg−Σg′)(Σ−1
g′ −Σ−1

g )] ≥ 0,

which implies tr(ΣgΣ
−1
g′ + Σg′Σ−1

g ) ≥ 2p. Thus

tr

⎧

⎨

⎩

( 1

G

G
∑

g=1

Σg

)( 1

G

G
∑

g=1

Σ−1
g

)

⎫

⎬

⎭

≥ p (17)

holds for any Σg > 0. This together with (15) implies R′
1(α, ̂Σ,Σ)|α=0 ≤ 0. And

according to Lemma 2, R′
1(α, ̂Σ,Σ)|α=0 = 0 if and only if Σ1 = · · · = ΣG . This

implies that for any fixed G, p and n > p+1, ifΣg are all the same, we have α∗
1 = 0.

For any g ∈ {1, . . . ,G}, since Sg ∼ Wp(Σg, n), we have ESg = nΣg , S−1
g ∼

W−1
p (Σ−1

g , n), and ES−1
g = Σ−1

g /(n − p − 1). Hence, for any g, g′ ∈ {1, . . . ,G}
with g �= g′, we have tr

{

E(Sg′ S−1
g )−Σg′Σ−1

g

} = tr
{

E(Sg′)E(S−1
g )−Σg′Σ−1

g

} =
(p + 1)tr(Σ−1/2

g Σg′Σ−1/2
g )/(n − p − 1) > 0 This, together with (16) and (17),

implies (b).

5.2 Proof of Theorem 2

As shown in Theorem 1, R
′′
1(α, Σ̂,Σ) > 0 for any fixed n. This indicates that

R
′′
1(α, Σ̂,Σ) ≥ 0 as n → ∞. For any g = 1, . . . ,G, when n → ∞, we have

R′
1(α, ̂Σ,Σ)|α=1 = trE

{

( 1

G

G
∑

g=1

Sg
)( 1

G

G
∑

g=1

S−1
g

)

}

− tr

{

( 1

G

G
∑

g=1

Σg

)( 1

G

G
∑

g=1

Σ−1
g

)

}

= p + 1

G2(n − p − 1)

∑

g �=g′
tr
(

ΣgΣ
−1
g′
)→ 0.

Note also that when Σg = Σg′ for any g = g′,

R′
1(α, ̂Σ,Σ)|α=0 = p − tr

{

( 1

G

G
∑

g=1

Σg

)( 1

G

G
∑

g=1

Σ−1
g

)

}

= 0,

thus we have R
′
1(α, Σ̂,Σ) = 0 as n → ∞. Further by the Mean Value Theorem

for Derivatives, for any α1 �= α2, we have R1(α1, Σ̂,Σ) − R1(α2, Σ̂,Σ) = (α1 −
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α2)R
′
1(ξ, Σ̂,Σ) with α1 < ξ < α2. This shows that R1(α1, Σ̂,Σ) = R1(α2, Σ̂,Σ)

as n → ∞.
If Σg are not all the same, then by using SLLN and the dominated convergence

theorem, we have that, for any 1 ≤ α ≤ 1,

R′′
1 (α, ̂Σ,Σ) = 1

G

G
∑

g=1

p
∑

i=1

E

{

λi

(

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1/2
pool

)}2

{

1 + αλi

(

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1/2
pool

)}2

≥ 1

G

G
∑

g=1

p
∑

i=1

E

{

λi

(

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1/2
pool

)}2

2 + 2
{

λi

(

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1/2
pool

)}2

→ 1

G

G
∑

g=1

p
∑

i=1

{

λi

(

Σ
−1/2

(Σg − Σ)Σ
−1/2

)}2

2 + 2
{

λi

(

Σ
−1/2

(Σg − Σ)Σ
−1/2

)}2 > 0.

Hence, (b) follows by the fact that R′′
1 (α, ̂Σ,Σ) > 0 and R′

1(α, ̂Σ,Σ)|α=1 → 0.

5.3 Proof of Theorem 3

To get an estimator of α∗
1 , we need to find an estimator of R′

1(α, ̂Σ,Σ). From the
proof of Theorem 1, R′

1(α, ̂Σ,Σ) is given as

R′
1(α, ̂Σ,Σ) = p − tr

{

( 1

G

G
∑

g=1

Σg

)( 1

G

G
∑

g=1

Σ−1
g

)

}

− 1

G

G
∑

g=1

trE
[

(

Sg/n − ̂Σpool
){

αSg/n + (1 − α)̂Σpool
}−1
]

. (18)

We estimateΣg andΣ−1
g by Sg/n and (n− p−1)S−1

g , respectively. Then, an estimator
of R′

1(α, ̂Σ,Σ) is given as

̂R′
1(α, ̂Σ,Σ) = p − tr

[( 1

G

G
∑

g=1

Sg
n

){ 1

G

G
∑

g=1

(n − p − 1)S−1
g

}]

− 1

G

G
∑

g=1

tr
[

(

Sg/n − ̂Σpool
){

αSg/n + (1 − α)̂Σpool
}−1
]

− p(p + 1)

nG
.

(19)

We note that

E{̂R′
1(α, ̂Σ,Σ)} − R′

1(α, ̂Σ,Σ)
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= tr
{( 1

G

G
∑

g=1

Σg

)( 1

G

G
∑

g=1

Σ−1
g

)}

− E

[

tr
[( 1

G

G
∑

g=1

Sg
n

){ 1

G

G
∑

g=1

(n − p − 1)S−1
g

}]

]

− p(p + 1)

nG
= 0.

Hence, ̂R′
1(α, ̂Σ,Σ) is an unbiased estimator.

From the proof of Theorem 1, for any α ∈ [0, 1], we have

̂R′′
1 (α, ̂Σ,Σ) = − 1

G

G
∑

g=1

[

log det
{

αSg/n + (1 − α)̂Σpool
}

]′′
α

> 0,

which implies that ̂R′
1(α, ̂Σ,Σ) is strictly increasing on [0, 1].

In addition, we note that

̂R′
1(α, ̂Σ,Σ)|α=0 = p − tr

[( 1

G

G
∑

g=1

Sg
n

){ 1

G

G
∑

g=1

(n − p − 1)S−1
g

}]

− p(p + 1)

nG
,

̂R′
1(α, ̂Σ,Σ)|α=1 = p + 1

n
tr
[( 1

G

G
∑

g=1

Sg
)( 1

G

G
∑

g=1

S−1
g

)]

− p(p + 1)

nG
> 0.

The last inequality is based on (17).Here, ̂R′
1(α, ̂Σ,Σ)|α=0 is not guaranteed to be neg-

ative. If ̂R′
1(α, ̂Σ,Σ)|α=0 ≤ 0, then there exists a unique α satisfies ̂R′

1(α, ̂Σ,Σ) = 0
and we denote the solution as α̂∗

1 . Otherwise, we set α̂
∗
1 = 0.

5.4 Proof of Theorem 4

By SLLN, for any g = 1, . . . ,G with fixed G and p, we have Sg/n
a.s.−→ Σg as

n → ∞, thus

tr
{( 1

G

G
∑

g=1

Sg
)( 1

G

G
∑

g=1

S−1
g

)}

a.s.−→ tr
{( 1

G

G
∑

g=1

Σg

)( 1

G

G
∑

g=1

Σ−1
g

)}

,

and then

̂R′
1(α, ̂Σ,Σ)|α=1 = p + 1

n
tr
{( 1

G

G
∑

g=1

Sg
)( 1

G

G
∑

g=1

S−1
g

)}

− p(p + 1)

nG
a.s.−→ 0.
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By applying (11) and the strong law of large number (SLLN), and noting that λi (·) is
a continuous function for any i = 1, . . . , p, we get that

̂R′′
1 (α, ̂Σ,Σ) = 1

G

G
∑

g=1

p
∑

i=1

{

λi

(

̂Σ
−1/2
pool

(

Sg/n − ̂Σpool
)

̂Σ
−1/2
pool

)}2

{

1 + αλi

(

̂Σ
−1/2
pool

(

Sg/n − ̂Σpool
)

̂Σ
−1/2
pool

)}2

a.s.−→ 1

G

G
∑

g=1

p
∑

i=1

{

λi

(

Σ
−1/2(

Σg − Σ
)

Σ
−1/2

)}2

{

1 + αλi

(

Σ
−1/2(

Σg − Σ
)

Σ
−1/2

)}2 > 0,

where Σ = ∑G
g=1 Σg/G, and the equality holds if and only if Σg = Σg′ for any

g �= g′. Hence α̂∗
1

a.s.−→ 1 when Σg are not all the same.

5.5 Proof of Theorem 5

By (18) and (19), we have

sup
0≤α≤1

|R′
1(α, ̂Σ,Σ) − ̂R′

1(α, ̂Σ,Σ)| ≤ p(p + 1)

nG
+

5
∑

i=1

Ji ,

where p(p + 1)/(nG) → 0 as G → ∞, and

J1 =
∣

∣

∣tr
[( 1

G

G
∑

g=1

Sg
n

){ 1

G

G
∑

g=1

(n − p − 1)S−1
g

}]

− tr
(

EΣ1EΣ−1
1

)

∣

∣

∣,

J2 =
∣

∣

∣tr
{( 1

G

G
∑

g=1

Σg

) ( 1

G

G
∑

g=1

Σ−1
g

)}

− tr(EΣ1EΣ−1
1 )

∣

∣

∣,

J3 = 1

G

G
∑

g=1

sup
α∈[0,1]

∣

∣

∣tr
[

(

Sg/n − ̂Σpool
) {

αSg/n + (1 − α)̂Σpool
}−1
]

− tr
[

(

Sg/n − EΣ1
){

αSg/n + (1 − α)EΣ1
}−1
]∣

∣

∣,

J4 = sup
α∈[0,1]

∣

∣

∣

1

G

G
∑

g=1

tr
[

(

Sg/n − EΣ1
){

αSg/n + (1 − α)EΣ1
}−1
]

− E tr
[

(

S1/n − EΣ1
){

αS1/n + (1 − α)EΣ1
}−1
]∣

∣

∣,

J5 = sup
α∈[0,1]

∣

∣

∣trE
[

(

S1/n − ̂Σpool
){

αS1/n + (1 − α)̂Σpool
}−1
]

− trE
[

(

S1/n − EΣ1
){

αS1/n + (1 − α)EΣ1
}−1
]∣

∣

∣.
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For fixed n and p, as G → ∞, we need to prove that, Ji
a.s.−→ 0 for i = 1, . . . , 5.

Since ESg = E{E(Sg|Σg)} = nEΣ1 and (n − p − 1)ES−1
g = (n − p −

1)E{E(S−1
g |Σg)} = EΣ−1

1 > 0, by the SLLN, we have

̂Σpool = 1

G

G
∑

g=1

Sg
n

a.s.−→ EΣ1,
1

G

G
∑

g=1

(n − p − 1)S−1
g

a.s.−→ EΣ−1
1 ,

which, together with the fact that tr(·) is a continuous function (by Lemma 1), implies
that J1

a.s.−→ 0. Similarly, J2
a.s.−→ 0. By applying Lemma 4, we have

(

Sg/n − ̂Σpool
){

αSg/n + (1 − α)̂Σpool
}−1 − (Sg/n − EΣ1

){

αSg/n + (1 − α)EΣ1
}−1

= (Sg/n)
{

αSg/n + (1 − α)̂Σpool
}−1

(EΣ1 − ̂Σpool)
{

αSg/n + (1 − α)EΣ1
}−1

.

(20)

Then, by Lemmas 1 and 5, we have

J3 ≤ 1

G

G
∑

g=1

∥

∥Sg/n
∥

∥ sup
a∈[0,1]

∥

∥

{

αSg/n + (1 − α)̂Σpool
}−1∥
∥

× sup
a∈[0,1]

∥

∥

{

αSg/n + (1 − α)EΣ1
}−1∥
∥

∥

∥EΣ1 − ̂Σpool
∥

∥

≤ ∥∥EΣ1 − ̂Σpool
∥

∥×
{ 1

G

G
∑

g=1

T (Sg, ̂Σpool)
}

, (21)

Here,

T (Sg, ̂Σpool) =
∥

∥

∥

Sg
n

∥

∥

∥ sup
a∈[0,1]

∥

∥

∥

{

α
Sg
n

+ (1 − α)̂Σpool

}−1∥
∥

∥

× sup
a∈[0,1]

∥

∥

∥

{

α
Sg
n

+ (1 − α)EΣ1

}−1∥
∥

∥

≤ np‖Sg‖ ‖S−1
g ‖2 (1 + ∥∥Sg/n

∥

∥ ‖(̂Σpool)
−1‖)(1 + ∥∥Sg/n

∥

∥ ‖(EΣ1)
−1‖)

= p
(‖Sg‖ ‖S−1

g ‖2)(n + ‖Sg‖ ‖(EΣ1)
−1‖)

+ p‖(̂Σpool)
−1‖ (‖Sg‖2 ‖S−1

g ‖2) (1 + ‖Sg/n‖ ‖(EΣ1)
−1‖),

where the inequality is fromLemma5.By noting that ‖(EΣ1)
−1‖ is a positive constant

and recalling that E‖S1‖7 < ∞, E‖S−1
1 ‖7 < ∞, it is easy to verify that

E
{‖S1‖2 ‖S−1

1 ‖2(1 + ‖S1‖ ‖(EΣ1)
−1‖)} < ∞,

E
{‖S1‖ ‖S−1

1 ‖2 (1 + ‖S1‖ ‖(EΣ1)
−1‖)} < ∞.
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In addition, by the SLLN, we have
∥

∥EΣ1 − ̂Σpool
∥

∥

a.s.−→ 0, ‖(̂Σpool)
−1‖ a.s.−→

‖(EΣ1)
−1‖, and

1

G

G
∑

g=1

T (Sg, ̂Σpool) <
p

G

G
∑

g=1

(‖Sg‖ ‖S−1
g ‖2) (n + ‖Sg‖ ‖(EΣ1)

−1‖)

+ p

G

G
∑

g=1

‖(̂Σpool)
−1‖ (‖Sg‖2 ‖S−1

g ‖2)(1 + ‖Sg‖ ‖(EΣ1)
−1‖)

a.s.−→ pE
{‖S1‖‖S−1

1 ‖2(n + ‖S1‖‖(EΣ1)
−1‖)}

+ p(‖(EΣ1)
−1‖) E{‖S1‖2

‖S−1
1 ‖2(1 + ‖S1‖ ‖(EΣ1)

−1‖)} < ∞.

Consequently, we have J3
a.s.−→ 0.

Note that by Lemmas 1 and 5, we have that for any 0 ≤ α ≤ 1,

∣

∣tr
[

(S1/n − EΣ1)
{

αS1/n + (1 − α)EΣ1
}−1] ∣

∣

≤ √
p
∥

∥S1/n − EΣ1
∥

∥ sup
0≤α≤1

∥

∥{αS1/n + (1 − α)EΣ1}−1
∥

∥

≤ np (‖S1/n‖ + ‖EΣ1‖) ‖S−1
1 ‖ {1 + ‖S1/n‖ ‖(EΣ1)

−1‖}
≤ np

(‖S1‖ + ‖EΣ1‖
) ‖S−1

1 ‖(1 + ‖S1‖ ‖(EΣ1)
−1‖).

Since E
[

(‖S1‖+‖EΣ1‖) ‖S−1
1 ‖{1+‖S1‖ ‖(EΣ1)

−1‖}] < ∞, by applying a uniform

SLLN (see Theorem 16(a) in Ferguson (1996)), we have J4
a.s.−→ 0.

By (20), we have

E
[( S1

n
− ̂Σpool

){

α
S1
n

+ (1 − α)̂Σpool

}−1]

− E
[( S1

n
− EΣ1

){

α
S1
n

+ (1 − α)EΣ1

}−1]

= E
[

(S1/n)
{

αS1/n + (1 − α)̂Σpool
}−1

(

EΣ1 − ̂Σpool
){

αS1/n + (1 − α)EΣ1
}−1
]

,

and, similarly to (21), we have

J5 ≤√
pE
{

T (S1, ̂Σpool) ‖EΣ1 − ̂Σpool‖
}

≤ p3/2E
[

‖S1‖2 ‖S−1
1 ‖2 {‖(Σpool)

−1‖}
{

1 + ‖S1‖ ‖(EΣ1)
−1‖}(‖EΣ1 − ̂Σpool‖

)

]

+ p3/2E
[

‖S1‖‖S−1
1 ‖2 {n + ‖S1‖‖(EΣ1)

−1‖}(‖EΣ1 − ̂Σpool‖
)

]

123

Author's personal copy



A shrinkage approach to joint estimation... 363

≤ p3/2
{

1 + ‖(EΣ1)
−1‖} (J51 + n × J52).

where

J51 = E
{‖S1‖ ‖S−1

1 ‖2 (1 + ‖S1‖)2 ‖EΣ1 − ̂Σpool‖
}

,

J52 = E
{‖S1‖2 ‖S−1

1 ‖2 (1 + ‖S1‖) ‖EΣ1 − ̂Σpool‖ ‖(̂Σpool)
−1‖}.

By Hölder’s inequality, we have

J52 ≤
[

E
{‖S1‖2(1 + ‖S1‖)

}7/3
]3/7 (

E‖S−1
1 ‖7

)2/7

(

E‖EΣ1 − ̂Σpool‖7
)1/7 {

E
∥

∥(̂Σpool)
−1
∥

∥

7
}1/7

.

By the assumption E‖S1‖7 < ∞,we have E{‖S1‖2(1+‖S1‖)}7/3 < ∞, andby the L p

convergence theorem, E‖EΣ1 − ̂Σpool‖7 = E‖∑G
g=1{Sg/n − E(Sg/n)}/G‖7 → 0.

Define a function f : H+ → R with

f (A) = ‖A−1‖2 = tr(A−2) =
p
∑

i=1

1/(λi (A))2, A > 0.

Since x �→ 1/x2 is a convex function on (0,∞), by Klein’s lemma (See, for instance,
Guionnet (2009), page 78), f is a convex function on H

+. Thus

‖(̂Σpool)
−1‖2 =

∥

∥

∥

( 1

G

G
∑

g=1

Sg
n

)−1∥
∥

∥

2 ≤ 1

G

G
∑

g=1

∥

∥

∥

( Sg
n

)−1∥
∥

∥

2
.

Then, by Jensen’s inequality,

E‖(̂Σpool)
−1‖7 ≤ E

( 1

G

G
∑

g=1

‖nS−1
g ‖2

)7/2 ≤ E
( 1

G

G
∑

g=1

‖nS−1
g ‖7

)

= E‖nS−1
1 ‖7 < ∞.

Combing the above facts, we get that J52 → 0. Similarly, J51 → 0. Thus J5 → 0.
Finally, we have

sup
0≤α≤1

∣

∣R′
1(α, ̂Σ,Σ) − ̂R′

1(α, ̂Σ,Σ)
∣

∣ ≤ p(p + 1)

nG
+

5
∑

i=1

Ji
a.s.−→ 0

as G → ∞, for fixed n and p.
As follows, we show that α̂∗

1 − α∗
1

a.s.−→ 0. Noting that

̂R′
1(α, ̂Σ,Σ)|α=0 = p − tr

[( 1

G

G
∑

g=1

Sg/n
){ 1

G

G
∑

g=1

(n − p − 1)S−1
g

}]
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a.s.−→ p − tr{E(Σ1)E(Σ−1
1 )}.

First of all, we show that the convergence holds if Σg are not all the same.
Then by Jensen’s inequality, we have tr{E(Σ1)E(Σ−1

1 )} > p. As a consequence,
̂R′
1(α, ̂Σ,Σ)|α=0 < 0 a.s. as G → ∞. Note also that ̂R′

1(α, ̂Σ,Σ)|α=1 > 0, we have
α̂∗
1 ∈ (0, 1) a.s. as G → ∞.

Since ̂R′
1(̂α

∗
1 ,
̂Σ,Σ) = R′

1(α
∗
1 ,
̂Σ,Σ) = 0,wehave |̂R′

1(α
∗
1 ,
̂Σ,Σ)−̂R′

1(̂α
∗
1 ,
̂Σ,Σ)|

= |̂R′
1(α

∗
1 ,
̂Σ,Σ) − R′

1(α
∗
1 ,
̂Σ,Σ)|. By the mean value theorem,

|α∗
1 − α̂∗

1 | ≤ ∣∣̂R′
1(α

∗
1 ,
̂Σ,Σ) − ̂R′

1(̂α
∗
1 ,
̂Σ,Σ)

∣

∣

/

inf
0≤α≤1

̂R′′
1 (α, ̂Σ,Σ)

= ∣∣̂R′
1(α

∗
1 ,
̂Σ,Σ) − R′

1(α
∗
1 ,
̂Σ,Σ)

∣

∣

/

inf
0≤α≤1

̂R′′
1 (α, ̂Σ,Σ). (22)

Note that R′
1(α, ̂Σ,Σ)−̂R′

1(α, ̂Σ,Σ)
a.s.−→ 0 uniformly for α ∈ [0, 1] asG → ∞,

we only need to verify that inf0≤α≤1 ̂R′′
1 (α, ̂Σ,Σ) > 0. By applying (11) and using

the similar method as that in (14), we have

inf
0≤α≤1

̂R′′
1 (α, ̂Σ, Σ) = inf

0≤α≤1

1

G

G
∑

g=1

p
∑

i=1

{

λi

(

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1/2
pool

)}2

{

1 + αλi

(

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1/2
pool

)}2

≥ 1

G

G
∑

g=1

p
∑

i=1

{

λi

(

̂Σ
−1/2
pool

(

Sg/n − ̂Σpool
)

̂Σ
−1/2
pool

)}2

2 + 2
{

λi

(

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1/2
pool

)}2

= 1

G

G
∑

g=1

p
∑

i=1

{

λi

(

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1/2
pool

)2}

2 + 2
{

λi

(

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1/2
pool

)2}

≥ 1

4

1

G

G
∑

g=1

min
{

1, λp
{

̂Σ
−1/2
pool (Sg/n − ̂Σpool)̂Σ

−1
pool(Sg/n − ̂Σpool)̂Σ

−1/2
pool

}

}

≥ 1

4

1

G

G
∑

g=1

min
{

1, λp
{

(Sg/n − ̂Σpool)
2}{λp(̂Σ

−1
pool)

}2
}

≥ 1

4
min

{

1,
{

λp(̂Σ
−1
pool)

}2
} 1

G

G
∑

g=1

min
{

1, λp
{

(Sg/n − ̂Σpool)
2}
}

.

Note that for any y1 and y2, we have |min{1, y1} − min{1, y2}| ≤ |y1 − y2|.
Combing this inequality with (8), we have

∣

∣

∣

1

G

G
∑

g=1

min
{

1, λp
{(

Sg/n − ̂Σpool
)2}
}

− 1

G

G
∑

g=1

min
{

1, λp
{(

Sg/n − EΣ1
)2}
}∣

∣

∣
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≤ 1

G

G
∑

g=1

∣

∣

∣min
{

1, λp
{(

Sg/n − ̂Σpool
)2}
}

− min
{

1, λp
{(

Sg/n − EΣ1
)2}
} ∣

∣

∣

≤ 1

G

G
∑

g=1

∣

∣

∣λp
{(

Sg/n − ̂Σpool
)2} − λp

{(

Sg/n − EΣ1
)2}
∣

∣

∣

≤ 1

G

G
∑

g=1

∥

∥

∥

(

Sg/n − ̂Σpool
)2 − (Sg/n − EΣ1

)2
∥

∥

∥.

Note that

(A + B)2 − (A + C)2 = (A + B)2 − (A + B)(A + C)

+ (A + B)(A + C) − (A + C)2

= (A + B)(B − C) + (B − C)(A + C)

= (A + C)(B − C) + (B − C)2 + (B − C)(A + C)

holds for any A, B,C > 0. This, together with Lemma 1, SLLN and the fact that
E(‖S1/n − EΣ1‖) ≤ E‖S1‖/n + E‖EΣ1‖ < ∞, yields that

1

G

G
∑

g=1

∥

∥

∥

(

Sg/n − ̂Σpool
)2 − (Sg/n − EΣ1

)2
∥

∥

∥

≤
∥

∥

∥EΣ1 − ̂Σpool

∥

∥

∥

2 + 2

G

G
∑

g=1

(

∥

∥EΣ1 − ̂Σpool
∥

∥

)(

∥

∥Sg/n − EΣ1
∥

∥

)

a.s.−→ 0.

Thus, by noting that λp(·) is a continuous function (since (8)) and applying SLLN,

lim inf
G→∞ inf

0≤α≤1
̂R′′
1 (α, ̂Σ,Σ)

≥ lim inf
G→∞

1

4
min

{

1,
{

λp(̂Σ
−1
pool)

}2
} 1

G

G
∑

g=1

min
{

1, λp
{

(Sg/n − ̂Σpool)
2}
}

= 1

4
min

{

1,
[

λp{(EΣ1)
−1}]2

}

E
[

min
{

1, λp
{

(S1/n − EΣ1)
2}
}]

> 0 a.s.

Now, by (22), we have α̂∗
1 − α∗

1
a.s.−→ 0.

On the other hand, ifΣg are all the same, we can not guarantee ̂R′
1(α, ̂Σ,Σ)|α=0 <

0 a.s. asG → ∞.We consider the following two cases. If ̂R′
1(α, ̂Σ,Σ)|α=0 < 0, then

as the same proof in the case thatΣg are not all the same, we can show that (22) holds.
If ̂R′

1(α, ̂Σ,Σ)|α=0 ≥ 0, then by Theorem 3, we have α̂∗
1 = 0. Note that according

to Theorem 1, when Σg are all the same, we have α∗
1 = 0, and hence α̂∗

1 − α∗
1 = 0.

Therefore, the inequality (22) still holds. The rest of the proof is the same as the case
that Σg are not all the same, we can get α̂∗

1 − α∗
1

a.s.−→ 0.
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5.6 Proofs of (3) and (4)

We have

E tr
{

(Sg/n − ̂Σpool)Σ
−1
g

}2 − tr
{

(Σg − Σ)Σ−1
g

}2

= E tr
{

Σ
−1/2
g (Sg/n − ̂Σpool)Σ

−1/2
g

}2 − tr
{

Σ
−1/2
g (Σg − Σ)Σ

−1/2
g

}2

= trE
[

Σ
−1/2
g

{

Sg/n − ̂Σpool − (Σg − Σ)
}

Σ
−1/2
g

]2

=
p
∑

i, j=1

E
[{

Σ
−1/2
g

{

Sg/n − ̂Σpool − (Σg − Σ)
}

Σ
−1/2
g

}2

i j

]

.

Let Sg,g
′ = Σ

−1/2
g Sg′Σ−1/2

g , Σg,g′ = Σ
−1/2
g Σg′Σ−1/2

g , then Sg,g
′ ∼

Wp(Σ
g,g′

, n). Note that Var(Sg,g
′

i j ) = n
{

(Σ
g,g′
i j )2 + Σ

g,g′
i i Σ

g,g′
j j

}

, we have

E
[

Σ
−1/2
g

{

Sg/n − ̂Σpool − (Σg − Σ)
}

Σ
−1/2
g

]2

i j

= Var
(G − 1

nG
Sg,gi j − 1

nG

∑

g′ �=g

Sg,g
′

i j

)

= (G − 1)2

n2G2 Var
(

Sg,gi j

)+ 1

n2G2

∑

g′ �=g

Var
(

Sg,g
′

i j

)

= (G − 1)2

nG2 (δi j + 1) + 1

G2

∑

g′ �=g

1

n

{

(Σ
g,g′
i j )2 + Σ

g,g′
i i Σ

g,g′
j j

}

,

where δi j = 1 if i = j , otherwise, δi j = 0, Sg,g
′

i j andΣ
g,g′
i j are the (i, j)th components

of Sg,g
′
and Σg,g′

, respectively. Thus

E tr
{

(

Sg/n − ̂Σpool
)

Σ−1
g

}2 = tr
{

(Σg − Σ)Σ−1
g

}2 + (G − 1)2(p2 + p)

nG2

+ 1

nG2

∑

g′ �=g

[

tr(Σg′Σ−1
g )2 + {tr(Σg′Σ−1

g )
}2
]

.

Then we get (3) from (2).
For a2, we have

a2 = −a1 + 1

G

G
∑

g=1

E tr
{

(

Sg/n − ̂Σpool
)

Σ−1
g

(

SgΣ
−1
g /n − I

)

}

.
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Since ESg = nΣg and Sg , g = 1, . . . ,G are independent, we have

E tr
{

(

Sg/n − ̂Σpool
)

Σ−1
g

(

SgΣ
−1
g /n − I

)

}

= G − 1

G
E tr
{

(

SgΣ
−1
g /n

) (

SgΣ
−1
g /n − I

)

}

= G − 1

n2G
E tr(Sg,g)2 − (G − 1)p

G

= (G − 1)(p2 + p)

nG
,

where we have used Sg,g ∼ Wp(I , n) and E tr(Sg,g)2 = ∑p
i, j=1 E(Sg,gi, j )2 =

∑p
i, j=1

{

Var(Sg,gi, j ) + n2δi j
} = (n2 + n)p + np2. Hence

a2 = −a1 + (G − 1)(p2 + p)

nG
,

and we get (4).

5.7 Proof of Theorem 6

First of all, we show that R2(α, ̂Σ,Σ) is a strictly convex function of α on [0, 1],
which is equivalent to verify that a1 > 0.

Define Vg := Σ
−1/2
g (Sg/n − ̂Σpool)Σ−1

g (Sg/n − ̂Σpool)Σ
−1/2
g . Since Vg ≥ 0,

we have

E tr
{

(Sg/n − ̂Σpool)Σ
−1
g

}2 = E tr(Vg) ≥ 0,

and the equality holds if and only if Vg = 0 a.s. Note that Vg = 0 a.s. implies
Sg/n = ̂Σpool a.s., which is impossible. Hence a1 = E tr(Vg)/G > 0.

Secondly, we show that R2(α, ̂Σ,Σ) has unique minimum point at α∗
2 = −a2/a1.

As R2(α, ̂Σ,Σ) is a quadratic form, it is easy to verify that the unique minimum
value is attained at α∗

2 = −a2/a1. The remainder is to verify that α∗
2 ∈ [0, 1]. It follows

from (4) that a1 > −a2. We only need to verify −a2 ≥ 0. By Lemma 2, we know
tr(AB−1 + BA−1) ≥ 2p holds for any A > 0, B > 0. Thus, for any g �= g′,

1

n

{

tr(Σg′Σ−1
g )2 + tr(ΣgΣ

−1
g′ )2

}

= 1

n

[

tr(Σg′Σ−1
g )2 + tr

{

(Σg′Σ−1
g )2

}−1
]

≥ 2p/n,

1

n

[

{

tr(Σg′Σ−1
g )
}2 + {tr(ΣgΣ

−1
g′ )
}2
]

≥ 1

2n

{

tr(Σg′Σ−1
g ) + tr(ΣgΣ

−1
g′ )
}2 ≥ 2p2/n.

Then, by (3) and (4),

−a2 ≥ (G − 1)2(p2 + p)

nG2 − (G − 1)(p2 + p)

nG
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+ 1

nG3

G
∑

g=1

∑

g′ �=g

[

tr(Σg′Σ−1
g )2

+ {tr(Σg′Σ−1
g )
}2
]

≥ 1

n

G
∑

g=1

{ (G − 1)2(p2 + p)

G2 − (G − 1)(p2 + p)

G

}

+ p2 + p

G3

G
∑

g=1

G
∑

g′>g

2

n

≥ − (p2 + p)(G − 1)

nG2 + p2 + p

G3

G(G − 1)

n
= 0.

Note that when Σg = Σ ′
g for any g �= g′, we have these equalities hold. As

a consequence, we have a2 = 0, and hence α∗
2 = 0. The proof of Theorem 6 is

complete.

5.8 Proof of Theorem 7

For any g = 1, . . . ,G, we have that, Sg/n
a.s.−→ Σg. Consequently, as n → ∞, we

have

a1
a.s.−→

G
∑

g=1

tr
{

(Σg − Σ)Σ−1
g (Σg − Σ)Σ−1

g

}

/G =
G
∑

g=1

tr
{

(I − ΣΣ−1
g )2

}

/G,

where Σ =∑G
g=1 Σg/G. Similarly, as n → ∞,

a2
a.s.−→

G
∑

g=1

tr
{

(Σg − Σ)Σ−1
g (ΣΣ−1

g − I )
}

/G = −
G
∑

g=1

tr
{

(I − ΣΣ−1
g )2

}

/G,

and a3
a.s.−→∑G

g=1 tr
(

ΣΣ−1
g − I

)2
/G.

WhenΣg are not all the same, we have lim
n→∞ a1 > 0 and then α∗

2 = −a2/a1
a.s.−→ 1.

When Σg = Σg′ for any g �= g′, we have limn→∞ a1 = − limn→∞ a2 =
∑G

g=1 tr
{

(I − ΣΣ−1
g )2

}

/G = 0. Hence limn→∞ R2(α, ̂Σ,Σ) = limn→∞ a3 =
∑G

g=1 tr
(

ΣΣ−1
g − I

)2
/G a.s. Therefore, R2(α, ̂Σ,Σ) is a constant function of α.

5.9 Proof of Theorem 8

Define ˜S := (Σ0)
−1/2Sg(Σ0)

−1/2, ˜Σ := (Σ0)
−1/2Σg(Σ0)

−1/2, then ˜S ∼
Wp(˜Σ, n) and ˜S−1 has an inverse Wishart distribution, i.e. ˜S−1 ∼ W−1

p (˜Σ−1, n).

123

Author's personal copy



A shrinkage approach to joint estimation... 369

Note that (see, for instance, Letac and Massam (2004), page 308)

E˜S−2 = (n − p − 1)˜Σ−2 + ˜Σ−1tr(˜Σ−1)

(n − p)(n − p − 1)(n − p − 3)
,

E
{

˜S−1tr(˜S−1)
}

= 2˜Σ−2 + (n − p − 2)˜Σ−1tr(˜Σ−1)

(n − p)(n − p − 1)(n − p − 3)
,

we have (n − p − 2)E˜S−2 − E{˜S−1tr(˜S−1)} = ˜Σ−2/(n − p − 1).
Then, by noting that E

(

˜S−1
) = ˜Σ−1/(n − p − 1),

E tr

[

{

I − (n − p − 1)Σ0S
−1
g

}2 − (n − p − 1)

{

tr(Σ0S
−1
g )2 + {tr(Σ0S

−1
g )
}2
}

]

= E

[

p − 2(n − p − 1)tr(Σ0S
−1
g ) + (n − p − 1)

{

(n − p − 2)tr(Σ0S
−1
g )2

−{tr(Σ0S
−1
g )
}2
}

]

= p − 2(n − p − 1)trE(˜S−1)

+(n − p − 1)
[

(n − p − 2)trE(˜S−2) − {trE(˜S−1)
}2]

= tr
{

(Σg − Σ0)Σ
−1
g

}2
.

where we have used that tr{(Σg − Σ0)Σ
−1
g }2 = tr(I − ˜Σ−1)2 = p − 2tr(˜Σ−1) +

tr(˜Σ−2). Hence we get (6).

5.10 Proof of Theorem 9

For any g = 1, . . . ,G, we have that, Sg/n
a.s.−→ Σg as n → ∞. First of all, we proof

that̂b
a.s.−→ b =∑G

g=1 tr(I − ΣΣ−1
g )2/G > 0.

As n → ∞,

tr(I − r ̂ΣpoolS
−1
g )2

a.s.−→ tr(I − ΣΣ−1
g )2 > 0,

r2
[

tr(̂ΣpoolS
−1
g )2 + {tr(̂ΣpoolS

−1
g )
}2] a.s.−→ tr(ΣΣ−1

g )2 + {tr(ΣΣ−1
g )
}2

.

Hence, tr(I − r ̂ΣpoolS−1
g )2 − r

[

tr(̂ΣpoolS−1
g )2 + {

tr(̂ΣpoolS−1
g )
}2] a.s.−→ tr(I −

ΣΣ−1
g )2 > 0. As a consequence, we havêb

a.s.−→ b.
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Since r2tr{(Sg′ S−1
g )2}/n2+r2

{

tr(Sg′ S−1
g )
}2

/n2
a.s.−→ tr(Σg′Σ−1

g )2+{tr(Σg′Σ−1
g )
}2

,

we have

(G − 1)2(p2 + p)

nG2 + r2

n3G3

G
∑

g=1

∑

g′ �=g

[

tr(Sg′ S−1
g )2 + {tr(Sg′ S−1

g )
}2
]

a.s.−→ 0.

Therefore, as n → ∞, â1
a.s.−→ ∑G

g=1 tr(I − ΣΣ−1
g )2/G > 0. By (7), as n → ∞,

limn→∞ â2 = − limn→∞ â1 = −b a.s. Finally, we have α̂∗
2

a.s.−→ 1.

5.11 Proof of Theorem 10

Note that

a1 = 1

G

G
∑

g=1

tr
{

(Σg − Σ)Σ−1
g

}2 + (G − 1)2(p2 + p)

nG2

+ 1

nG3

G
∑

g=1

∑

g′ �=g

[

tr(Σg′Σ−1
g )2 + {tr(Σg′Σ−1

g )
}2
]

,

â1 =̂b + (G − 1)2(p2 + p)

nG2 + r2

n3G3

G
∑

g=1

∑

g′ �=g

[

tr(Sg′ S−1
g )2 + {tr(Sg′ S−1

g )
}2
]

.

First of all, we show that, for fixed n and p, â1
a.s.−→ a1 as G → ∞, which is

equivalent to prove that

̂b
a.s.−→ trE{I − (EΣ1)Σ

−1
1 }2 ≥ 0, (23)

1

G

G
∑

g=1

tr
{

(Σg − Σ)Σ−1
g

}2 a.s.−→ trE{I − (EΣ1)Σ
−1
1 }2, (24)

1

nG3

G
∑

g=1

∑

g′ �=g

[

tr(Sg′ S−1
g )2 + {tr(Sg′ S−1

g )
}2
]

a.s.−→ 0, (25)

1

nG3

G
∑

g=1

∑

g′ �=g

[

{

tr(Σg′Σ−1
g )
}2 + {tr(Σg′Σ−1

g )
}2
]

a.s.−→ 0 (26)

In the following, we first prove that (23) holds. By (6), we have

E tr

[

{I − r(EΣ1)S
−1
g }2 − r

[

tr{(EΣ1)S
−1
g }2

+ [tr{(EΣ1)S
−1
g }]2

]∣

∣

∣Σg

]

= tr{I − (EΣ1)Σ
−1
g }2.
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Thus, by SLLN,

1

G

G
∑

g=1

[

tr{I − r(EΣ1)S
−1
g }2 − r

[

tr{(EΣ1)S
−1
g }2 +

{

tr
{

(EΣ1)S
−1
g

}

}2
]]

a.s.−→ trE{I − (EΣ1)Σ
−1
1 }2 ≥ 0.

Noting that

̂b = max
{

0,
1

G

G
∑

g=1

[

tr(I − r ̂ΣpoolS
−1
g )2 − r

{

tr(̂ΣpoolS
−1
g )2 + {tr(̂ΣpoolS

−1
g )
}2
}]}

.

In order to show that̂b
a.s.−→ trE{I − (EΣ1)Σ

−1
1 }2 ≥ 0, we need to prove that

1

G

G
∑

g=1

[

tr(I − r ̂ΣpoolS
−1
g )2 − r

{

tr(̂ΣpoolS
−1
g )2 + {tr(̂ΣpoolS

−1
g )
}2
}]

− 1

G

G
∑

g=1

[

tr{I − r(EΣ1)S
−1
g }2 − r

[

tr
{

(EΣ1)S
−1
g

}2 +
{

tr
{

(EΣ1)S
−1
g

}

}2
]]

a.s.−→ 0.

It is sufficient to prove that

1

G

G
∑

g=1

[

tr(I − r ̂ΣpoolS
−1
g )2 − tr

{

I − r(EΣ1)S
−1
g

}2
]

a.s.−→ 0, (27)

1

G

G
∑

g=1

[

tr(̂ΣpoolS
−1
g )2 − tr

{

(EΣ1)S
−1
g

}2
]

a.s.−→ 0, (28)

1

G

G
∑

g=1

[

{

tr(̂ΣpoolS
−1
g )
}2 −

{

tr
{

(EΣ1)S
−1
g

}

}2] a.s.−→ 0. (29)

Note that tr(A2) − tr(B2) = tr(A − B)(A + B) and apply SLLN and Lemma 1, we
have

∣

∣

∣

∣

1

G

G
∑

g=1

[

tr
(

I − r ̂ΣpoolS
−1
g

)2 − tr
{

I − r(EΣ1)S
−1
g

}2
]

∣

∣

∣

∣

≤ r

G

G
∑

g=1

∣

∣

∣

∣

tr
[

{

(̂Σpool − EΣ1)S
−1
g

}{

2I − r(̂Σpool + EΣ1)S
−1
g

}

]

∣

∣

∣

∣

≤ r
√
p

G

G
∑

g=1

(∥

∥̂Σpool − EΣ1
∥

∥

) ∥

∥S−1
g

∥

∥

{

2p + r
(‖̂Σpool‖ + ‖EΣ1‖

)‖S−1
g ‖}
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= 2r p
3
2
(∥

∥̂Σpool − EΣ1
∥

∥

)

( 1

G

G
∑

g=1

∥

∥S−1
g

∥

∥

)

+r2 p
1
2
(‖̂Σpool‖ + ‖EΣ1‖

) (∥

∥̂Σpool − EΣ1
∥

∥

)

( 1

G

G
∑

g=1

∥

∥S−1
g

∥

∥

2
)

= 2rp
3
2
(∥

∥̂Σpool − EΣ1
∥

∥

) (

E
∥

∥S−1
1

∥

∥

) + r2 p
1
2
(‖̂Σpool‖

+‖EΣ1‖
) (∥

∥̂Σpool − EΣ1
∥

∥

) (

E
∥

∥S−1
g

∥

∥

2)
.

This proves (27). And follow the same procedure, we can get (28).
To verify (29), we note that

∣

∣

∣

1

G

G
∑

g=1

[

{

tr(̂ΣpoolS
−1
g )
}2 − {tr((EΣ1)S

−1
g

)}2
]∣

∣

∣

≤ 1

G

G
∑

g=1

{∣

∣

∣tr
{

(̂Σpool − EΣ1)S
−1
g

}

∣

∣

∣

} {

∣

∣tr
{

(̂Σpool + EΣ1)S
−1
g

}

∣

∣

∣

}

≤ p
(∥

∥̂Σpool − EΣ1
∥

∥

) (‖̂Σpool + EΣ1
∥

∥

)

( 1

G

G
∑

g=1

‖S−1
g ‖2

)

a.s.−→ 0.

where we have used
∑G

g=1 ‖S−1
g ‖2/G a.s.−→ E‖S−1

g ‖2 < ∞, and ̂Σpool
a.s.−→ EΣ1.

Therefore we get (23).
In order to prove (24), we have

∣

∣

∣

1

G

G
∑

g=1

[

tr(I − ΣΣ−1
g )2 − tr{I − (EΣ1)Σ

−1
g }2

]∣

∣

∣

≤ 1

G

G
∑

g=1

∣

∣

∣tr
[

{

(̂Σ − EΣ1)Σ
−1
g

}{

2I − (Σ + EΣ1)Σ
−1
g

}

]∣

∣

∣

≤
√
p

G

G
∑

g=1

(∥

∥Σ − EΣ1
∥

∥

) (∥

∥Σ−1
g

∥

∥

) {

2p + (‖Σ‖ + ‖EΣ1‖
)‖Σ−1

g ‖}

= 2p
3
2
(∥

∥Σ − EΣ1
∥

∥

)

( 1

G

G
∑

g=1

∥

∥Σ−1
g

∥

∥

)

+√
p
(‖Σ‖ + ‖EΣ1‖

) (∥

∥Σ − EΣ1
∥

∥

)

( 1

G

G
∑

g=1

∥

∥Σ−1
g

∥

∥

2
)

a.s.−→ 0.

where we have used Σ
a.s.−→ EΣ1, and

∑G
g=1 ‖Σ−1

g ‖2/G a.s.−→ E‖Σ−1
1 ‖2 < ∞.

123

Author's personal copy



A shrinkage approach to joint estimation... 373

The proofs of (25) and (26) are similar, so we only prove (25). By Lemma 1 and
SLLN, as G → ∞, we have

1

G3

G
∑

g=1

∑

g′ �=g

[

tr(Sg′ S−1
g )2 + {tr(Sg′ S−1

g )
}2
]

≤ 1

G3

G
∑

g=1

∑

g′ �=g

{√
p‖(Sg′ S−1

g )2‖ + p‖Sg′ ‖2 ‖S−1
g ‖2

}

≤ 2p

G3

G
∑

g=1

∑

g′ �=g

‖Sg′ ‖2 ‖S−1
g ‖2 ≤ 2p

G

( 1

G

G
∑

g=1

‖Sg‖2
)( 1

G

G
∑

g=1

‖S−1
g ‖2

)

a.s.−→ 0.

Hence we get (25). Therefore, for fixed n and p, we have â1
a.s.−→ a1 as G → ∞. On

the other hand, according to (4) and (7), we have |̂a2 − a2| = |̂a1 − a1|, and hence
â2

a.s.−→ a2 as G → ∞. By the fact that α∗
2 = −a2/a1 ≥ 0 and α̂∗

2 = max{0,−â2/̂a1},
we have α̂∗

2 − α∗
2

a.s.−→ 0. The proof of Theorem 10 is complete.
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