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In the past several decades, meta-analysis has been
widely used to pool multiple studies for evidence-based prac-
tice. To conduct a meta-analysis, the mean and variance
from each study are often required; whereas in certain stud-
ies, the five-number summary may instead be reported that
consists of the median, the first and third quartiles, and/or
the minimum and maximum values. To transform the five-
number summary back to the mean and variance, several
popular methods have emerged in the literature. However,
we note that most existing methods are developed under the
normality assumption; and when this assumption is violated,
these methods may not be able to provide a reliable transfor-
mation. In this paper, we propose to estimate the mean and
variance from the five-number summary of a log-normal dis-
tribution. Specifically, we first make the log-transformation
of the reported quantiles. With the existing mean estimators
and newly proposed variance estimators under the normal-
ity assumption, we construct the estimators of the log-scale
mean and variance. Finally, we transform them back to the
original scale for the final estimators. We also propose a bias-
corrected method to further improve the estimation of the
mean and variance. Simulation studies demonstrate that our
new estimators have smaller biases and smaller relative risks
in most settings. A real data example is used to illustrate
the practical usefulness of our new estimators.

Keywords and phrases: Bias correction, Five-number
summary, Log-normal distribution, Meta-analysis, Variance.

1. INTRODUCTION

In the past several decades, meta-analysis has been
widely used to pool multiple studies for evidence-based prac-
tice. With accumulated evidence based on meta-analysis,
more reliable and convincing conclusions are able to be
drawn for scientific questions. In medical studies, the mean
and variance (or standard deviation) are the most com-
monly reported summary statistics, especially when the data
are normally distributed. In certain situations, however, re-
searchers may instead report the whole or part of the five-
number summary, which consists of the minimum value a,
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the first quartile q1, the median m, the third quartile q3,
and the maximum value b. For convenience, we define the
three common scenarios as follows:

S1 = {a,m, b;n},
S2 = {q1,m, q3;n},
S3 = {a, q1,m, q3, b;n},

where n is the sample size of the data.
To our knowledge, most existing meta-analytical meth-

ods, as well as the associated softwares, have been devel-
oped to analyze the studies with the mean and variance es-
timates. For the studies reported with the five-number sum-
mary, early researchers often excluded them for further anal-
ysis by claiming no sufficient data available. Needless to say,
such a procedure will often lose valuable information from
the literature and, consequently, the final conclusion is less
reliable or is subject to publication bias, especially when a
large number of studies were reported with the five-number
summary. To avoid such information loss, a few methods for
estimating the mean and variance (or standard deviation)
from the five-number summary have been developed in the
recent literature, including, for example, [11], [22], [23], [1],
[16] and [21]. To show their popularity, we note that [23] and
[16] have been cited 1185 and 162 times in Google Scholar
as of 30 April 2020, respectively. However, it is also known
that most existing methods are developed under the normal-
ity assumption, and in case if this assumption is violated,
the existing methods may not be able to provide a reliable
estimation. As an example, [20] and [9] showed that the
index values of the vitamin D level tend to be positively
skewed and so are unlikely to follow a normal distribution.
In medical practice, skewed data are often modeled by the
log-normal distribution; see Section 2 for more discussion.

In this paper, we propose to estimate the mean and
variance from the reported five-number summary of a log-
normal distribution with parameters μ and σ2, LN(μ, σ2).
Specifically, we first make the log-transformation of the five-
number summary; we then apply the existing estimators for
normal data to estimate the log-scale mean and variance;
and lastly, we transform them back to the original scale to
achieve the final estimates of the mean and variance of the
log-normal distribution. Note that the above three-step es-
timators are straightforward and easy to implement, yet on
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the other side, they may not be guaranteed to be unbiased.
Inspired by this, we further propose a method to improve
the three-step estimators by bias correction, and the sim-
ulation results show that the bias-corrected estimators are
nearly unbiased and have smaller relative risks.

The following notations will be used throughout the pa-
per. Let X1, X2, . . . , Xn be an independent and identically
distributed random sample of size n from LN(μ, σ2). Then
by definition, Yi = ln(Xi), i = 1, 2, . . . , n, follow a normal
distribution with mean μ and variance σ2. We further define
Zi = (Yi − μ)/σ as the standardized normal random vari-
ables. Then we have a = exp(μ+ σaz), q1 = exp(μ+ σq1,z),
m = exp(μ+σmz), q3 = exp(μ+σq3,z) and b = exp(μ+σbz),
where {az, q1,z,mz, q3,z, bz} represents the five-number sum-
mary of the standardized normal sample Z1, Z2, . . . , Zn.

The rest of the paper is organized as follows. In Section
2, we first propose the intermediate estimators for the log-
scale mean and variance, and then transform them back to
the original scale to achieve the final estimates of the mean
and variance. In Section 3, we propose to further improve
the three-step estimators in Section 2 by bias correction.
We then demonstrate in Section 4 through simulation stud-
ies that our bias-corrected estimators are able to eliminate
biases and achieve smaller relative risks in most settings.
Section 5 presents a real data analysis to illustrate the use-
fulness of our new estimators. The paper is concluded in
Section 6 with some discussion and future directions.

2. ESTIMATING THE MEAN AND
VARIANCE FROM A LOG-NORMAL

DISTRIBUTION

Let X be a random variable that follows a log-normal
distribution LN(μ, σ2), or equivalently, Y = ln(X) follows a
normal distribution N(μ, σ2). Then by definition, the mean
and variance of X can be derived as

(1) μX = E(X) = exp

(
μ+

σ2

2

)

and

(2) σ2
X = Var(X) = exp(2μ+ 2σ2)− exp(2μ+ σ2).

For estimating the mean and standard deviation from
the five-number summary, several popular methods have
emerged in the recent literature, including, for example, [23],
[16] and [21]. However, we note that most existing methods
are developed under the normality assumption, and they
may not be directly applicable for the log-normal data. In
particular, the log-normal data are known to be positively
skewed so that the mid-range (a+b)/2 does not serve as the
center information as that for the normal data. As a rem-
edy, if the raw data are transformed to the log-scale, then by
noting that ln(a) and ln(b) are the minimum and maximum

values of a normal sample, we can apply (ln(a)+ ln(b))/2 to
estimate the center information of the log-transformed data.

The logarithmic transformation has been widely used in
statistics and related areas to transform the non-normal
data to the normal data. As a well-known example, [3] in-
troduced the Box-Cox transformation as

y(λ) =

⎧⎨
⎩

yλ − 1

λ
, if λ �= 0,

ln(y), if λ = 0,

where the parameter λ is to determine the transforma-
tion formula for the non-normal data. Since this seminal
paper, the Box-Cox transformation has been widely used
in many different aspects of data-analysis, in which the
log-transformation with λ = 0 is always among the most
commonly used [15, 2, 14, 10]. Another well-known exam-
ple of the log-transformation is for microarray data, where
the gene expression data from the raw intensities are often
highly skewed with nearly a half of data being within the
interval (0,1) and the other half being distributed in the
interval (1, ∞). After the log-transformation, the raw in-
tensities are compressed to a narrower yet more symmetric
range and the variance of the intensities is also stabilized.
This procedure is also known as the normalization of mi-
croarray data.

Following the spirit of the log-transformation, to estimate
the mean and variance from a log-normal distribution in
Sections 2.1 to 2.3, we first transform the five-number sum-
mary under the three scenarios to the log-scale. Based on
the existing standard deviation estimators, we propose un-
biased variance estimators under three scenarios. Together
with the existing mean estimators, we apply them to esti-
mate the mean and variance from the log-transformed data.
Lastly, we apply formulas (1) and (2) to transform the in-
termediate estimates back to achieve the final estimates of
the mean and variance.

2.1 Estimation under scenario S1

For the log-normal data under scenario S1 = {a,m, b;n},
we take the log-scale of the median and the minimum and
maximum values. Then by [16], we estimate the mean of the
log-transformed data as

(3) μ̂1 = w1

(
ln(a) + ln(b)

2

)
+ (1− w1) ln(m),

where w1 = 4/(4 + n0.75). Further by [23], we propose an
unbiased variance estimator of the log-transformed data as
follows:

z−1
1

(
ln(b)− ln(a)

ξ

)2

,

where z1 = E[(bz − az)/ξ]
2 and ξ = 2Φ−1[(n− 0.375)/(n+

0.25)] with Φ−1 being the quantile function of the standard
normal distribution.
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Figure 1. The green points represent the true values of the
coefficient z1 for n from 5 to 400, and the red line represents

the approximate function of z1.

We note, however, that the analytical form of the coeffi-
cient z1 involves some complicated computation of the order
statistics and may not be readily accessible to practitioners.
To derive an approximation formula of z1 for practical use,
we compute the numerical values of z1 for n up to 400 and
plot them in Figure 1. Observing that z1 is a monotoni-
cally decreasing function of the sample size n, we propose
to approximate it by the power function c0+c1[ln(n)]

c2 with
c1 > 0 and c2 < 0, and further derive the best approximation
as z1 ≈ 1.01 + 0.25[ln(n)]−2. We also plot the approximate
function of z1 in Figure 1, which shows that our approxima-
tion is quite accurate for the sample size up to 400. Then
with the proposed approximation, we estimate the variance
of the log-transformed data as

(4) σ̂2
1 =

(
ln(b)− ln(a)

ξ

)2 (
1.01 +

0.25

(ln(n))2

)−1

.

Finally, with the intermediate estimators (3) and (4) for
the log-transformed data, we transform them back to the
original scale and get the mean and variance estimators as

(5) μ̂X,1 = exp

(
μ̂1 +

σ̂2
1

2

)

and

(6) σ̂2
X,1 = exp(2μ̂1 + 2σ̂2

1)− exp(2μ̂1 + σ̂2
1).

2.2 Estimation under scenario S2

For the log-normal data under scenario S2 =
{q1,m, q3;n}, as in Section 2.1 we take the log-scale of the
median and the first and third quartiles. By [16], we estimate

the mean of the log-transformed data as

(7) μ̂2 = w2

(
ln(q1) + ln(q3)

2

)
+ (1− w2) ln(m),

where w2 = 0.7 + 0.39/n. And also by [23], we propose an
unbiased variance estimator of the log-transformed data as
follows:

z−1
2

(
ln(q3)− ln(q1)

η

)2

,

where z2 = E[(q3,z − q1,z)/η]
2 and η = 2Φ−1[(0.75n −

0.125)/(n+0.25)]. It is noteworthy that z2σ̂
2
2 has been pro-

posed in [18] to estimate the variance of the log-transformed
data under scenario S2. It is evident that [18]’s estimator is
biased and has a larger variance than our new estimator.

Similar to z1, the theoretical values of z2 is complicated
to be computed for practitioners. Following the same spirit
in Section 2.1, we approximate z2 with a power function and
conduct the best approximation formula as z2 ≈ 1+1.58/n.
With the approximate formula, we estimate the variance of
the log-transformed data as

(8) σ̂2
2 =

(
ln(q3)− ln(q1)

η

)2 (
1 +

1.58

n

)−1

.

Finally, with the intermediate estimators (7) and (8), we
transform the data back to the original scale and get the
mean and variance estimators as

(9) μ̂X,2 = exp

(
μ̂2 +

σ̂2
2

2

)

and

(10) σ̂2
X,2 = exp(2μ̂2 + 2σ̂2

2)− exp(2μ̂2 + σ̂2
2).

2.3 Estimation under scenario S3

For the log-normal data under scenario S3 =
{a, q1,m, q3, b;n}, we take the log-scale for all the values
from the five-number summary. We then apply [16] to esti-
mate the mean of the log-transformed data as

μ̂3 =w3,1

(
ln(a) + ln(b)

2

)
+ w3,2

(
ln(q1) + ln(q3)

2

)
+ (1− w3,1 − w3,2) ln(m),(11)

where w3,1 = 2.2/(2.2 + n0.75) and w3,2 = 0.7− 0.72n−0.55.
By [21], we propose an unbiased variance estimator of the
log-transformed data as follows:

z−1
3

[
w3

(
ln(b)− ln(a)

ξ

)
+ (1− w3)

(
ln(q3)− ln(q1)

η

)]2
,

where z3 = E[w3(bz − az)/ξ + (1− w3)(q3,z − q1,z)/η]
2 and

w3 = 1/(1 + 0.07n0.6). Again for practical use, we approx-
imate z3 with a power function and conduct the best ap-
proximation formula as z3 ≈ 1 + 0.28[ln(n)]−2. With the
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approximate formula, we estimate the variance of the log-
transformed data as

σ̂2
3 =

[
w3

(
ln(b)− ln(a)

ξ

)
+ (1− w3)

(
ln(q3)− ln(q1)

η

)]2
(
1 +

0.28

(ln(n))2

)−1

.(12)

Finally, with the intermediate estimators (11) and (12)
for the log-transformed data, we transform them back to the
original scale that yield the mean and variance estimators
as

(13) μ̂X,3 = exp

(
μ̂3 +

σ̂2
3

2

)

and

(14) σ̂2
X,3 = exp(2μ̂3 + 2σ̂2

3)− exp(2μ̂3 + σ̂2
3).

3. BIAS-CORRECTED ESTIMATION

The estimation methods in Section 2 for the mean and
variance are simple and easy to implement for the log-
normal data. One problem is that, with a direct plug-in for
the estimated parameters, the final estimates of the mean
and variance may have non-negligible bias. In this section,
we propose to further improve the estimation by eliminating
the bias introduced by the plug-in method.

3.1 Bias-corrected estimation under scenario
S1

Under scenario S1 = {a,m, b;n}, we derive in Appendix
A that the expected value of the mean estimator (5) is ap-
proximately

(15) E(μ̂X,1) ≈ φ1 exp

(
μ+

σ2

2

)
,

where φ1 = 1+0.565σ2/n+0.37σ4/n. By (15), it is then nat-
ural to consider the bias-corrected estimator for the mean
as μ̂X,1/φ̂1, where φ̂1 = 1+ 0.565σ̂2

1/n+ 0.37σ̂4
1/n. We esti-

mate σ2 in φ1 by σ̂2
1 in (4). For σ4 in φ1, following the same

spirit as in the derivation of σ̂2
1 , we propose the estimator

σ̂4
1 = [(ln(b)−ln(a))/ξ]4/[1+2.23(ln(n))−2]. Finally, we have

(16) μ̃X,1 = exp

(
μ̂1 +

σ̂2
1

2

)(
1 +

0.565

n
σ̂2
1 +

0.37

n
σ̂4
1

)−1

.

Furthermore, we derive in Appendix A that the expected
value of the variance estimator (6) can be approximated as

(17) E(σ̂2
X,1) ≈ φ1,1 exp(2μ+ 2σ2)− φ1,2 exp(2μ+ σ2),

where φ1,1 = 1 + 2.26σ2/n + 5.92σ4/n and φ1,2 = 1 +
2.26σ2/n+ 1.48σ4/n. This then suggests the bias-corrected
estimator of the variance as

σ̃2
X,1 =exp(2μ̂1 + 2σ̂2

1)

(
1 +

2.26

n
σ̂2
1 +

5.92

n
σ̂4
1

)−1

− exp(2μ̂1 + σ̂2
1)

(
1 +

2.26

n
σ̂2
1 +

1.48

n
σ̂4
1

)−1

.(18)

3.2 Bias-corrected estimation under scenario
S2

Under scenario S2 = {q1,m, q3;n}, we derive in Appendix
B that the expected value of the mean estimator (9) is ap-
proximately

(19) E(μ̂X,2) ≈ φ2 exp

(
μ+

σ2

2

)
,

where φ2 = 1 + 0.57σ2/n + 0.75σ4/n. By (19), it is nat-
ural to consider the bias-corrected estimator of the mean
as μ̂X,2/φ̂2, where φ̂2 = 1 + 0.57σ̂2

2/n + 0.75σ̂4
2/n. We esti-

mate σ2 in φ2 by σ̂2
2 in (8). For σ4 in φ2, following the same

spirit as in the derivation of σ̂2
2 , we propose the estimator

σ̂4
2 = [(ln(q3)− ln(q1))/η]

4/(1 + 19.2/n1.2). Finally, we have

(20) μ̃X,2 = exp

(
μ̂2 +

σ̂2
2

2

)(
1 +

0.57

n
σ̂2
2 +

0.75

n
σ̂4
2

)−1

.

Furthermore, we derive in Appendix B that the expected
value of the variance estimator (10) can be approximated as

(21) E(σ̂2
X,2) ≈ φ2,1 exp(2μ+ 2σ2)− φ2,2 exp(2μ+ σ2),

where φ2,1 = 1 + 2.28σ2/n + 12σ4/n and φ2,2 = 1 +
2.28σ2/n+3σ4/n. Thus we propose the bias-corrected esti-
mator of the variance as

σ̃2
X,2 =exp(2μ̂2 + 2σ̂2

2)

(
1 +

2.28

n
σ̂2
2 +

12

n
σ̂4
2

)−1

− exp(2μ̂2 + σ̂2
2)

(
1 +

2.28

n
σ̂2
2 +

3

n
σ̂4
2

)−1

.(22)

3.3 Bias-corrected estimation under scenario
S3

Under scenario S3 = {a, q1,m, q3, b;n}, we derive in Ap-
pendix C that the expected value of the mean estimator is

(23) E(μ̂X,3) ≈ φ3 exp

(
μ+

σ2

2

)
,

where φ3 = 1+ 0.405σ2/n+ 0.315σ4/n. By (23), it is natu-
ral to consider the bias-corrected estimator of the mean as
μ̂X,3/φ̂3, where φ̂3 = 1 + 0.405σ̂2

3/n + 0.315σ̂4
3/n. We esti-

mate σ2 in φ3 by σ̂2
3 in (12). For σ4 in φ3, following the same

spirit as in the derivation of σ̂2
3 , we propose the estimator
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Table 1. The normal-based mean and variance estimators under the three scenarios

Scenario Mean estimator Variance estimator

S1 w1

(
a+ b

2

)
+ (1− w1)m

(
b− a

ξ

)2 (
1.01 +

0.25

(ln(n))2

)−1

S2 w2

( q1 + q3
2

)
+ (1− w2)m

(
q3 − q1

η

)2 (
1 +

1.58

n

)−1

S3 w3,1

(
a+ b

2

)
+ w3,2

( q1 + q3
2

)
(1− w3,1 − w3,2)m

[
w3

(
b− a

ξ

)
+ (1− w3)

(
q3 − q1

η

)]2 (
1 +

0.28

(ln(n))2

)−1

σ̂4
3 = [w3(ln(b)− ln(a))/ξ+(1−w3)(ln(q3)− ln(q1))/η]

4/(1+
3.93/n). Finally, we have

μ̃X,3 = exp

(
μ̂3 +

σ̂2
3

2

)(
1 +

0.405

n
σ̂2
3 +

0.315

n
σ̂4
3

)−1

.

(24)

Furthermore, we derive in Appendix C that the expected
value of the variance estimator (14) can be approximated as

(25) E(σ̂2
X,3) ≈ φ3,1 exp(2μ+ 2σ2)− φ3,2 exp(2μ+ σ2),

where φ3,1 = 1 + 1.62σ2/n + 5.04σ4/n and φ3,2 = 1 +
1.62σ2/n + 1.26σ4/n. This suggests the bias-corrected es-
timator of the variance as

σ̃2
X,3 =exp(2μ̂3 + 2σ̂2

3)

(
1 +

1.62

n
σ̂2
3 +

5.04

n
σ̂4
3

)−1

− exp(2μ̂3 + σ̂2
3)

(
1 +

1.62

n
σ̂2
3 +

1.26

n
σ̂4
3

)−1

.(26)

4. SIMULATION STUDY

In this section, we conduct simulation studies to assess
the finite sample performance of the proposed estimators,
including the plug-in (PI) estimators in (5), (6), (9), (10),
(13) and (14), and the bias-corrected (BC) estimators in
(17), (18), (21), (22), (25) and (26). In addition, our simu-
lations also include the existing normal-based (NB) estima-
tors (see Table 1) for comparison, as well as to explore their
potential consequence.

For each of the three scenarios, we consider two different
log-normal distributions: LN(3, 0.32) and LN(3, 0.72). As
shown in Figure 2, LN(3, 0.32) is a less right-skewed distri-
bution compared to LN(3, 0.72). Then for each setting with
the sample size up to 400, we generate T = 100,000 random
samples and apply the NB, PI and BC methods to estimate
the mean and variance of the log-normal distribution. Fi-
nally, to compare the performance of the three estimation
methods, we apply the relative bias (RB) defined as

RB(μ̂X) =
1

T

T∑
i=1

μ̂X,i − μX

μX

Figure 2. The dashed line represents the probability density
function of LN(3, 0.32) and the solid line represents the

probability function of LN(3, 0.72).

and

RB(σ̂2
X) =

1

T

T∑
i=1

σ̂2
X,i − σ2

X

σ2
X

,

where μ̂X,i and σ̂2
X,i are the estimates from three estimation

methods from the ith sample. In addition, we also compute
the relative mean squared error (RMSE) for the mean esti-
mators and compute the relative Stein’s loss (RSL) [8] for
the variance estimators defined as

RMSE(μ̂X) =

∑T
i=1(μ̂X,i − μX)2∑T
i=1(X̄i − μX)2

and

RSL(σ̂2
X) =

∑T
i=1

(
σ̂2
X,i/σ

2
X − ln(σ̂2

X,i/σ
2
X)− 1

)
∑T

i=1 (S
2
i /σ

2
X − ln(S2

i /σ
2
X)− 1)

,

where X̄i is the sample mean and S2
i is the sample variance

of the ith sample. Note that Stein’s loss penalizes the under-
estimation as equally as the overestimation, which is more
appropriate for evaluating the variance estimators, in partic-
ular for the skewed distributions. With 100,000 simulations
for each setting, the simulation results under scenario S1 are
reported in Figure 3 for the mean estimators, and in Figure
4 for the variance estimators.

From the reported RBs and RMSEs of the mean estima-
tors in Figure 3, it is evident that the PI and BC estima-
tors perform better than the NB estimator in most settings.

Estimating the mean and variance from the five-number summary of a log-normal distribution 523



Figure 3. The RBs and RMSEs of three types of mean
estimators under scenario S1, where the blue empty points
represent the NB estimator, the green solid points represent
the PI estimator, and the orange empty triangles represent

the BC estimator.

Specifically, in view of the RBs, the NB estimator is signifi-
cantly biased in particular for the large sample sizes, which
also leads to the larger RMSEs. Furthermore, for the newly
proposed PI and BC estimators of the mean, we note that
the BC estimator always provides smaller RBs and smaller
RMSEs than the PI estimator, and such improvements get
more evident when n is small. For the simulation results on
the variance estimators reported in Figure 4, it is noted that
the NB estimator yields unacceptably large RBs and RSLs.
This indicates that the NB estimator is not applicable in
practice. For the newly proposed PI and BC estimators of
the variance, the BC estimator always yields smaller RBs
and smaller RSLs than the PI estimator. To conclude, with
the RB, RMSE and RSL as the criteria, the BC method
performs better than the NB and PI methods and can be
recommended for practical use.

To avoid the main text being too lengthy, we report the
simulation results under scenarios S2 and S3 in Appendix
D and Appendix E, where the comparative results remain
similar as those under scenario S1.

5. REAL DATA ANALYSIS

Through the simulation studies, it has been shown that
our new estimators offer more accurate estimates of the
mean and variance if the data follow a log-normal distri-
bution. In this section, we apply the proposed methods to a

Figure 4. The RBs and RSLs of three types of variance
estimators under scenario S1, where the blue empty points
represent the NB estimator, the green solid points represent
the PI estimator, and the orange empty triangles represent

the BC estimator.

real data example and compare the results with those based
on the NB methods.

[17] studied the relationship between the low serum vita-
min D levels and tuberculosis. They included seven studies
in meta-analysis, where two of them reported the mean and
standard deviation for cases and controls, three of them re-
ported the median and range, one of them reported the mean
and range, and the other one reported the odds ratio. Not-
ing that the odd ratio is not able to be synthesized with the
mean and standard deviation, we exclude that study from
our meta-analysis and present the summary statistics of the
other six studies in the following table.

From Table 2 we note that, for the studies reported with
the medians (or mean) and ranges, the median (or mean)
values are closer to the minimum values than to the maxi-
mum values. It is known that similar patterns have also been
observed in the literature, see, for example, [20] and [9], in
which the data are positively skewed so that the NB esti-
mates may lead to misleading results. For the study reported
with the mean and range, we apply the mean directly in the
meta-analysis. Recall that the SD is equal to the multipli-
cation of the mean and

√
exp(σ2)− 1 under a log-normal

distribution. To estimate the SD, we first estimate exp(σ2)
by following the same spirits of the PI estimation in Section
2 and the BC estimation in Section 3. Then with the es-
timate of exp(σ2) plugged into

√
exp(σ2)− 1, the final SD

estimate is achieved by taking the multiplication of the re-
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Table 2. The summary statistics of the six studies included in the meta-analysis

Study Cases Controls

Davies et al. (1985) [5] Median (range): 16 (2.25-74.25) Median (range): 27.25 (9-132.5)
Grange et al. (1985) [12] Median (range): 65.75 (43.75-130.5) Median (range): 69.5 (48.5-125)
Davies et al. (1987) [7] Median (range): 39.75 (16.75-89.25) Median (range): 65.5 (26.25-114.75)
Davies et al. (1988) [6] Mean (SD): 69.5 (24.5) Mean (SD): 95.5 (29.25)
Chan et al. (1994) [4] Mean (SD): 46.5 (18.5) Mean (SD): 52.25 (15.75)

Sasidharan et al. (2002) [19] Mean (range): 26.75 (2.5-75) Mean (range): 48.5 (22.5-145)

Figure 5. The forest plot based on the normal-based (NB) estimates.

Figure 6. The forest plot based on the plug-in (PI) estimates.

ported mean and the estimate of
√

exp(σ2)− 1 from each
estimation method. In addition by [13], the effect sizes are
measured with the standardized mean difference (SMD). We
fit the fixed-effect and random-effects models to the esti-
mates based on the NB, PI and BC methods. The estimates
of the mean and standard deviation from the three methods
and their meta-analytical results are reported in Figures 5,
6 and 7, respectively.

As shown in the forest plots, the three methods lead to
similar estimates of the means and standard deviations, and
therefore yield similar effect sizes and confidence intervals.
We note, however, that the values of the heterogeneity index
I2 are different in the three meta-analyses. Specifically, the

value of I2 in the meta-analysis based on the NB estimates
is as large as 33% which is of the moderate heterogeneity
according to [13] with the threshold as 25%. While for the
I2 values from the other two meta-analyses, they are 18%
and 21%, respectively, both indicating a low heterogeneity.
This coincides with the p-values in the three meta-analyses,
where the p-value in the first meta-analysis is smallest, indi-
cating a more significant heterogeneity among the included
studies. Together with the simulation results under scenario
S1 that the NB estimates are not reliable for skewed data,
we conclude that the meta-analysis based on the NB esti-
mates is not reliable, but instead our new estimates should
be adopted for further meta-analysis.
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Figure 7. The forest plot based on the bias-corrected (BC) estimates.

6. DISCUSSION

Meta-analysis has become increasingly popular in the
past several decades, especially in evidence-based practice.
By synthesizing the evidence from multiple studies, re-
searchers can achieve more reliable conclusions for a spe-
cific scientific question. In clinical trials with continuous out-
comes, the mean and variance are most commonly reported;
whereas some other studies may report the five-number sum-
mary or part of it as the summary statistics. Several popular
methods have been proposed in the recent literature to es-
timate the mean and variance (or standard deviation) from
the five-number summary. However, most existing methods
are developed under the normality assumption, and in case
if this assumption is violated, the existing methods may not
be able to provide a reliable estimation. Thus blindly ap-
plying the existing methods to skewed data may lead to
misleading or erroneous conclusions.

In this paper, we estimate the mean and variance from the
five-number summary of a log-normal distribution. Firstly,
we make the log-transformation of the five-number sum-
mary; we then apply the existing estimators for normal data
to estimate the log-scale mean and variance; and lastly, we
transform them back to the original scale to achieve the final
estimates. The above three-step estimators are straightfor-
ward and easy to implement, yet they may not be guar-
anteed to be unbiased. This then motivates us to further
improve the plug-in estimators by bias correction. Through
simulation studies, we demonstrate that our new estimators
perform better than the normal-based estimators in most
settings.

In addition to the plug-in and bias-corrected methods
considered in this paper, a potentially novel method can
also be the quantile least squares (QLS) estimation [25, 24]
as follows:

θ̂QLS = argmin
θ

{[ξ̂k − ξk(θ)]
�[ξ̂k − ξk(θ)]}

= argmin
θ

k∑
i=1

{ξ̂pi − ξpi(θ)}2,

where ξ̂k = (ξ̂p1 , . . . , ξ̂pk
)� and ξk(θ) = (ξp1(θ), . . . , ξpk

(θ))�

with � the transpose of a vector, and ξ̂pi and ξpi(θ) are the
sample and theoretical pi quantiles of the assumed distri-
bution for i = 1, . . . , k. For the log-normal distribution, the
classical parameters are μ and σ2 where θ = (μ, σ2)� is the
vector form. Thus we have ξpi(θ) = exp(μ + σzpi), where
zi = (1, zpi)

� and zpi is the pi quantile of the standard
normal distribution. However, by solving the minimization
problem, we can only obtain the estimates of μ and σ2. For
the final mean and variance estimates, one more step that
plugs in θ̂QLS to formulas (1) and (2) is needed, where some
biases can be involved. The problem can be resolved by repa-
rameterizing the classical parameter vector θ = (μ, σ2)� as
θ′ = (μX , σ2

X)�. It then follows directly from formulas (1)
and (2) that

μ = ln(μX)− 1

2
ln

(
σ2
X

μ2
X

+ 1

)
,

σ2 = ln

(
σ2
X

μ2
X

+ 1

)
.

With μX and σ2
X as the new parameters, we have

θ̂′QLS = argmin
θ

k∑
i=1

(ξ̂pi − ξpi(θ
′))2,

where ξpi(θ
′) = exp(ln(μX) − ln(σ2

X/μ2
X + 1)/2 +√

ln(σ2
X/μ2

X + 1)zpi). Without any intermediate estimates,
the QLS estimates of the mean and variance can be directly
obtained. However, the QLS estimation may have a draw-
back that the sample quantiles may not guarantee to be
close to the population quantiles in the sense of expecta-
tion, in particular for skewed data. Moreover, since the data
available from the five-number summary is very limited, it
may not be sufficient to conduct the QLS estimation and so
future research may be warranted.

To sum up, we recommend the bias-corrected method
for estimating the mean and variance of a log-normal dis-
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Table 3. The recommended mean and variance estimators
under the three scenarios

Scenario Mean Variance

S1 estimator (16) estimator (18)
S2 estimator (20) estimator (22)
S3 estimator (24) estimator (26)

tribution, and to be more specific, we summarize the rec-
ommended estimators under the three scenarios in Table 3.
Also for practical implementation, we have provided an Ex-
cel spreadsheet which is available in the Supplementary Ma-
terials, http://intlpress.com/site/pub/files/ supp/sii/2020/
0013/0004/SII-2020-0013-0004-s005.xlsx.

APPENDIX A

Derivation of (15). To derive (15), we apply the second-
order Taylor expansion around μ+σ2/2 for μ̂X,1 as follows:

μ̂X,1 ≈ exp

(
μ+

σ2

2

)[
1 +

(
μ̂1 +

σ̂2
1

2
− μ− σ2

2

)

+
1

2

(
μ̂1 +

σ̂2
1

2
− μ− σ2

2

)2
]
.

Then by taking the expectation on both sides and the fact
that μ̂1+ σ̂2

1/2 is an unbiased estimator of μ+σ2/2, we have

E(μ̂X,1) ≈ exp

(
μ+

σ2

2

)[
1 +

1

2
Var

(
μ̂1 +

σ̂2
1

2

)]

= exp

(
μ+

σ2

2

)(
1 +

1

2
V1,1σ

2 +
1

8
V1,2σ

4 +
1

2
V1,3σ

3

)
,

(27)

where

V1,1 = Var

(
w1

(
az + bz

2

)
+ (1− w1)mz

)
,

V1,2 = Var

(
z−1
1

(
bz − az

ξ

)2
)
,

V1,3 = Cov

(
w1

(
az + bz

2

)
+ (1− w1)mz,

z−1
1

(
bz − az

ξ

)2
)
.

Note that V1,1, V1,2 and V1,3 are the functions of n only.
Through numerical computation, we observe that V1,3 is al-
ways much smaller than V1,1 and V1,2 for any given n, and
so the covariance term is nearly negligible. We further follow
Section 2.1 and derive the approximate formulas of V1,1 and
V1,2 as V1,1 ≈ 1.13/n and V1,2 ≈ 2.96/n. Finally, by (27) we
have

E(μ̂X,1) ≈ exp

(
μ+

σ2

2

)(
1 +

0.565

n
σ2 +

0.37

n
σ4

)
.

Derivation of (17). Similar to the derivation of (15), we
can apply the Taylor expansion on each term of estimator
(6) and then take the expectation on both sides. By doing
so, we have

E(σ̂2
X,1) ≈ exp(2μ+ 2σ2)

(
1 +

1

2
Var(2μ̂1 + 2σ̂2

1)

)

− exp(2μ+ σ2)

(
1 +

1

2
Var(2μ̂1 + σ̂2

1)

)
≈ exp(2μ+ 2σ2)

(
1 + 2V1,1σ

2 + 2V1,2σ
4
)

− exp(2μ+ σ2)

(
1 + 2V1,1σ

2 +
1

2
V1,2σ

4

)
.

Then with the approximate formulas for V1,1 and V1,2, it
yields the result in (17).

APPENDIX B

Derivation of (19). To derive (19), we apply the second-
order Taylor expansion around μ+ σ2/2 for μ̂X,2 as

μ̂X,2 ≈ exp

(
μ+

σ2

2

)[
1 +

(
μ̂2 +

σ̂2
2

2
− μ− σ2

2

)

+
1

2

(
μ̂2 +

σ̂2
2

2
− μ− σ2

2

)2
]
.

Then by taking the expectation on both sides and the fact
that μ̂2+ σ̂2

2/2 is an unbiased estimator of μ+σ2/2, we have

E(μ̂X,2) ≈ exp

(
μ+

σ2

2

)[
1 +

1

2
Var

(
μ̂2 +

σ̂2
2

2

)]

= exp

(
μ+

σ2

2

)(
1 +

1

2
V2,1σ

2

+
1

8
V2,2σ

4 +
1

2
V2,3σ

3

)
,(28)

where

V2,1 = Var

(
w2

(
q1,z + q3,z

2

)
+ (1− w2)mz

)
,

V2,2 = Var

(
z−1
2

(
q3,z − q1,z

η

)2
)
,

V2,3 = Cov

(
w2

(
q1,z + q3,z

2

)
+ (1− w2)mz,

z−1
2

(
q3,z − q1,z

η

)2
)
.

Through numerical computation, the true values of V2,3 is
much smaller than those of V2,1 and V2,2 for any given n
and thus the covariance term in (28) is nearly negligible. By
fitting the true values of V2,1 and V2,2 as in Section 2.2, we
derive the approximate formulas of V2,1 and V2,2 as V2,1 ≈

Estimating the mean and variance from the five-number summary of a log-normal distribution 527

http://intlpress.com/site/pub/files/_supp/sii/2020/0013/0004/SII-2020-0013-0004-s005.xlsx
http://intlpress.com/site/pub/files/_supp/sii/2020/0013/0004/SII-2020-0013-0004-s005.xlsx


1.14/n and V2,2 ≈ 6/n. With the approximate formulas, we
finally derive (19).

Derivation of (21). Similar to the derivation of (19), we
apply the Taylor expansion on each term of estimator (10)
and then take the expectation on both sides so that

E(σ̂2
X,2) ≈ exp(2μ+ 2σ2)

(
1 +

1

2
Var(2μ̂2 + 2σ̂2

2)

)

− exp(2μ+ σ2)

(
1 +

1

2
Var(2μ̂2 + σ̂2

2)

)
≈ exp(2μ+ 2σ2)

(
1 + 2V2,1σ

2 + 2V2,2σ
4
)

− exp(2μ+ σ2)

(
1 + 2V2,1σ

2 +
1

2
V2,2σ

4

)
.

With the approximate formulas for V2,1 and V2,2, it yields
the result in (21).

APPENDIX C

Derivation of (23). To derive (23), we apply the second-
order Taylor expansion around μ+ σ2/2 for μ̂X,3 as

μ̂X,3 ≈ exp

(
μ+

σ2

2

)[
1 +

(
μ̂3 +

σ̂2
3

2
− μ− σ2

2

)

+
1

2

(
μ̂3 +

σ̂2
3

2
− μ− σ2

2

)2
]
.

Then by taking the expectation on both sides and the fact
that μ̂3+ σ̂2

3/2 is an unbiased estimator of μ+σ2/2, we have

E(μ̂X,3) ≈ exp

(
μ+

σ2

2

)[
1 +

1

2
Var

(
μ̂3 +

σ̂2
3

2

)]

= exp

(
μ+

σ2

2

)(
1 +

1

2
V3,1σ

2 +
1

8
V3,2σ

4 +
1

2
V3,3σ

3

)
,

(29)

where

V3,1 = Var

(
w31

(
bz + az

2

)
+w32

(
q1,z + q3,z

2

)

+(1−w31 −w32)mz

)
,

V3,2 = Var

(
z− 1
3

[
w3

(
bz − az

ξ

)
+(1−w3)

(
q3,z − q1,z

η

)]2)
,

V3,3 = Var

(
w31

(
bz + az

2

)
+w32

(
q1,z + q3,z

2

)
+(1−w31 −w32)mz,

z− 1
3

[
w3

(
bz − az

ξ

)
+(1−w3)

(
q3,z − q1,z

η

)]2)
.

Through numerical computation, the true values of V3,3 is
much smaller than those of V3,1 and V3,2 for any given n and

the covariance term in (29) is nearly negligible. By fitting the
true values of V3,1 and V3,2 as in Section 2.3, we derive the
approximate formulas of V3,1 and V3,2 as V3,1 ≈ 0.81/n and
V3,2 ≈ 2.52/n. With the approximate formulas, we finally
derive (23).

Derivation of (25). Similar to the derivation of (23), we
apply the Taylor expansion on each term of estimator (14)
and then take the expectation on both sides. Specifically, it
yields that

E(σ̂2
X,3) ≈ exp(2μ+ 2σ2)

(
1 +

1

2
Var(2μ̂3 + 2σ̂2

3)

)

− exp(2μ+ σ2)

(
1 +

1

2
Var(2μ̂3 + σ̂2

3)

)
≈ exp(2μ+ 2σ2)

(
1 + 2V3,1σ

2 + 2V3,2σ
4
)

− exp(2μ+ σ2)

(
1 + 2V3,1σ

2 +
1

2
V3,2σ

4

)
.

With the approximate formulas for V3,1 and V3,2, it yields
the result in (25).

APPENDIX D

Under scenario S2, from the reported RBs and RMSEs
of the mean estimators in Figure 8, it is evident that the PI

Figure 8. The RBs and RMSEs of three types of mean
estimators under scenario S2, where the blue empty points
represent the NB estimator, the green solid points represent
the PI estimator, and the orange empty triangles represent

the BC estimator.
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Figure 9. The RBs and RSLs of three types of variance
estimators under scenario S2, where the blue empty points
represent the NB estimator, the green solid points represent
the PI estimator, and the orange empty triangles represent

the BC estimator.

and BC estimators perform better than the NB estimator in

most settings. Specifically, in view of the RBs, the NB esti-

mator is always biased regardless of the sample size n. This

also leads to the larger RMSEs of NB estimator, which gets

more evident as n increases. Furthermore, for the newly pro-

posed PI and BC estimators of the mean, we note that the

BC estimator always provides smaller RBs and smaller RM-

SEs than the PI estimator, and such improvements get more

evident when n is small. This suggests that the PI method

may not be capable to provide the accurate estimates for

small sample sizes, which also demonstrates the necessity of

developing the BC method. For the simulation results on the

variance estimators reported in Figure 9, it is noted that the

NB estimator yields the small RSLs when n is small. The

main reason is because the NB estimator often underesti-

mates the true variance with the smaller variances, whereas

as n is small, the BC estimator yields the larger variances

in spite of smaller biases. However, as n gets large, our BC

estimator performs thoroughly better than the NB estima-

tor. For the newly proposed PI and BC estimators of the

variance, the BC estimator always yields smaller RBs and

smaller RSLs than the PI estimator. To conclude, with the

RB, RMSE and RSL as the criteria, the BC method gener-

ally performs better than the NB and PI methods and can

be recommended for practical use.

Figure 10. The RBs and RMSEs of three types of mean
estimators under scenario S3, where the blue empty points
represent the NB estimator, the green solid points represent
the PI estimator, and the orange empty triangles represent

the BC estimator.

APPENDIX E

Under scenario S3, from the reported RBs and RMSEs
of the mean estimators in Figure 10, it is evident that the
PI and BC estimators perform better than the NB estima-
tor in most settings. Specifically, the NB estimator is biased
and yields the larger RMSEs, which is similar to the case
under scenario S1. Furthermore, for the newly proposed PI
and BC estimators of the mean, we note that the BC es-
timator always provides smaller RBs and smaller RMSEs
than the PI estimator, and such improvements get more
evident when n is small. For the simulation results on the
variance estimators reported in Figure 11, the PI and BC
estimators perform better than the NB estimator in most
settings. For the newly proposed PI and BC estimators of
the variance, the BC estimator always yields smaller RBs
and smaller RSLs than the PI estimator. To conclude, with
the RB, RMSE and RSL as the criteria, the BC method
performs better than the NB and PI methods and can be
recommended for practical use.
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