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On the Choice of Difference Sequence in
a Unified Framework for Variance
Estimation in Nonparametric Regression
Wenlin Dai, Tiejun Tong and Lixing Zhu

Abstract. Difference-based methods do not require estimating the mean
function in nonparametric regression and are therefore popular in practice.
In this paper, we propose a unified framework for variance estimation that
combines the linear regression method with the higher-order difference es-
timators systematically. The unified framework has greatly enriched the ex-
isting literature on variance estimation that includes most existing estimators
as special cases. More importantly, the unified framework has also provided
a smart way to solve the challenging difference sequence selection problem
that remains a long-standing controversial issue in nonparametric regression
for several decades. Using both theory and simulations, we recommend to
use the ordinary difference sequence in the unified framework, no matter if
the sample size is small or if the signal-to-noise ratio is large. Finally, to cater
for the demands of the application, we have developed a unified R package,
named VarED, that integrates the existing difference-based estimators and
the unified estimators in nonparametric regression and have made it freely
available in the R statistical program http://cran.r-project.org/web/packages/.

Key words and phrases: Difference-based estimator, nonparametric regres-
sion, optimal difference sequence, ordinary difference sequence, residual
variance.

1. INTRODUCTION

We consider the nonparametric regression model:

Yi = g(xi) + εi, i = 1, . . . , n,

where {Yi} are the observations, g is an unknown mean
function, {xi} are the design points and {εi} are the
independent and identically distributed (i.i.d.) random
errors with mean zero and variance σ 2. Needless to
say, nonparametric regression models are very useful
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in statistics and have been extensively studied in the
past several decades. There is a large body of literature
on the estimation of the mean function g, for exam-
ple, the kernel estimators, the local linear estimators
and the smoothing spline estimators. Apart from the
mean function, the variance estimation has also been
recognized as an important problem in nonparametric
regression. An accurate yet economic estimator of σ 2

is required in many aspects of nonparametric regres-
sion, for example, in the construction of confidence
intervals, in testing the goodness of fit, and in choos-
ing the amount of smoothing (Rice, 1984, Eubank and
Spiegelman, 1990, Gasser, Kneip and Kohler, 1991,
Härdle and Tsybakov, 1997).

To estimate the residual variance, researchers often
apply the sum of squared residuals from a nonparamet-
ric fit, that is,

(1) σ̂ 2 = 1

n − ν

n∑
i=1

{
Yi − ĝ(xi)

}2
,
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where ĝ is the fitted mean function and ν is the number
of degrees of freedom for the fitted model. Estimators
with form (1) are referred to as residual-based estima-
tors. With the optimal bandwidth, the minimum mean
squared error (MSE) of σ̂ 2 is given as

MSE
(
σ̂ 2) = var

(
σ̂ 2) + {

E
(
σ̂ 2) − σ 2}2

(2)

= 1

n
var

(
ε2) + o

(
1

n

)
.

Hall and Marron (1990) showed that the MSE in (2)
is asymptotically optimal in a minimax sense. Never-
theless, it is known that residual-based estimators have
two major limitations. First, residual-based estimators
depend heavily on the delicate choice of tuning pa-
rameters so that their practical applications are some-
what limited (Dette, Munk and Wagner, 1998). Sec-
ond, residual-based estimators are completely deter-
mined by the fitted ĝ from a nonparametric fit (Eubank
and Spiegelman, 1990, Ye, 1998, Wang, 2011), and
then consequently, the constructed confidence intervals
and the goodness of fit test may not be reliable if such
variance estimates are used. In a Bayesian framework,
when the noninformative prior density p(σ 2) ∝ 1/σ 2

is used, the variance estimation will also rely heavily
on the estimated ĝ (Berkey, 1982, Smith and Kohn,
1996).

For the demand of an estimate of σ 2 that is inde-
pendent of the fitted mean function, researchers have
proposed another class of estimators in the literature.
These estimators use the differences between nearby
observations to remove the trend in the mean function,
and are the so-called difference-based estimators. For
simplicity of notation, we assume an equally spaced
design with xi = i/n for i = 1, . . . , n. Let r > 0 be
an integer number and (d0, . . . , dr) be a difference se-
quence with

(3)
r∑

j=0

dj = 0 and
r∑

j=0

d2
j = 1,

where d0dr �= 0, d0 > 0, and dj = 0 for j < 0 and
j > r . Hall, Kay and Titterington (1990) proposed a
general form of difference-based estimators:

(4) σ̂ 2(r) = 1

n − r

n−r∑
i=1

(
r∑

j=0

djYj+i

)2

,

where r is the order of the variance estimator. Diffe-
rence-based estimators do not require an estimate of
the mean function and are attractive from a practi-
cal point of view. When r = 1, the unique solution

of the difference sequence under the constraint (3) is
(d0, d1) = (2−1/2,−2−1/2) and it yields the first-order
difference-based estimator in Rice (1984),

(5) σ̂ 2
R = 1

2(n − 1)

n−1∑
i=1

(Yi − Yi+1)
2.

When r ≥ 2, however, there are infinitely many solu-
tions for (d0, . . . , dr) under the constraint (3). Among
them, two commonly recommended difference se-
quences are: (i) the optimal difference sequence and
(ii) the ordinary difference sequence.

The optimal difference sequence is obtained by min-
imizing the asymptotic MSE of the estimator with
form (4). Under some smoothness conditions on g,
Hall, Kay and Titterington (1990) showed that the ef-
fect of g on the estimation bias is asymptotically neg-
ligible. Then asymptotically, to minimize the MSE
of the estimator is equivalent to minimizing the vari-
ance of the estimator. This leads to the optimal dif-
ference sequence satisfying

∑r
j=0 djdj+i = −1/2r for

1 ≤ i ≤ r . For the special case of r = 2, the opti-
mal difference sequence is (d0, d1, d2) = (0.809,−0.5,

−0.309) and the resulting estimator is σ̂ 2
opt(2) =∑n−2

i=1 (0.809Yi − 0.5Yi+1 − 0.309Yi+2)
2/(n − 2). We

refer to the estimator (4) with the optimal difference
sequence as σ̂ 2

opt(r).
When the sample size is small, however, the bias

term of difference-based estimators may not be neg-
ligible, in particular when the mean function g is very
rough. To reduce the bias, Dette, Munk and Wagner
(1998) recommended to apply the following difference
sequence:

(6) dj = (−1)j

(
2r

r

)−1/2(
r

j

)
, j = 0, . . . , r.

This difference sequence was commonly employed for
numerical differentiation and was referred to as the
ordinary difference sequence in Hall, Kay and Titter-
ington (1990). With the difference sequence (6), the
estimation bias of σ̂ 2(r) vanishes for polynomials up
to degree r − 1. For this, we may also refer to it as
the debiased difference sequence or the polynomial
weight sequence (Dette, Munk and Wagner, 1998). For
the special case of r = 2, the ordinary difference se-
quence is (d0, d1, d2) = (6−1/2,−(2/3)1/2,6−1/2) and
the resulting estimator is σ̂ 2

ord(2) = ∑n−2
i=1 (Yi −2Yi+1 +

Yi+2)
2/[6(n − 2)], which was first proposed in Gasser,

Sroka and Jennen-Steinmetz (1986). We refer to the es-
timator (4) with the ordinary difference sequence as
σ̂ 2

ord(r). When r = 1, both σ̂ 2
opt(1) and σ̂ 2

ord(1) reduce
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to the Rice estimator σ̂ 2
R. Hence, without loss of gen-

erality, we assume r ≥ 2 in σ̂ 2
opt(r) and σ̂ 2

ord(r) unless
otherwise specified.

By Dette, Munk and Wagner (1998), the asymptotic
variance of σ̂ 2

ord(r) is always larger or much larger than
that of σ̂ 2

opt(r). Specifically, under some mild condi-
tions, we have

var(σ̂ 2
ord(r))

var(σ̂ 2
opt(r))

(7)

→ 2r

2r + 1

(
4r

2r

)(
2r

r

)−2

as n → ∞.

The ratio in the right-hand side of (7) is 1.556 when
r = 2, 1.980 when r = 3, 2.335 when r = 4, and ap-
proximately as large as

√
πr/2 when r is large. For

the asymptotic bias, by noting that E(σ̂ 2
ord(r)) = σ 2 +

O(n−2r ) and E(σ̂ 2
opt(r)) = σ 2 + O(n−2), σ̂ 2

ord(r) al-

ways provides a smaller asymptotic bias than σ̂ 2
opt(r)

for any r ≥ 2. In view of the bias-variance tradeoff,
Dette, Munk and Wagner (1998) suggested to use the
ordinary difference sequence if the sample size is small
and the signal-to-noise ratio is large; otherwise, the op-
timal difference sequence should be used. Although
very easy to implement, their rule of thumb can be
confusing in practice since the signal-to-noise ratio is
rarely known. In addition, it is never known in practice
when the sample size is large enough so that the bias
term can be negligible. We note that the choice of the
difference sequence is still rather arbitrary in the recent
literature. For instance, Hall and Heckman (2000) and
Shen and Brown (2006) used the Rice estimator; Munk
et al. (2005), Einmahl and Van Keilegom (2008), and
Dette and Hetzler (2009) used the ordinary estimators;
Brown and Levine (2007), Benko, Härdle and Kneip
(2009), and Pendakur and Sperlich (2010) used the op-
timal estimators.

To conclude, the difference sequence selection prob-
lem remains a controversial issue in nonparametric re-
gression up to now. The main goal of the paper is to
provide a smart solution for the very challenging dif-
ference sequence selection problem. To achieve this,
we propose a unified framework for estimating σ 2

that combines the linear regression method in Tong
and Wang (2005) with the higher-order difference es-
timators systematically. By this combination, the uni-
fied framework integrates the existing literature on the
difference-based estimation and it has, but not limited
to, the following major contributions: (i) the unified
framework generates a very large family of estimators

that includes most existing estimators as special cases;
(ii) all existing difference-based estimators are shown
to be suboptimal in the proposed family of estimators;
and (iii) in the unified framework, the ordinary differ-
ence sequence can be widely used no matter if the sam-
ple size is small and/or the signal-to-noise ratio is large.

The rest of the paper is organized as follows. In Sec-
tion 2, we propose a unified framework for estimat-
ing σ 2 by introducing the general methodology, draw-
ing the connections between the unified estimators and
the existing estimators. In Section 3, we tackle the
challenging “optimal or ordinary difference sequence”
problem in the unified framework and propose a smart
way to solve it. In Section 4, we first provide two
data-driven methods to choose the tuning parameters,
and then conduct simulation studies to evaluate the fi-
nite sample performance of the unified estimators and
compare them with existing methods. In Section 5, we
conclude the paper with some discussions. Finally, an
online supplement (Dai, Tong and Zhu, 2017) is also
provided in which we have supplied the technical de-
tails of the unified framework, including the theoretical
results of the unified estimators, their technical proofs,
a numerical comparison on the bias terms and an al-
ternative procedure for variance estimation under un-
equally spaced design.

2. A UNIFIED FRAMEWORK FOR VARIANCE
ESTIMATION

2.1 Methodology

The aforementioned difference-based estimators, in-
cluding the optimal estimators and ordinary estimators,
are popular in practice owing to their independence of
curve fitting and the ease of implementation. Noting,
however, that

MSE
(
σ̂ 2

opt(r)
) = min

d0,...,dr

MSE
(
σ̂ 2(r)

)
= n−1(

var
(
ε2) + r−1σ 4) + o

(
n−1)

,

none of fixed-order difference-based estimators can at-
tain the asymptotically optimal rate of MSE in (2),
a property possessed usually by the residual-based esti-
mators only. To improve the literature, Tong and Wang
(2005) have proposed a new direction for estimating
the residual variance, inspired by the fact that the Rice
estimator is always positively biased. Their linear re-
gression method not only eliminated the estimation
bias, but also reduced the estimation variance dramat-
ically and hence achieved the asymptotically optimal
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rate of MSE for variance estimation. See also, for ex-
ample, Park, Kim and Lee (2012), Tong, Ma and Wang
(2013) and Dai et al. (2015).

To make the linear regression method a more effec-
tive tool and also to tackle the “optimal or ordinary
difference sequence” problem, we propose a unified
framework for estimating σ 2 that combines the lin-
ear regression method with the higher-order difference
estimators systematically. Specifically, for any order-r
difference sequence d = (d0, . . . , dr) satisfying (3), we
define

(8) sk(r) = 1

n − rk

n−rk∑
i=1

(
r∑

j=0

djYi+jk

)2

.

When k = 1, sk(r) reduces to the difference-based es-
timator σ̂ 2(r) in (4). For any fixed r and k, we have the
expectation of sk(r) as

E
[
sk(r)

] = σ 2 + 1

n − rk

n−rk∑
i=1

(
r∑

j=0

djg(xi+jk)

)2

.

This shows that sk(r) is always positively biased for
estimating σ 2. To better quantify the size of the bias,
we assume that g has a bounded first derivative and let
J (r) = (

∑r
j=0 jdj )

2 ∫ 1
0 [g′(x)]2 dx. Then for any fixed

r and k = o(n), we have

(9) E
[
sk(r)

] = σ 2 + k2

n2 J (r) + o

(
k2

n2

)
.

To eliminate the bias term in (9), we consider a lin-
ear regression model to a collection of sk(r) and then
estimate σ 2 as the intercept. Specifically, by letting
α = σ 2, β = J (r) and hk = k2/n2, we have the ap-
proximately linear regression model sk(r) ≈ α + hkβ .
Then for the given sk(r), k = 1, . . . ,m with m = o(n),
we fit the linear regression model by minimizing the
following weighted sum of squares

m∑
k=1

wk

(
sk(r) − α − hkβ

)2
, β > 0,

where wk = (n− rk)/N are the corresponding weights
with N = ∑m

k=1(n − rk) = nm − rm(m + 1)/2. Fi-
nally, we estimate σ 2 by the fitted intercept in the uni-
fied framework. This leads to the unified estimator as

(10) σ̂ 2(r,m) = α̂ =
m∑

k=1

bkwksk(r),

where bk = 1 − h̄w(hk − h̄w)/(
∑m

k=1 wkh
2
k − h̄2

w) and
h̄w = ∑m

k=1 wkhk .

Note that the weights {wk} in (10) are assigned in
such a way that each sk(r) involves (n − rk) pairs
of observations and the regression weighs equally for
each pair. By this, we have not only provided a sim-
plified form for the final estimator, but also improves
the finite-sample performance. Whereas for the asymp-
totic behavior, it can be readily shown that the es-
timator (10) is asymptotically equivalent to the esti-
mator that minimizes the unweighted sum of squares∑m

k=1(sk(r) − α − hkβ)2.
If the optimal difference sequence is used in (8),

we refer to the unified estimator (10) as the unified
optimal estimator, denoted by σ̂ 2

opt(r,m). Otherwise,
if the ordinary difference sequence is used, we re-
fer to it as the unified ordinary estimator, denoted by
σ̂ 2

ord(r,m). By Theorems S2 and S3 in the online sup-
plement, the unified estimator σ̂ 2(r,m) is capable to
control the bias to order O(m3/n3) for the optimal dif-
ference sequence, and to order O(m2r/n2r ) for the or-
dinary difference sequence. This demonstrates that the
linear regression with the ordinary difference sequence
provides a smaller asymptotic bias than the linear re-
gression with the optimal difference sequence for any
r ≥ 2. In addition, by Theorem S4 in the online sup-
plement, the unified estimator (10) can always achieve
the asymptotically optimal rate of MSE, and hence is a
consistent estimator of σ 2, no matter which difference
sequence is used. From this point of view, the unified
estimator has improved the classical difference-based
estimators in Hall, Kay and Titterington (1990).

2.2 Unified Estimators

By a combination of the linear regression and the
higher-order difference sequence, we have proposed a
unified framework for variance estimation in nonpara-
metric regression. In particular, with the tuning param-
eters r and m, we have generated a two-dimensional
cone space, that is, S = {(r,m) : r = 1,2, . . . ;m =
1,2, . . . }, for locating the optimal variance estimator.
The unified framework (see Figure 1) includes all exist-
ing difference-based estimators as special cases, which
are all located in the edge of the two-dimensional cone
space. When m = 1 and r = 1, the proposed esti-
mator σ̂ 2(r,m) results in the Rice estimator in (5),
which is located on the corner of the cone space. If
we fix m = 1 and allow r ≥ 2, σ̂ 2(r,m) results in the
classical difference-based estimators including Gasser,
Sroka and Jennen-Steinmetz (1986), Hall, Kay and Tit-
terington (1990) and Dette, Munk and Wagner (1998).
On the other side, if we fix r = 1 and allow m ≥ 2,
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FIG. 1. The unified framework for estimating σ 2 in nonparametric regression, where the existing difference-based estimators are all located
in the edge of the two-dimensional cone space.

then σ̂ 2(r,m) results in the linear regression estima-
tors in Tong and Wang (2005) and Tong, Ma and Wang
(2013). From this point of view, the unified frame-
work has greatly enriched the existing literature on the
difference-based estimation in nonparametric regres-
sion.

Note that the difference-based estimator in (4) finds
the optimal tuning parameters (ropt,mopt) only in the
subspace S1 = {(r,1) : r = 1,2, . . . }; whereas the lin-
ear regression estimator finds them only in the sub-
space S2 = {(1,m) : m = 1,2, . . . }. Neither of them
may be globally optimal in the unified framework since
(ropt,mopt) may also be located in the inner space
S \(S1 ∪S2). For the purpose of illustration, we present
a numerical example to demonstrate our claim. Specifi-
cally, we consider g(x) = 5 sin(2πx) with n = 100 and
ε ∼ N(0,4). With 1000 Monte Carlo simulations, we
report in Figure 2 the simulated MSEs for the unified
optimal estimator σ̂ 2

opt(r,m). For the reported range
with r from 1 to 5 and m from 1 to 10, the minimum
MSE is 0.3615 which is located on (r,m) = (2,8). This

numerically demonstrates that the optimal tuning pa-
rameters may not necessarily be in the edges of the
two-dimensional cone space. Under the unified frame-
work, we define the optimal variance estimator as

σ̃ 2 = σ̂ 2(ropt,mopt),

where (ropt,mopt) = argmin(r,m)∈S E(σ̂ 2(r,m) − σ 2)2

are the optimal parameters. Note that ropt and mopt are
unknown in practice and need to be estimated. The
methods for selecting the tuning parameters are given
in Section 4.1.

Finally, we note that the unified framework can also
be interpreted from the point of view of variance re-
duction. In estimating the mean function at a given
point, Cheng, Peng and Wu (2007) and Paige, Sun and
Wang (2009) formed a linear combination of the lo-
cal linear estimators evaluated at several nearby points
as the final estimate. The linear combination therein
was constructed in such a way that maximizes the vari-
ance reduction while remaining the asymptotic bias un-
changed. To our knowledge, there is little existing work
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FIG. 2. The perspective plot of the MSEs of the unified optimal estimator based on 1000 Monte Carlo simulations, where g(x) = 5 sin(2πx),
n = 100, and ε ∼ N(0,4). The minimum MSE is 0.3615 which is located on (r,m) = (2,8).

in the literature on variance reduction in nonparamet-
ric variance estimation. Note that sk(r) in (8) can be
represented as a combination of several lag-k Rice esti-
mators. Hence, in spirit to the simulation-extrapolation
method of Cook and Stefanski (1994) and Stefanski
and Cook (1995), and the empirical-bias bandwidth se-
lection method of Ruppert (1997), the unified estimator
σ̂ 2(r,m) can be treated as a variance reduced estimator
in comparison with the linear regression estimator in
Tong and Wang (2005).

3. DIFFERENCE SEQUENCE SELECTION

Section 2 shows that the unified framework has gen-
erated a large family of new estimators and has greatly
enriched the existing literature on variance estimation.
In this section, we further show that the unified frame-
work has provided a smart way to solve the challenging
“optimal or ordinary difference sequence” problem.

For ease of exposition, we assume the random errors
are normally distributed with mean zero and variance
σ 2 in the remainder of the paper, then var(ε2) = 2σ 4.

For the classical optimal estimator, we have

bias
(
σ̂ 2

opt(r,1)
) = O

(
n−2)

and

var
(
σ̂ 2

opt(r,1)
) = V1

n
var

(
ε2) + o

(
n−1)

,

where V1 = 1 + 1/2r . For the classical ordinary esti-
mator, we have

bias
(
σ̂ 2

ord(r,1)
) = O

(
n−2r) and

var
(
σ̂ 2

ord(r,1)
) = V2

n
var

(
ε2) + o

(
n−1)

,

where V2 = (4r
2r

)
/
(2r

r

)2
. Given that V1 > 1 and V2 > 1

for any r ≥ 1, neither σ̂ 2
opt(r,1) nor σ̂ 2

ord(r,1) attains
the asymptotically optimal rate of MSE in (2). Note
also that V2 > V1 for any r ≥ 2. Due to the bias-
variance tradeoff, Dette, Munk and Wagner (1998) rec-
ommended to use the ordinary difference sequence
when the sample size is small, and otherwise use the
optimal difference sequence. In practice, however, it
is rarely known whether the sample size is sufficiently
small so that we can safely use the ordinary difference
sequence or the other.
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3.1 Bias-Variance Tradeoff

Let m → ∞ and m/n → 0. By Section S2 of the
online supplement, the asymptotic bias and variance of
the unified optimal estimator are

bias
(
σ̂ 2

opt(r,m)
) = O

(
m3

n3

)
and

var
(
σ̂ 2

opt(r,m)
) = 1

n
var

(
ε2) + o

(
n−1)

.

While for the unified ordinary estimator, we have

bias
(
σ̂ 2

ord(r,m)
) = O

(
m2r

n2r

)
and

var
(
σ̂ 2

ord(r,m)
) = 1

n
var

(
ε2) + o

(
n−1)

.

We note that, unlike those for the classical difference-
based estimators, the asymptotic variances of σ̂ 2

opt(r,m)

and σ̂ 2
ord(r,m) are the same and both attain the asymp-

totically optimal rate. Their difference appears only
in the higher order terms, and hence is much allevi-
ated compared to the difference V2 − V1 in the leading
term for the classical difference-based estimators. Be-
cause of this, we have nearly gotten rid of the painful
bias-variance tradeoff and can determine the appropri-
ate difference sequence by the asymptotic bias of the
estimators. As a conclusion, we recommend to use the
ordinary difference sequence in the unified framework
for any r ≥ 2, no matter if the sample size is small or
not.

To explore the advantage of the unified ordinary es-
timator over the existing estimators, we summarize in
Table 1 the asymptotic biases and variances for the two
unified estimators and the existing difference-based es-
timators. First, we conclude that σ̂ 2

ord(r,m) is better
than σ̂ 2(1,m) and σ̂ 2

opt(r,m), given that their asymp-
totic variances all attain the asymptotically optimal rate

but σ̂ 2
ord(r,m) has the smallest asymptotic bias. Note

also that a combination of optimal difference sequence
and the linear regression method will not further reduce
the asymptotic estimation bias. Second, if we choose
m = nτ with 0 < τ < (2r − 2)/2r , then the asymptotic
bias of σ̂ 2

ord(r,m) is of order o(n−2), and hence it out-
performs σ̂ 2(1,1) and σ̂ 2

opt(r,1) in both mean and vari-
ance. Third, if we choose m = nτ with 0 < τ → 0, then
the asymptotic bias of σ̂ 2

ord(r,m) converges to O(n−2r )

which is only beaten by the classical ordinary esti-
mator σ̂ 2

ord(r,1). But on the other hand, the asymp-
totic variance of σ̂ 2

ord(r,m) is much smaller than that
of σ̂ 2

ord(r,1), and hence the overall improvement is still
quite significant. For more details, see the simulation
results in Section 4.

3.2 Unified Ordinary Estimator

By Table 1, it is evident that a combination of the lin-
ear regression method and the ordinary difference se-
quence leads to a well behaved estimator for variance
estimation in nonparametric regression, in which the
linear regression method reduces the estimation vari-
ance and the ordinary difference sequence controls the
estimation bias. In contrary, a combination of the linear
regression method and the optimal difference sequence
is less satisfactory, mainly because both techniques are
to reduce the estimation variance so that the estimation
bias may not be controlled sufficiently.

On the other hand, the TW estimator in Tong and
Wang (2005) only uses the first-order estimators as re-
gressors and, as a consequence, it is not possible to
tackle the difference sequence selection problem. Note
also that, without an effective mechanism in control-
ling the estimation bias, the TW estimator may also
not provide a satisfactory performance when n is small
and g is rough. For this, one may refer to the simula-
tion results in Tong and Wang (2005) for small sample

TABLE 1
Asymptotic biases and variances for various estimators

Asymptotic bias Asymptotic variance

Rice (1984) σ̂ 2(1,1) O( 1
n2 ) 1.5

n var(ε2)

Hall, Kay and Titterington (1990) σ̂ 2
opt(r,1) O( 1

n2 )
V1
n var(ε2)

Dette, Munk and Wagner (1998) σ̂ 2
ord(r,1) O( 1

n2r )
V2
n var(ε2)

Tong and Wang (2005) σ̂ 2(1,m) O(m3

n3 ) 1
n var(ε2)

Unified optimal estimator σ̂ 2
opt(r,m) O(m3

n3 ) 1
n var(ε2)

Unified ordinary estimator σ̂ 2
ord(r,m) O(m2r

n2r ) 1
n var(ε2)
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sizes. In addition, we have provided a numerical com-
parison study for the bias terms of the TW estimator
and the proposed unified estimators in Section S3 of
the online supplement. In summary, we recommend the
unified ordinary estimator for practical use, no matter
if the sample size is small or if the signal-to-noise ratio
is large.

4. SIMULATION STUDIES

We first present two data-driven methods for select-
ing the tuning parameters r and m in the unified frame-
work. We then assess the performance of the unified
optimal and ordinary estimators, and make a recom-
mendation between the two estimators for practical im-
plementation. Finally, we compare the unified ordinary
estimator with some existing competitors and demon-
strate its superiority.

4.1 Choice of the Tuning Parameters

Apart from the difference sequence selection prob-
lem, the choices of the order r and the number of
regression points m are also important in practice.
For normally distributed errors, the optimal bandwidth
is mopt = √

14n1/2 when r = 1. And by Theorem
S4 in the online supplement, the optimal bandwidth
is mopt = √

A1/(2A2)n
1/2 when r = 2, where A1 =

9/4 + 9d2
1 (d2

1 − 1/2) and A2 = 9/56 + 165d2
1 (1 −

d2
1 )/448. The optimal bandwidth is of order O(n1/2)

for any fixed value of r ≥ 1. However, when n is small
or moderate, as reported in Tong and Wang (2005), the
theoretical bandwidth may be too large and is not ap-
plicable in practice.

For choosing the two tuning parameters in the uni-
fied estimation, we consider (i) the cross-validation
(CV) method, and (ii) the plateau method. For the CV
method, we first divide the whole data set into V dis-
joint sub-samples, S1, . . . , SV . We then select the opti-
mal pair of (r,m) that minimizes

CV(r,m) =
V∑

v=1

[
σ̂ 2(r,m) − σ̂ 2

v (r,m)
]2

,

where σ̂ 2
v (r,m) denotes the unified estimate of σ 2 on

the whole sample except for Sv with the tuning param-
eters r and m. This is also referred to as the V -fold CV
method. We note that, however, the CV method is gen-
erally computationally expensive for choosing r and
m simultaneously, especially when n and V are both
large.

For large n, we propose another more effective
method for choosing the tuning parameters. In essence,

we follow the plateau method in Müller and Stadt-
müller (1999) and propose the following criterion:

(r̂, m̂) = arg min
r,m

{
1

2mr + 1

[m/r]+mr∑
i=[m/r]−mr

[
σ̂ 2(r, i)

]2

(11)

−
[

1

2mr + 1

[m/r]+mr∑
i=[m/r]−mr

σ̂ 2(r, i)

]2}
,

where m0 = max([n/50],2) and mr = max([m0/r],1).
The expression in the curly brackets can be regarded
as an approximation of the local variation of the es-
timator. For illustration, we present a numerical ex-
ample to display the behavior of the unified ordi-
nary estimator using the plateau method. Let n =
500, ε ∼ N(0,0.25) and g(x) = 5 sin(4πx). With
100 simulations, we report in Figure 3 the trend of
the averaged σ̂ 2

ord(r,m) along with the bandwidth m

for r = 1, 2, 3 and 4, respectively. The true vari-
ance at σ 2 = 0.25 is also reported using the dashed
lines for comparison. From Figure 3, we observe
that the averaged σ̂ 2

ord(r,m) stays around the true
value of the residual variance within some range
of bandwidth m, and then moves away monotoni-
cally.

4.2 Comparison Between σ̂ 2
ord(r,m) and σ̂ 2

opt(r,m)

Our first simulation study is to conduct a compre-
hensive comparison for the finite sample performance
of the unified ordinary and optimal estimators. We con-
sider four mean functions with their shapes displayed
in Figure 4:

g1(x) = 5 sin(πx),

g2(x) = 5 sin(4πx),

g3(x) = 10
[
x + (2π)−1/2 exp

{−100(x − 0.5)2}]
,

g4(x) = 3β10,3(x) + 2β3,11(x),

where g1 and g2 are popularly used in the difference-
based literature (Dette, Munk and Wagner, 1998,
Tong and Wang, 2005), g3 is a bell-shaped function
used in Härdle (1990), and g4 is a bimodal func-
tion used in Wahba (1983) with βp,q(x) = [	(p +
q)/	(p)	(q)]xp−1(1 − x)q−1. We consider the
equidistant design with xi = i/n, and generate εi inde-
pendently from N(0, σ 2). We further consider n = 25,
50 and 200, corresponding with small, moderate and
large sample sizes, and σ = 0.2, 0.5 and 2, corre-
sponding to low, moderate and high variances, respec-
tively.
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FIG. 3. The trend of σ̂ 2
ord(r,m) along with the bandwidth m for various r values, where n = 500, ε ∼ N(0,0.25) and g(x) = 5 sin(4πx).

The solid lines represent the average values of 100 simulated σ̂ 2
ord(r,m), and the dashed lines represent the true variance value.

For the order of difference sequence, we focus
on r ≤ 3 for the unified estimators since an order
of r ≥ 4 is rarely recommended unless the mean
function is enormously oscillating (Dette, Munk and
Wagner, 1998). For the bandwidth m, we let m′

s =
max([ms/r],1) for σ̂ 2(r,m), where ms = n1/2 is the
bandwidth suggested for σ̂ 2(1,m) in Tong and Wang
(2005). We refer to the resulting estimators with the
fixed bandwidths as σ̂ 2

ord(r,m
′
s) and σ̂ 2

opt(r,m
′
s), re-

spectively. Then with r = 2 and r = 3, we consider
the following four estimators: σ̂ 2

ord(2,m′
s), σ̂ 2

opt(2,m′
s),

σ̂ 2
ord(3,m′

s), and σ̂ 2
opt(3,m′

s). In addition, we also con-
sider the unified estimators with the tuning parame-
ters being selected by the data-driven methods. Specif-
ically, we apply the leave-one-out CV method for

n = 25 and 50, and the plateau method for n =
200. The tuning parameters are chosen from the
space {(r,m) : rm ≤ B with r = 1,2,3}, where B

is a pre-specified positive number. In our simula-
tion, we set the value of B as follows: B = 5 for
n = 25, B = 8 for n = 50, and B = 15 for n =
200. We refer to the unified estimators with the CV-
based bandwidths as σ̂ 2

ord(rd,md) and σ̂ 2
opt(rd,md),

where rd and md are the selected tuning parame-
ters.

In Table 2, we report the relative MSE, (n/2σ 2)MSE,
of the six estimators based on 1000 simulations
for each setting. For the four estimators with fixed
bandwidths, it is evident that the two unified ordi-
nary estimators are more robust than the two uni-
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FIG. 4. The four mean functions and their respective shapes.

fied optimal estimators. Specifically, they provide
a better control on the estimation bias, and conse-
quently, RMSE[σ̂ 2

ord(r,m
′
s)] can be much smaller than

RMSE[σ̂ 2
opt(r,m

′
s)] when the sample size is small or

the signal-to-noise ratio is large. We note also that for
the unified ordinary estimator, σ̂ 2

ord(3,m′
s) is even bet-

ter than σ̂ 2
ord(2,m′

s) when the sample size is small. This
coincides with the comparison results for the classical
difference-based estimators. On the other side, the es-
timators with CV-based bandwidths (where r is not
fixed at 2 or 3, and hence more flexible) always pro-
vide a comparable or even better performance than
the estimators with fixed bandwidths. In particular,
σ̂ 2

ord(rd,md) outperforms all other five estimators in-
cluding σ̂ 2

opt(rd,md) in most settings. We hence rec-

ommend σ̂ 2
ord(rd,md) for practical use in the unified

framework.

4.3 Comparison with Other Estimators

Our second simulation study is to compare the rec-
ommended unified ordinary estimator, σ̂ 2

ord(rd,md),
with six existing competitors in the literature. Specif-
ically, we consider σ̂ 2

ord(2,1) in Gasser, Sroka and
Jennen-Steinmetz (1986), σ̂ 2

ord(3,1) in Dette, Munk
and Wagner (1998), σ̂ 2

opt(r,1) in Hall, Kay and Titter-

ington (1990) with r = 2 and 3, and σ̂ 2
TW(mCV) in Tong

and Wang (2005) with mCV being selected by the CV
method from the space {m : 1 ≤ m ≤ B}. For the sake
of consistency, we remain the same simulation settings
as those in Section 4.2. Note also that, to save space,
we do not include the Rice estimator as it is always
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TABLE 2
The relative mean squared errors (RMSEs) for three unified optimal estimators and three unified ordinary estimators, based on 1000

simulations

Unified optimal estimators Unified ordinary estimators

n σ g (2,m′
s ) (3,m′

s ) (rd,md) (2,m′
s ) (3,m′

s ) (rd,md)

25 0.2 g1 12.6 1239 12.0 3.01 2.35 2.11
g2 7144 281,974 9427 1693 2.89 2.89
g3 105 8260 150 38.6 2.54 2.54
g4 22,475 170,785 14,650 503 4.68 4.68

0.5 g1 1.90 33.6 1.86 2.94 2.35 2.03
g2 188 7236 245 47.2 2.37 2.75
g3 4.57 217 6.15 4.05 2.35 2.36
g4 582 4399 371 16.4 2.38 2.37

2 g1 1.44 1.45 1.35 2.93 2.35 1.54
g2 2.49 31.0 2.54 3.17 2.36 2.56
g3 1.49 2.34 1.37 2.96 2.35 1.56
g4 4.15 19.8 2.52 3.00 2.34 2.65

50 0.2 g1 3.59 3.88 3.51 1.85 4.00 2.06
g2 1321 1175 2319 235 4.08 3.42
g3 15.0 14.8 58.7 7.58 4.02 2.83
g4 4328 3048 4974 76.9 4.28 3.21

0.5 g1 1.50 1.45 1.30 1.84 4.00 1.52
g2 36.2 32.3 62.0 7.72 4.00 4.00
g3 1.82 1.76 2.53 1.98 4.00 2.60
g4 115 81.3 123 3.73 4.03 2.55

2 g1 1.40 1.32 1.23 1.84 4.00 1.37
g2 1.61 1.52 1.53 1.87 4.00 1.72
g3 1.41 1.33 1.22 1.85 4.00 1.39
g4 1.98 1.74 1.72 1.85 4.01 1.97

200 0.2 g1 1.40 1.36 1.45 1.39 1.91 1.35
g2 76.0 27.4 3.13 7.71 1.91 1.61
g3 1.48 1.34 1.35 1.59 1.91 1.51
g4 156 37.3 1.52 3.69 1.91 1.71

0.5 g1 1.26 1.30 1.33 1.39 1.91 1.34
g2 3.22 2.03 1.59 1.55 1.91 1.44
g3 1.25 1.30 1.32 1.39 1.91 1.42
g4 5.32 2.27 1.46 1.46 1.91 1.40

2 g1 1.26 1.30 1.29 1.39 1.91 1.33
g2 1.38 1.36 1.41 1.40 1.91 1.38
g3 1.25 1.30 1.31 1.39 1.91 1.34
g4 1.53 1.37 1.41 1.40 1.91 1.35

less satisfactory. In addition to the difference-based
estimators, we also consider a residual-based estima-
tor for comparison. Specifically, we fit the mean func-
tion using the cubic smoothing spline and compute the
residual-based estimator, σ̂ 2

ss, as the average squared
residuals. The tuning parameter is selected via the gen-
eralized cross validation. Finally, with 1000 simula-
tions, we report the RMSEs of the seven estimators in
Table 3 for each setting.

We first compare σ̂ 2
ord(rd,md) with the five existing

difference-base methods. When the sample size is 200,

σ̂ 2
opt(2,1) and σ̂ 2

opt(3,1) are very sensitive to the dif-
ferent values of signal-to-noise ratio. For the remain-
ing four estimators, we have MSE(σ̂ 2

ord(rd,md)) �
MSE(σ̂ 2

TW(mCV)) < MSE(σ̂ 2
ord(2,1)) < MSE(σ̂ 2

ord(3,

1)) for most cases. This coincides with the theoreti-
cal results that σ̂ 2

ord(rd,md) and σ̂ 2
TW(mCV) attain the

asymptotically optimal rate of MSE, a property not
possessed by the classical difference-based estimators.
When the sample size is 50, the comparative results re-
main similar except that the two optimal estimators are
getting even worse owing to their poor ability in con-
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TABLE 3
The relative mean squared errors (RMSEs) for the unified ordinary estimator and six existing methods, based on 1000 simulations

n σ g σ̂ 2
ord(2,1) σ̂ 2

opt(2,1) σ̂ 2
ord(3,1) σ̂ 2

opt(3,1) σ̂ 2
TW(mCV) σ̂ 2

ord(rd,md) σ̂ 2
ss

25 0.2 g1 1.92 395 2.35 1239 34.2 2.11 2.92
g2 145 90,512 2.89 281,974 260 2.89 6.94
g3 6.47 2644 2.54 8260 3.64 2.54 5.75
g4 85.0 70,385 4.68 170,786 386 4.68 9.75

0.5 g1 1.93 11.6 2.35 33.6 2.15 2.03 2.89
g2 5.44 2323 2.37 7236 170 2.75 3.68
g3 5.03 70.4 2.35 217 9.08 2.36 3.47
g4 3.99 1810 2.38 4399 16.1 2.37 4.26

2 g1 1.93 1.37 2.35 1.45 1.25 1.54 2.83
g2 1.93 11.0 2.36 31.0 2.68 2.56 3.09
g3 1.92 1.68 2.35 2.34 1.30 1.56 3.14
g4 1.91 8.88 2.34 19.8 2.58 2.65 3.04

50 0.2 g1 1.97 56.2 2.39 182 2.48 2.06 1.96
g2 3.18 13,539 2.40 44,210 47.6 3.42 2.38
g3 2.02 356 2.39 1208 1.91 2.83 2.39
g4 3.29 11,613 2.42 35,026 57.9 3.21 3.73

0.5 g1 1.97 2.74 2.39 5.97 1.57 1.52 1.91
g2 2.01 349 2.39 1135 3.46 4.00 2.21
g3 1.97 10.5 2.39 32.4 1.71 2.60 2.21
g4 2.03 300 2.40 901 3.16 2.55 2.44

2 g1 1.97 1.28 2.39 1.21 1.15 1.37 1.87
g2 1.97 2.71 2.39 5.79 1.70 1.72 2.06
g3 1.97 1.32 2.39 1.35 1.22 1.39 2.08
g4 1.97 2.52 2.39 4.90 2.08 1.97 2.06

200 0.2 g1 2.03 2.31 2.37 4.47 1.37 1.35 1.19
g2 2.03 234 2.37 802 2.31 1.61 1.26
g3 2.03 6.98 2.37 20.5 1.33 1.51 1.28
g4 2.03 192 2.37 664 1.52 1.71 1.40

0.5 g1 2.03 1.41 2.37 1.40 1.27 1.34 1.18
g2 2.03 7.42 2.37 21.9 1.43 1.44 1.24
g3 2.03 1.53 2.37 1.81 1.28 1.42 1.25
g4 2.03 6.31 2.37 18.3 1.36 1.40 1.31

2 g1 2.03 1.38 2.37 1.32 1.24 1.33 1.18
g2 2.03 1.77 2.37 2.61 1.36 1.38 1.24
g3 2.03 1.39 2.37 1.34 1.24 1.34 1.23
g4 2.03 1.70 2.37 2.39 1.33 1.35 1.25

trolling the estimation bias. In addition, by comparing
Tables 2 and 3, we note that the classical difference-
based estimators are significantly improved by their re-
spective unified estimators in most cases for moderate
to large sample sizes. When the sample size is small at
n = 25, however, all estimators are getting more sensi-
tive to the change of the signal-to-noise ratio. In par-
ticular, the classical optimal estimators and the TW
estimator fail to provide reasonable estimates, espe-
cially when the signal-to-noise ratio is large. Also as
observed in Dette, Munk and Wagner (1998) and Tong
and Wang (2005), the classical ordinary estimators,

σ̂ 2
ord(2,1) and σ̂ 2

ord(3,1), still provide to be reliable es-
timates for σ 2. More interestingly, we note that the uni-
fied ordinary estimator σ̂ 2

ord(rd,md) again provides to
be the best estimator in most cases. Even in the most
severe case with σ = 0.2 and g = g2, σ̂ 2

ord(rd,md) still
performs as well as the σ̂ 2

ord(3,1). Finally, for the com-
parison between σ̂ 2

ord(rd,md) and the residual-based
estimator σ̂ 2

ss, we note that σ̂ 2
ord(rd,md) is better when

n = 25, σ̂ 2
ss is better when n = 200, and they provide a

comparable performance when n = 50.
It is noteworthy that the above findings coincide with

the theoretical results and comparisons in Sections 2
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and 3. In summary, we recommend to use the unified
ordinary estimator σ̂ 2

ord(rd,md) in practice, no matter
if the sample size is small or if the signal-to-noise ratio
is large.

5. CONCLUSION

In this paper, we proposed a unified framework for
variance estimation in nonparametric regression that
combines the higher order difference sequence with the
linear regression method. The unified framework has
greatly enriched the existing literature on variance es-
timation with most existing estimators as special cases.
In the unified framework, we derived the asymptotic
results for the unified optimal and ordinary estimators,
and also made a comprehensive comparison between
the two estimators through both theoretical and numer-
ical results. As a conclusion, we recommended to use
the ordinary difference sequence in the unified frame-
work for any difference order being at least 2, no matter
if the sample size is small or if the signal-to-noise ratio
is large. From this point of view, the unified framework
has completely solved the challenging difference se-
quence selection problem that remains a long-standing
controversial issue in nonparametric regression for sev-
eral decades.

We note that the difference-based methods have
been extended to estimate the residual variance in
other regression models, including the nonparamet-
ric models with dependent errors (Hall and Keilegom,
2003, Bliznyuk et al., 2012), the heteroscedastic re-
gression models (Brown and Levine, 2007, Zhou et al.,
2015), the regression models with multivariate covari-
ates (Munk et al., 2005), and the semiparametric re-
gression models (Tabakan and Akdeniz, 2010, Wang,
Brown and Cai, 2011). Further research is needed to
address the difference sequence selection problem in
such models. Recently, researchers have also applied
the difference-based methods to estimate the deriva-
tives of the mean function in nonparametric regres-
sion (Charnigo, Hall and Srinivasan, 2011, De Bra-
banter et al., 2013, Wang and Lin, 2015, Dai, Tong
and Genton, 2016). To cater for the demands of the
application, we have developed a unified R package
that integrates the existing difference-based estimators
and the unified estimators in nonparametric regression.
And for the fast dissemination of research results, we
have made the R package, named VarED, freely avail-
able in the R statistical program http://cran.r-project.
org/web/packages/.
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This document serves as a supplement to the main manuscript and is organized as follows.

In Section S1, we describe in detail the proposed unified framework for estimating the

residual variance. In Section S2, we derive the asymptotic results of the unified variance

estimators. In Section S3, we conduct a numerical comparison on the bias terms of the

unified estimators with the “state-of-the-art” estimator in the literature. In Section S4,

we provide an alternative procedure for the unified estimation for unequally spaced design.

Proofs of theoretical results are provided in Section S5.

S1 Unified framework

We consider the nonparametric regression model

Yi = g(xi) + εi, i = 1, . . . , n,

where {Yi} are the observations, g is an unknown mean function, {xi} are the design

points, and {εi} are the independent and identically distributed (i.i.d.) random errors

with mean zero and variance σ2.

For the difference-based variance estimation, two popular methods in the literature

are the higher-order difference estimator in Hall, Kay and Titterington (1990) and the

linear regression estimator in Tong and Wang (2005). To combine the two methods
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systematically, for any order-r difference sequence d = (d0, . . . , dr) satisfying

r∑
j=0

dj = 0 and
r∑

j=0

d2j = 1, (S1)

we define

sk(r) =
1

n− rk

n−rk∑
i=1

(
r∑

j=0

djYi+jk)
2. (S2)

Let J(r) = (
∑r

j=0 jdj)
2
∫ 1

0
[g′(x)]2dx, α = σ2, β = J(r) and hk = k2/n2, we have the

approximately linear regression model sk(r) ≈ α+ hkβ. Then we fit the linear regression

model by minimizing the following weighted sum of squares

m∑
k=1

wk(sk(r)− α− hkβ)
2, β > 0,

where wk = (n− rk)/N are the corresponding weights with N =
∑m

k=1(n− rk) = nm−

rm(m + 1)/2. Finally, we estimate σ2 by the fitted intercept in the unified framework.

This leads to the unified estimator as

σ̂2(r,m) = α̂ =
m∑
k=1

bkwksk(r), (S3)

where bk = 1 − h̄w(hk − h̄w)/(
∑m

k=1 wkh
2
k − h̄2

w) and h̄w =
∑m

k=1 wkhk. Further, if the

optimal difference sequence is used in (S2), we refer to the unified estimator as the unified

optimal estimator, denoted by σ̂2
opt(r,m). Otherwise if the ordinary difference sequence

is used, we refer to it as the unified ordinary estimator, denoted by σ̂2
ord(r,m).

Theorem S1. For the equally spaced design, we have (i) the proposed estimator σ̂2(r,m)

is an unbiased estimator for any difference sequence satisfying (S1) when g(x) is a lin-

ear function; and (ii) for the ordinary difference sequence, the estimator is an unbiased

estimator for any polynomial g(x) with order up to p ≤ r − 1.

The proof of Theorem S1 is given in Section S5. Theorem S1 shows that the linear

regression does provide merit in correcting the estimation bias, especially when the mean

function is not very rough.
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S2 Asymptotic results

We first derive the asymptotic bias of the unified estimator (S3). To cater for the de-

mand of difference sequence selection, we also specify the relevant results for the optimal

difference sequence and ordinary difference sequence, respectively. By the following two

theorems, we observe that the unified estimator σ̂2(r,m) is capable to control the bias

to order O(m3/n3) for the optimal difference sequence, and to order O(m2r/n2r) for the

ordinary difference sequence. This demonstrates that the linear regression with the or-

dinary difference sequence provides a smaller asymptotic bias than the linear regression

with the optimal difference sequence for any r ≥ 2.

Theorem S2. Consider the equally spaced design with m → ∞ and m/n → 0, and assume

that g(x) has a bounded second derivative. Then for any difference sequence (d0, . . . , dr)

under the constraint (S1) with r ≥ 1,

E
(
σ̂2(r,m)

)
= σ2 − C1

16
[rC1

∫ 1

0

[g′(t)]2dt− (rC1 − C2) [g
′(1)]2 − C2[g

′(0)]2]
m3

n3
+ o(

m3

n3
),

where Ci =
∑r

j=0 j
idj/i! for i = 1 and 2.

Theorem S3. Consider the equally spaced design with m → ∞ and m/n → 0, and

assume that g(x) has a bounded rth derivative. Then for the ordinary difference sequence

with r ≥ 2,

E
(
σ̂2
ord(r,m)

)
= σ2 +

[
3(1− r)

(2r + 1)(2r + 3)
(
2r
r

) ∫ 1

0

[g(r)(x)]2dx

]
m2r

n2r
+ o(

m2r

n2r
).

Now we investigate the asymptotic variance of the unified estimator. Recall that an

order of r ≥ 3 is rarely recommended for practical use even for m = 1 (Dette, Munk and

Wagner 1998). Hence, for the sake of brevity, we present the asymptotic variance of the

unified estimator only for r = 2, i.e., the minimum order that distinguishes the optimal

difference sequence from the ordinary difference sequence. Using a higher order with r ≥ 3

will yield more tedious derivation and more complex solutions, yet the comparison results
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remain the same. With r = 2, the unified estimator can be represented as

σ̂2(2,m) =
m∑
k=1

bkwksk(2) = Y TDY/tr(D), (S4)

where Y = (Y1, . . . , Yn)
T , tr(·) is the trace, and D = (dij)n×n is an n× n matrix with the

diagonal elements

dii = d20

min(m,[n−i
2

])∑
k=1

bk + d21

min(m,n−i,i−1)∑
k=1

bk + d22

min(m,[ i−1
2

])∑
k=1

bk, i = 1, . . . , n,

and the off-diagonal elements

dij =


d0d1bkI(1≤k≤m) + d0d2bk/2I(k∈E) 1 ≤ |i− j| = k ≤ 2m, 1 ≤ min(i, j) ≤ k,
−d21bkI(1≤k≤m) + d0d2bk/2I(k∈E) 1 ≤ |i− j| = k ≤ 2m, k + 1 ≤ i, j ≤ n− k,
d1d2bkI(1≤k≤m) + d0d2bk/2I(k∈E) 1 ≤ |i− j| = k ≤ 2m,n− k + 1 ≤ max(i, j) ≤ n,
0 otherwise.

Here, E is the set of positive even integers, I is the indicator function, and [x] refers to the

largest integer smaller than or equal to x. We also let
∑0

k=1 bk = 0 for ease of notation.

To derive the asymptotic variance of σ̂2(2,m) with the quadratic form (S4), we apply

the following formula:

var
(
σ̂2(2,m)

)
=

1

tr(D)2
[
4σ2gTD2g + 4gT (Ddiag(D)u)σ3γ3

+ σ4tr{diag(D)2}(γ4 − 3) + 2σ4tr(D2)
]
, (S5)

where g = (g(x1), . . . , g(xn))
T , u = (1, . . . , 1)T , diag(D) denotes the diagonal matrix of

D, and γi = E(εi/σi) for i = 3 and 4. Consequently, we show that

Theorem S4. Consider the equally spaced design with m → ∞ and m/n → 0, and assume

that g(x) has a bounded second derivative. Then for any difference sequence (d0, d1, d2)

under the constraint (S1), we have

var
(
σ̂2(2,m)

)
=

1

n
var(ε2) +

A1

mn
σ4 +

A2m

n2
var(ε2) + o(

1

nm
) + o(

m

n2
),

where A1 = 9/4 + 9d21(d
2
1 − 1/2) and A2 = 9/56 + 165d21(1− d21)/448.

By Theorems S2 and S4, the optimal bandwidth is mopt =
√

A1σ4/(A2var(ε2))n
1/2,

and the optimal MSE is MSE (σ̂2(2,mopt)) = n−1var(ε2) + 2n−3/2
√

A1A2σ4var(ε2) +
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o(n−3/2) +O(m6/n6). In addition, we have MSE (σ̂2(2,m)) = n−1 [var(ε2) + o(1)] for any

m = nτ with 0 < τ < 5/6. This shows that the unified estimator can achieve the asymp-

totically optimal rate of MSE and hence is a consistent estimator of σ2, no matter which

difference sequence is used. From this point of view, the unified estimator has improved

the classical difference-based estimators in Hall et al. (1990). Note also that, by a similar

proof as that for Theorem S4, we can verify that var (σ̂2(r,m)) = n−1 [var(ε2) + o(1)] for

any difference sequence of order r ≥ 3 with m → ∞ and m/n → 0.

S3 Bias comparison

In this section, we conduct a numerical comparison on the bias terms of the “state-of-

the-art” estimator and the proposed unified estimators, as a supplement to Section 3 in

the main manuscript. Specifically, we consider the TW estimator in Tong and Wang

(2005), the unified ordinary estimator, and the unified optimal estimator. For simplicity

of exposition, we fix r = 2 (the comparison results for r ≥ 3 remain similar) and assume

the errors are normally distributed. According to Theorems S1 and S2, we have

Bias(σ̂2
TW) ≃ − 1

32

[∫ 1

0

[g′(t)]2dt− 1

2
[g′(0)]2 − 1

2
[g′(1)]2

]
m3

n3
,

Bias(σ̂2
opt(2,m)) ≃ − 5

32

[∫ 1

0

[g′(t)]2dt− 10−
√
5

20
[g′(0)]2 − 10 +

√
5

20
[g′(1)]2

]
m3

n3
,

Bias(σ̂2
ord(2,m)) ≃ −

[
1

70

∫ 1

0

[g′′(x)]2dx

]
m4

n4
.

As mentioned, the asymptotic bias of the unified ordinary estimator has a lower order

than those of the TW estimator and the unified optimal estimator.

To numerically compare the coefficients in the bias terms, we consider the regres-

sion function g(x) = A sin(wπx), where A represents the amplitude and w represents

the frequency. Note that the sine function has been frequently used in the literature

for conducting simulation studies, see for example, in Seifert, Gasser and Wolf (1993),

Dette et al. (1998), Tong and Wang (2005), and Tong, Ma and Wang (2013). Given

the sine function, we have Bias (σ̂2
TW) ≃ B1m

3/n3, Bias
(
σ̂2
opt(2,m)

)
≃ B2m

3/n3, and
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Bias (σ̂2
ord(2,m)) ≃ B3m

4/n4, where the coefficients of the leading terms are

B1 = − 1

64
w2π2A2

[
sin(wπ) cos(wπ)

wπ
− 1

2
− 1

2
cos(2wπ)

]
,

B2 = − 5

64
w2π2A2

[
sin(wπ) cos(wπ)

wπ
− 10−

√
5

20
− 10 +

√
5

20
cos(2wπ)

]
,

B3 = − 1

140
w4π4A2

[
1− sin(wπ) cos(wπ)

wπ

]
.

First of all, as the three coefficients are all proportional to A2, we conclude that the

amplitude A takes no effect on the comparison of the estimators. The effect of w on the

corresponding bias terms is investigated in the next paragraph.

To compare the bias terms of the TW estimator and the unified optimal estimator, it

suffices to compare the coefficients B1 and B2. With w ranging from 0 to 4.1, we plot in

Figure S1 the quantites of |B1| and |B2| for g(x) = 5 sin(wπx). It is evident that both

|B1| and |B2| have a periodic pattern along with w, and |B1| < |B2| for most w values. In

particular, we have |B1| = 3.86 and |B2| = 19.28 for w = 1, |B1| = 15.42 and |B2| = 77.11

for w = 2, and |B1| = 61.69 and |B2| = 308.43 for w = 4. This shows that the bias term of

the unified optimal estimator is even more severe than that of the TW estimator. In view

of this, we conclude that a combination between the linear regression method and the

optimal difference sequence can be less satisfactory. For the unified ordinary estimator,

instead, it is always asymptotically better than the TW estimator as it is a higher order

bias term, regardless of the comparison of coefficients.

S4 Unequally spaced design

For a general domain including the unequally spaced design, we provide an alternative

procedure for the unified framework of estimating the residual variance. Assume that

{x1, . . . , xn} are ordered design points with x1 < · · · < xn, and let Ar = {(i, k) : xi+kr −

xi ≤ M, i + kr ≤ n} for M = o(1). We define pik = (
∑r

j=0 aikjYi+kj)
2, where {aikj} is

a difference sequence with order r. Then, E(pik) = σ2 + q2ik[g
′(xi)]

2 + o(q2ik) where qik =∑r
j=1 aikj(xi+kj − xi). With this approximation, we can construct the linear regression

6
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Figure S1: The absolute value of coefficients, |B1| and |B2|, along with w for g(x) =
5 sin(wπx). The blue solid line represents |B1|, and the red dashed line represents |B2|.

model as

pik = σ2 + q2ik[g
′(xi)]

2 + ξik, (i, k) ∈ Ar.

Consequently, by regressing pik on q2ik using least squares, we have the final estimator as

σ̂2(r,M). It can be verified that, with M = mr/n, σ̂2(r,M) is equivalent to σ̂2(r,m)

for the equidistant design. Further, if {aikj} satisfies
∑r

j=0 a
2
ikj = 1,

∑r
j=0 aikj = 0 and∑r

j=1 aikj(xi+kj − xi)
K = 0 for K = 1, . . . , r − 1, we can show that σ̂2

ord(r,M) is also

equivalent to σ̂2
ord(r,m). Further research might be needed to investigate the asymptotic

properties under the unequally spaced design.
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S5 Proofs of theoretical results

In this section, we provide the technical proofs for the four theorems in Sections S1 and

S2, respectively.

Proof of Theorem S1

First, we have
∑m

k=1 bkwk = 1 and
∑m

k=1 bkwkhk = 0. (i) Let g(x) = ax+ b, then

E(sk(r)) = σ2 +
1

n− kr

n−kr∑
i=1

(
r∑

j=0

dj(a
(i+ jk)

n
+ b)

)2

= σ2 +
1

n− kr

n−kr∑
i=1

(
ak

n

r∑
j=0

djj

)2

= σ2 + a2(
r∑

j=0

djj)
2hk.

This leads to E(σ̂2(r,m)) = σ2 + a2(
∑r

j=0 djj)
2
∑m

k=1 bkwkhk = σ2.

(ii) For the polynomial g(x) with order up to p ≤ r − 1, let g
(p)
i denote the pth order

derivative at design point xi. Then

E(sk(r)) = σ2 +
1

n− kr

n−kr∑
i=1

(
r∑

j=0

djgi+jk

)2

= σ2 +
1

n− kr

n−kr∑
i=1

(
d0gi + d1

p∑
j=0

g
(j)
i

(k/n)j

j!
+ · · ·+ dr

p∑
j=0

g
(j)
i

(jk/n)j

j!

)2

= σ2 +
1

n− kr

n−kr∑
i=1

(
C0gi + C1g

′
i

k

n
+ · · ·+ Cpg

(p)
i

kp

np

)2

,

where C0 =
∑r

j=0 dj and Ci =
∑r

j=0 j
idj/i! for i = 1, . . . , r. When (d0, . . . , dr) is the

order-r ordinary difference sequence, we have Ci = 0 for 0 ≤ i ≤ p ≤ r − 1. This results

in E(sk(r)) = σ2 and, consequently, E(σ̂2
ord(r,m)) = σ2. �

Proof of Theorem S2

Note that

E(sk(r)) = σ2 +
1

n− kr

n−kr∑
i=1

(
1

n
C1g

′
ik +O(

k2

n2
)

)2

= σ2 + C2
1hk

∫ 1

0

[g′(x)]2dx+O(
k3

n3
).
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We have

E(σ̂2(r,m)) =
m∑
k=1

bkwk

[
σ2 + C2

1hk

∫ 1

0

[g′(x)]2dx+O(
k3

n3
)

]
= σ2 + C2

1

∫ 1

0

[g′(x)]2dx
m∑
k=1

bkwkhk +O(
m3

n3
)

= σ2 +O(
m3

n3
).

For sk(r) with any difference sequence, with k = o(n) and k → ∞, we have

E[sk(r)] = σ2 +
1

n− rk

n−rk∑
i=1

[
C1g

′(xi)
k

n
+ C2g

′′(xi)
k2

n2
+ o(

k2

n2
)

]2
= σ2 + C2

1PA
k2

n2
+ 2C1C2PB

k3

n3
+ o(

k3

n3
), (S6)

where PA =
∑n−rk

i=1 [g′(xi)]
2/(n − rk) and PB =

∑n−rk
i=1 g′(xi)g

′′(xi)/(n − rk). For ease of

notation, let f(t) = [g′(t)]2. Then,

PA =
1

n− rk

n∑
i=1

f(xi)−
1

n− rk

n∑
i=n−rk+1

f(xi)

=
n

n− rk

∫ 1

0

f(t)dt− n

n− rk

n∑
i=1

∫ xi

xi−1

(f(t)− f(xi)) dt

− n

n− rk

∫ 1

xn−rk

f(t)dt+
n

n− rk

n∑
i=n−rk+1

∫ xi

xi−1

(f(t)− f(xi)) dt

≡ P1 − P2 − P3 + P4.

For P1, we have P1 =
∫ 1

0
f(t)dt+ (rk/n)

∫ 1

0
f(t)dt+ o(k/n). For P2, we have

P2 =
n

n− rk

n∑
i=1

∫ xi

xi−1

[
f ′(xi)(t− xi) +O(

1

n2
)

]
dt

=
n

n− rk

n∑
i=1

[
−f ′(xi)

1

2n2
+O(

1

n3
)

]
dt

= O(
1

n
).

For P3, we let F (s) =
∫ 1

s
f(t)dt. When 0 < s < 1 is close to 1, by Taylor expansion

F (s) = F (1) + F ′(1)(s− 1) +O ((1− s)2) we have

P3 =
n

n− rk
F (xn−rk) =

rk

n
f(1) +O

(
k2

n2

)
.
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Finally, noting that P4 = o(1/n), we have

PA =

∫ 1

0

f(t)dt+
rk

n

[∫ 1

0

f(t)dt− f(1)

]
+ o(

k

n
). (S7)

Similarly as those for PA, we can derive that

PB =

∫ 1

0

g′(t)g′′(t)dt+ o(1) =
(
[g′(1)]2 − [g′(0)]2

)
/2 + o(1). (S8)

Substituting (S7) and (S8) into (S6), we have

E(sk(r)) = σ2 +
k2

n2
T1 +

k3

n3
T2 + o(

k3

n3
),

where T1 = C2
1

∫ 1

0
[g′(t)]2dt/2 and T2 = C1[rC1

∫ 1

0
[g′(t)]2dt−(rC1−C2)[g

′(1)]2−C2[g
′(0)]2].

For the linear regression estimator sk(r), N = nm−rm(m+1)/2 and wk = (n−rk)/N ,

we have

σ̂2(r,m) =
m∑
k=1

wksk(r)−
h̄w∑m

k=1 wkh2
k − h̄2

w

m∑
k=1

wk(hk − h̄w)sk(r) = Q1 −Q2.

Let It =
∑m

k=1 k
t for t = 1, . . . , 5. For the first term, we have

E(Q1) = σ2 +

(
I2
Nn

− rI3
Nn2

)
T1 +

(
I3

Nn2
− rI4

Nn3

)
T2 + o(

m3

n3
). (S9)

For the second term, we have

h̄w =
I2
Nn

− rI3
Nn2

=
m2

3n2
+ o(

m2

n2
),

m∑
k=1

wkh
2
k − h̄2

w =
I4

Nn3
− rI5

Nn4
−
(

I2
Nn

− rI3
Nn2

)2

=
4m4

45n4
+ o(

m4

n4
),

m∑
k=1

wk(hk − h̄w)E[sk(r)] =

{
I4

Nn3
− rI5

Nn4
−
(

I2
Nn

− rI3
Nn2

)2
}
T1

+

{
I5

Nn4
− rI6

Nn5
−
(

I2
Nn

− rI3
Nn2

)(
I3

Nn2
− rI4

Nn3

)}
T2 + o(

m5

n5
).

This leads to the expectation of the second term as

E(Q2) =
I2
Nn

− rI3
Nn2

I4
Nn3 − rI5

Nn4 −
(

I2
Nn

− rI3
Nn2

)2
[{

I4
Nn3

− rI5
Nn4

−
(

I2
Nn

− rI3
Nn2

)2
}
T1

+

{
I5

Nn4
− rI6

Nn5
−
(

I2
Nn

− rI3
Nn2

)(
I3

Nn2
− rI4

Nn3

)}
T2 + o(

m5

n5
)

]
=

(
I2
Nn

− rI3
Nn2

)
T1 + CT2 + o(

m3

n3
), (S10)
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where

C =
I5

Nn4 − rI6
Nn5 −

(
I2
Nn

− rI3
Nn2

) (
I3

Nn2 − rI4
Nn3

)
I4

Nn3 − rI5
Nn4 −

(
I2
Nn

− rI3
Nn2

)2 (
I2
Nn

− rI3
Nn2

)

=

m5

6n5 + o(m
5

n5 )−
(

m2

3n2 + o(m
2

n2 )
)(

m3

4n3 + o(m
3

n3 )
)

4m4

45n4 + o(m
4

n4 )

(
m2

3n2
+ o(

m2

n2
)

)
=

5m3

16n3
+ o(

m3

n3
).

Finally, by (S9) and (S10), we have Bias(σ̂2(r,m)) = −(m3/16n3)T2 + o(m3/n3) and this

completes the derivation. �

Proof of Theorem S3

For the ordinary difference sequence, we have C1 = C2 = · · · = Cr−1 = 0 and Cr =(
2r
r

)−1/2
. Then,

E(sk(r)) = σ2 +
1

n− kr

n−kr∑
i=1

(
C1g

′
ik/n+ · · ·+ Crg

(r)
i kr/nr + o(kr/nr)

)2
= σ2 + C2

r

k2r

n2r

∫ 1

0

[g(r)(x)]2dx+ o(
k2r

n2r
).

This leads to

E(σ̂2(r,m)) =
m∑
k=1

bkwk

[
σ2 + C2

r

k2r

n2r

∫ 1

0

[g(r)(x)]2dx+ o(
k2r

n2r
)

]
= σ2 + C2

r

∫ 1

0

[g(r)(x)]2dx
m∑
k=1

bkwk
k2r

n2r
+ o(

m2r

n2r
)

= σ2 +
3C2

r (1− r)m2r

(2r + 1)(2r + 3)n2r

∫ 1

0

[g(r)(x)]2dx+ o(
m2r

n2r
),

where

m∑
k=1

bkwk
k2r

n2r
=

m∑
k=1

wk
k2r

n2r
− h̄w∑m

k=1 wkh2
k − h̄2

w

m∑
k=1

(hk − h̄w)
k2r

n2r

=
1

(2r + 1)

m2r

n2r
(1 + o(1))− 15

4

[
1

(2r + 3)
− 1

3(2r + 1)

]
m2r

n2r
(1 + o(1))

=
3(1− r)

(2r + 1)(2r + 3)

m2r

n2r
(1 + o(1)).

This completes the derivation. �

11



Proof of Theorem S4

We first introduce three lemmas. Lemma S1 is used in the proof of Lemma S2, and

Lemma S2 is used in the proof of Lemma S3. To save space, we only sketch the proof of

Lemma S3.

Lemma S1. Assume that m → ∞ and m/n → 0. Then for r = 2, we have

(a)
∑m

k=1 hk =
m3

3n2 +
m2

2n2 + o(m
2

n2 ).

(b) h̄w = 1
Nn2 [

1
3
nm3 + 1

2
nm2 − 1

2
m4 + o(nm2) + o(m4)].

(c)
∑m

k=1 wkh
2
k =

1
Nn4 [

1
5
nm5 + 1

2
nm4 − 1

3
m6 + o(nm4) + o(m6)].

(d)
∑m

k=1 h
2
k =

m5

5n4 +
m4

2n4 + o(m
4

n4 ).

(e)
∑m

k=1 wkh
2
k − h̄2

w = 1
N2n4 [

4
45
n2m6 + 1

6
n2m5 − 1

5
nm7 + o(nm7) + o(n2m5)].

Lemma S2. Assume that m → ∞ and m/n → 0. Then for r = 2, we have

(a)
∑m

k=1 bk = m− 5m2

8n
+ o(m

2

n
).

(b)
∑l−1

k=1 bk =
9
4
l − 5l3

4m2 + o(l) +O(1), 1 ≤ l ≤ m.

(c)
∑[(l−1)/2]

k=1 bk =
9
8
l − 5l3

32m2 + o(l) +O(1), 1 ≤ l ≤ 2m.

(d)
∑m

k=1 b
2
k =

9
4
m+ o(m).

(e)
∑m/2

k=1 bkb2k =
9
8
m+ o(m).

(f)
∑m

k=1 kbk = O(m2), 1 ≤ l ≤ m.

(g)
∑l−1

k=1 kbk = O(l2), 1 ≤ l ≤ m.

(h)
∑[(l−1)/2]

k=1 kbk = O(l2), 1 ≤ l ≤ 2m.

(i)
∑m

k=1 k
2bk = o(m3).

Lemma S3. Under the same conditions as in Theorem S4, for r = 2 we have

(a) gTD2g = O(m5/n2).
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(b) gT (Ddiag(D)u) = O(m4/n).

(c) tr(D2) = nm2 − [103
56

− 165
448

d21(1− d21)]m
3 + [9

8
+ 9

2
(d21 − 1

2
)d21]mn+ o(m3 + nm).

(d) tr{diag(D)2} = nm2 − [103
56

− 165
448

d21(1− d21)]m
3 + o(m3).

Proof of Lemma S3. (a) Let gi = g(xi), g
′
i = g′(xi) and g′′i = g′′(xi) for i = 1, . . . , n.

Noting that D is symmetric, we have gTD2g = gTDTDg = (Dg)TDg , pTp, where

p = Dg = (p1, p2, . . . , pn)
T . For i ∈ [2m+ 1, n− 2m], by Lemma S2 we have

pi = (d0d1 + d1d2)
m∑
k=1

bk(gi−k + gi+k − 2gi) + d0d2

m∑
k=1

bk(gi−2k + gi+2k − 2gi)

= (d0d1 + d1d2)
m∑
k=1

bk(
k2

n2
g′′i + o(

k2

n2
)) + 4d0d2

m∑
k=1

bk(
k2

n2
g′′i + o(

k2

n2
))

= o(
m3

n2
).

Similarly, by Lemma S2 we can derive that Similarly, we can derive that pi = O(m2/n)

for i ∈ [1,m], i ∈ [m+1, 2m], i ∈ [n− 2m+1, n−m], and i ∈ [n−m+1, n], respectively.

This leads to gTD2g =
∑2m

i=1 p
2
i +

∑n−2m
i=2m+1 p

2
i +

∑n
i=n−2m+1 p

2
i = O(m5/n2).

(b) By (a), (b) and (c) in Lemma S2, we have gT (Ddiag(D)u) = pTdiag(D)u =

(
∑m

i=1 +
∑2m

i=m+1 +
∑n−2m

i=1+2m+
∑n−m

i=n−2m+1 +
∑n

i=n−m+1)pidii = O(m4/n).

(c) By some simple calculation, we have

m∑
i=1

n∑
j=1

d2ij = (d40 +
11

14
d41 +

2545

7168
d42 +

13

8
d20d

2
1 +

233

224
d21d

2
2 +

67

64
d20d

2
2)m

3 + o(m3),

2m∑
i=m+1

n∑
j=1

d2ij = (d40 + d41 +
8719

7168
d42 + 2d20d

2
1 +

141

64
d21d

2
2 +

141

64
d20d

2
2)m

3 + o(m3),

n−2m∑
i=2m+1

n∑
j=1

d2ij = nm2 − 21

4
m3 + (

9

8
+

9

2
d0d

2
1d2)nm+ o(nm) + o(m3),

n−m∑
i=n−2m+1

n∑
j=1

d2ij = (
8719

7168
d40 + d41 + d42 +

141

64
d20d

2
1 + 2d21d

2
2 +

141

64
d20d

2
2)m

3 + o(m3),

n∑
i=n−m+1

n∑
j=1

d2ij = (
2545

7168
d40 +

11

14
d41 + d42 +

233

224
d20d

2
1 +

13

8
d21d

2
2 +

67

64
d20d

2
2)m

3 + o(m3).
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This leads to

tr(D2) =
( m∑

i=1

n∑
j=1

+
2m∑

i=m+1

n∑
j=1

+
n−2m∑

i=2m+1

n∑
j=1

+
n−m∑

i=n−2m+1

n∑
j=1

+
n∑

i=n−m+1

n∑
j=1

)
d2ij

= nm2 −
[
103

56
− 165

448
d21(1− d21)

]
m3 +

[
9

8
+

9

2
(d21 −

1

2
)d21

]
mn+ o(m3 + nm).

(d) Similarly as in the proof of part (c), we have

tr{diag(D)2} = (
m∑
i=1

+
2m∑

i=m+1

+
n−2m∑

i=1+2m

+
n−m∑

i=n−2m+1

+
n∑

i=n−m+1

)d2ii

= nm2 − [
103

56
− 165

448
d21(1− d21)]m

3 + o(m3).

Proof of Theorem S4. By Lemma S3, formula (S5) and the fact that tr(D) = N , we have

the variance of σ̂2(2,m) as

var(σ̂2(2,m)) =
1

N2

{
O(

m5

n2
) +O(

m4

n
)

+(var(ε2)− 2σ4)
[
nm2 − [

103

56
− 165

448
d21(1− d21)]m

3 + o(m3)
]

+2σ4
[
nm2 − [

103

56
− 165

448
d21(1− d21)]m

3

+[
9

8
+

9

2
(d21 −

1

2
)d21]mn+ o(m3 + nm)

]}
=

1

n
var(ε2) + A1

σ4

mn
+ A2

m

n2
var(ε2) + o(

1

nm
) + o(

m

n2
),

where A1 are A2 are defined in Theorem S4. This proves the theorem. �
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