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Abstract: We propose a varying-coefficient panel-data model with unobservable

multiple interactive fixed effects that are correlated with the regressors. We ap-

proximate each coefficient function using B-splines, and propose a robust nonlinear

iteration scheme based on the least squares method to estimate the coefficient func-

tions of interest. We also establish the asymptotic theory of the resulting estimators

under certain regularity assumptions, including the consistency, convergence rate,

and asymptotic distributions. To construct the pointwise confidence intervals for

the coefficient functions, we propose a residual-based block bootstrap method that

reduces the computational burden and avoids accumulative errors. We extend our

proposed procedure to partially linear varying-coefficient panel-data models with

unobservable multiple interactive fixed effects, and examine the problem of con-

stant coefficients versus function coefficients. Simulation studies and a real-data

analysis are used to assess the performance of the proposed methods.

Key words and phrases: Bootstrap, B-spline, hypothesis testing, interactive fixed ef-

fect, panel data, partially linear varying-coefficient model, varying-coefficient model.

1. Introduction

Panel-data models typically incorporate individual and time effects to control

the heterogeneity in the cross-section and across periods. Panel-data analysis has

attracted considerable attention in the literature. The methodology for a para-

metric panel-data analysis is relatively mature; see, for example, Arellano (2003),

Hsiao (2003), Baltagi (2005), and the references therein. Individual and time ef-

fects may enter the model additively, or they can interact multiplicatively, leading

to the so-called interactive effects or a factor structure. Panel-data models with

interactive fixed effects are a useful modeling paradigm. In macroeconomics,

incorporating interactive effects can account for the heterogenous effects of un-

observable common shocks, while the regressors can be inputs, such as labor and
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capital. Panel-data models with interactive fixed effects are used to incorpo-

rate unmeasured skills or unobservable characteristics, or to study the individual

wage rate (Su and Chen (2013)). In finance, a combination of unobserved fac-

tors and observed covariates can explain the excess returns of assets. Bai (2009)

considered the following linear panel-data model with interactive fixed effects:

Yit = Xτ
itβ + λτi Ft + εit, i = 1, . . . , N, t = 1, . . . , T, (1.1)

where Xit is a p×1 vector of observable regressors, β is a p×1 vector of unknown

coefficients, λi is an r×1 vector of factor loadings, Ft is an r×1 vector of common

factors, such that λτi Ft = λi1F1t + · · · + λirFrt, and εit are idiosyncratic errors.

In this model, λi, Ft, and εit are unobserved, and the dimension r of the factor

loadings does not depend on the cross-section size N or the time series length T .

A number of researchers have developed statistical methods to study panel-

data models with interactive fixed effects. For example, Holtz-Eakin, Newey and

Rosen (1988) estimated model (1.1) using quasi-differencing and lagged variables

as instruments. Their approach, however, rules out time constant regressors.

Coakley, Fuertes and Smith (2002) studied model (1.1) by augmenting the re-

gression of Y on X with the principal components of the ordinary least squares

residuals. However, Pesaran (2006) showed that this method is inconsistent un-

less Xit and λi tend to be uncorrelated or fully correlated as N tends to infinity.

As an alternative, Pesaran (2006) developed a correlated common effects (CCE)

estimator, in which model (1.1) is augmented with the cross-sectional averages

of Xit. Although Pesaran’s estimator is consistent, it does not allow for time-

invariant individual regressors. Ahn, Lee and Schmidt (2001) developed a gen-

eralized method of moments (GMM) estimator for model (1.1). Their estimator

is more efficient than the least squares estimator under a fixed T . However,

being able to identify their estimator requires that Xit is correlated with λi,

and it is impossible to test for the interactive random effects assumption. Bai

(2009) studied the identification, consistency, and limiting distribution of the

principal component analysis (PCA) estimators, showing that they are
√
NT -

consistent. Bai and Li (2014) investigated the maximum likelihood estimation of

model (1.1). Wu and Li (2014) conducted several tests for the existence of indi-

vidual effects and time effects in model (1.1). Li, Qian and Su (2016) studied the

estimation and inference of common structural breaks in panel-data models with

interactive fixed effects using Lasso-type methods. More studies can be found in

Moon and Weidner (2017), Lee, Moon and Weidner (2012), Su and Chen (2013),
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Moon and Weidner (2015), Lu and Su (2016), and many others.

Note that the aforementioned works focus on linear specifications of the

regression relationships in panel-data models with interactive fixed effects. A

natural extension of model (1.1) is to consider the following varying-coefficient

panel-data model with interactive fixed effects:

Yit = Xτ
itβ(Uit) + λτi Ft + εit, i = 1, . . . , N, t = 1, . . . , T, (1.2)

where β(·) = (β1(·), . . . , βp(·))τ is a p× 1 vector of unknown coefficient functions

to be estimated. We allow for {Xit} and/or {Uit} to be correlated with {λi}
alone or with {Ft} alone, or simultaneously correlated with {λi} and {Ft}, or

correlated with an unknown correlation structure. In fact, Xit can be a nonlinear

function of λi and Ft. Hence, model (1.2) is a fixed-effects model, and assumes

an interactive fixed-effects linear model for each fixed time t, but allows the

coefficients to vary with the covariate Uit. This model is attractive because it has

an intuitive interpretation, while retaining the unobservable multiple interactive

fixed effects, general nonparametric characteristics, and explanatory power of the

linear panel-data model.

Model (1.2) is fairly general, and encompasses various panel-data models as

special cases. If Xit ≡ 1 and p = 1, model (1.2) reduces to the nonparametric

panel-data model with interactive fixed effects, which has received much atten-

tion in recent years. Huang (2013) studied the local linear estimation of such

models. Su and Jin (2012) extended the CCE method of Pesaran (2006) from a

linear model to a nonparametric model using the method of sieves. Jin and Su

(2013) constructed a nonparametric test for poolability in nonparametric regres-

sion models with interactive fixed effects. Su, Jin and Zhang (2015) proposed

a consistent nonparametric test for linearity in a large-dimensional panel-data

model with interactive fixed effects.

If r = 1 and Ft ≡ 1, model (1.2) reduces to the fixed individual effects

panel-data varying-coefficient model:

Yit = Xτ
itβ(Uit) + λi + εit.

This model has also been widely studied in the literature. For example, Sun,

Carroll and Li (2009) considered estimations using a local linear regression and

kernel-based weights. Li, Chen and Gao (2011) considered a nonparametric

time varying-coefficient model with fixed effects under the assumption of cross-

sectional independence, and proposed methods for estimating the trend function
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and coefficient functions. Rodriguez-Poo and Soberon (2014) proposed a new

technique to estimate the varying-coefficient functions based on the first-order

differences and a local linear regression. Rodriguez-Poo and Soberon (2015) in-

vestigated the model using the mean transformation technique and a local linear

regression. Li et al. (2015) considered variable selection for the model using

the basis function approximations and the group nonconcave penalized func-

tions. Malikov, Kumbhakar and Sun (2016) considered the problem of a varying-

coefficient panel-data model in the presence of endogenous selectivity and fixed

effects. In addition, if λi ≡ 0 or Ft ≡ 0, model (1.2) reduces to the varying-

coefficient model with panel data. For the development of this model, refer to

Chiang, Rice and Wu (2001), Huang, Wu and Zhou (2002), Huang, Wu and Zhou

(2004), Xue and Zhu (2007), Cai (2007), Cai and Li (2008), Wang, Li and Huang

(2008), Wang and Xia (2009), and Noh and Park (2010). Note, however, that

most of these studies focus on a “large N small T” setting.

Despite the rich literature on panel data models with interactive fixed effects,

to the best of our knowledge, there are few works on varying-coefficient panel-

data models with interactive fixed effects. As such, the main goals of this study

are to estimate the coefficient functions β(·), and to establish the asymptotic the-

ory for varying-coefficient panel-data models with interactive fixed effects when

both N and T tend to infinity and there exist serial or cross-sectional correla-

tions and heteroskedasticities of unknown form in εit. To achieve these goals,

we first apply the B-spline expansion to estimate the smooth functions in model

(1.2), owing to its simplicity. We then introduce a novel iterative least squares

procedure to estimate the coefficient functions and the factor loadings, and de-

rive some asymptotic properties for the proposed estimators. Nevertheless, the

existence of the unobservable interactive fixed effects and the weak correlations

and heteroskedasticities of unknown form in both dimensions make the estima-

tion procedure and the asymptotic theory much more complicated than those

in Huang, Wu and Zhou (2002). To apply the asymptotic normality to con-

struct the pointwise confidence intervals for the coefficient functions, we need

consistent estimators of the asymptotic biases and variances. To reduce the com-

putational burden and to avoid accumulative errors, we propose a residual-based

block bootstrap procedure to construct these confidence intervals.

Moreover, we extend the proposed estimation procedure to include partially

linear varying coefficient models with interactive fixed effects, and show that the

convergence rate for the estimation of the parametric components is of order

OP ((NT )−1/2). To determine whether a varying-coefficient model or partially
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linear varying-coefficient model is appropriate, we propose a test statistic to

test between the two alternatives in practice. Numerical results confirm that our

proposed estimation and testing procedures work well in a wide range of settings.

The remainder of the paper is organized as follows. In Section 2, we propose

an estimation procedure for the coefficient functions and provide a robust iter-

ation algorithm under the identification restrictions. In Section 3, we establish

the asymptotic theory of the resulting estimators under some regularity assump-

tions as both N and T tend to infinity. In Section 4, we develop a residual-based

block bootstrap procedure to construct the pointwise confidence intervals for the

coefficient functions. In Section 5, we extend the estimation procedure to par-

tially linear varying coefficient models and establish the asymptotic distribution

of the estimator. In Section 6, a test statistic and the bootstrap procedure are

developed. Finally, we conclude the paper in Section 7. Technical details are

given in the online Supplementary Material, along with simulation studies and a

real application to demonstrate the efficacy of our proposed methods.

2. Methodology

To estimate the coefficient functions βk(·), for 1 ≤ k ≤ p, we consider the

widely used B-spline approximations. Let Bk(u) = (Bk1(u), . . . , BkLk
(u))τ be the

(m + 1)th-order B-spline basis functions, where Lk = lk + m + 1 is the number

of basis functions in approximating βk(u), lk is the number of interior knots for

βk(·), and m is the degree of the spline. The interior knots of the splines can be

either equally spaced or placed on the sample number of observations between

any two adjacent knots. With the above basis functions, the coefficient functions

βk(u) can be approximated by

βk(u) ≈
Lk∑
l=1

γklBkl(u), k = 1, . . . , p, (2.1)

where γkl are the coefficients, and Lk represent the smoothing parameters, se-

lected using “leave-one-subject-out” cross-validation.

Substituting (2.1) into model (1.2), we have the following approximation:

Yit ≈
p∑

k=1

Lk∑
l=1

γklXit,kBkl(Uit) + λτi Ft + εit, i = 1, . . . , N, t = 1, . . . , T. (2.2)

Model (2.2) is a standard linear regression model with interactive fixed effects.
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Because each coefficient function βk(u) in model (1.2) is characterized by γk =

(γk1, . . . , γkLk
)τ , model (2.2) cannot be estimated directly, owing to the unob-

servable multiple interactive fixed effects. In what follows, we propose a robust

nonlinear iteration scheme based on the least squares method to estimate the

coefficient functions and deal with these fixed effects.

For the sake of convenience, we use vectors and matrices to present the

model and perform the analysis. Let Yi = (Yi1, . . . , YiT )τ ,F = (F1, . . . , FT )τ ,

εi = (εi1, . . . , εiT )τ , and Λ = (λ1, . . . , λN )τ be an N × r matrix. Let

B(u) =

B11(u) · · · B1L1
(u) 0 · · · 0 0 · · · 0

...
...

...

0 · · · 0 0 · · · 0 Bp1(u) · · · BpLp
(u)

 ,

Rit = (Xτ
itB(Uit))

τ , andRi = (Ri1, . . . , RiT )τ . Furthermore, let γ = (γτ1 , . . . ,γ
τ
p )τ ,

where γk = (γk1, . . . , γkLk
)τ . Then, model (2.2) can be rewritten as

Yi ≈ Riγ + Fλi + εi, i = 1, . . . , N.

Owing to potential correlations between the unobservable effects and the

regressors, we treat Ft and λi as the fixed-effects parameters to be estimated. To

ensure the identifiability of the coefficient function β(·) = (β1(·), . . . , βp(·))τ , we

follow Bai (2009) and impose the following identification restrictions:

F τF

T
= Ir and ΛτΛ = diagonal. (2.3)

These two restrictions uniquely determine Λ and F . We then define the objective

function as

Q(γ,F ,Λ) =

N∑
i=1

(Yi −Riγ − Fλi)τ (Yi −Riγ − Fλi), (2.4)

subject to constraint (2.3). Taking partial derivatives of (2.4) with respect to λi
and setting them equal to zero, we have

λ̃i = (F τF )−1F τ (Yi −Riγ) = T−1F τ (Yi −Riγ). (2.5)
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Replacing λi in (2.4) with (2.5), we have

Q(γ,F ) =

N∑
i=1

(Yi −Riγ − F λ̃i)τ (Yi −Riγ − F λ̃i)

=

N∑
i=1

(Yi −Riγ)τMF (Yi −Riγ),

where MF = IT −F (F τF )−1F τ = IT −FF τ/T is a projection matrix. For each

given F , if
∑N

i=1R
τ
iMFRi is invertible, the least squares estimator of γ can be

uniquely obtained by minimizing Q(γ,F ), as follows:

γ̂(F ) =

(
N∑
i=1

Rτ
iMFRi

)−1 N∑
i=1

Rτ
iMFYi. (2.6)

Because the least squares estimator (2.6) of γ depends on the unknown common

factors F , the final solution of γ can be obtained by iteration between γ and F

using the following nonlinear equations:

γ̂ =

(
N∑
i=1

Rτ
iMF̂Ri

)−1 N∑
i=1

Rτ
iMF̂Yi, (2.7)

F̂VNT =

[
1

NT

N∑
i=1

(Yi −Riγ̂)(Yi −Riγ̂)τ

]
F̂ , (2.8)

where VNT is a diagonal matrix consisting of the r largest eigenvalues of the

matrix (NT )−1
∑N

i=1(Yi − Riγ̂)(Yi − Riγ̂)τ , arranged in decreasing order. As

noted by Bai (2009), the iterated solution is somewhat sensitive to the initial

values. Bai (2009) proposed starting with either the least squares estimator of

γ or the principal components estimate of F . From the numerical studies in the

Supplementary Material, we find that the procedure is more robust when the

principal components estimator of F is used for the initial values. In general,

poor initial values result in an exceptionally large number of iterations. By (2.5),

(2.7), and (2.8), we have

Λ̂ = (λ̂1, . . . , λ̂N )τ = T−1
(
F̂ τ (Y1 −R1γ̂), . . . , F̂ τ (YN −RN γ̂)

)τ
. (2.9)

Once we obtain the estimator γ̂ = (γ̂τ1 , . . . , γ̂
τ
p )τ of γ with γ̂k = (γ̂k1, . . . ,
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γ̂kLk
)τ , for k = 1, . . . , p, we can estimate βk(u) as

β̂k(u) =

Lk∑
l=1

γ̂klBkl(u), k = 1, . . . , p.

In what follows, we present a robust iteration algorithm for estimating the

parameters (γ,F ,Λ).

Step 1. Obtain an initial estimator (F̂ , Λ̂) of (F ,Λ).

Step 2. Given F̂ and Λ̂, compute γ̂(F̂ , Λ̂) =
(∑N

i=1R
τ
iRi

)−1∑N
i=1R

τ
i (Yi −

F̂ λ̂i).

Step 3. Given γ̂, compute F̂ according to (2.8) (multiplied by
√
T , owing to

the restriction that F τF /T = Ir), and calculate Λ̂ using formula (2.9).

Step 4. Repeat Steps 2 and 3 until (γ̂, F̂ , Λ̂) satisfy the given convergence cri-

terion.

3. Regularity Assumptions and Asymptotic Properties

To derive asymptotic properties for the proposed estimators, we let F ≡
{F : F τF /T = Ir} and

D(F ) =
1

NT

N∑
i=1

Rτ
iMFRi −

1

T

[
1

N2

N∑
i=1

N∑
j=1

Rτ
iMFRjaij

]
,

where aij = λτi (ΛτΛ/N)−1λj . To obtain a unique estimator of γ with probability

tending to one, we require that the first term of D(F ) on the right-hand side

is positive-definite when F is observable. The presence of the second term is

because of the unobservable F and Λ. The reason for this particular form is the

nonlinearity of the interactive effects (see Bai (2009)).

3.1. Regularity assumptions

In this section, we introduce a definition and present some regularity assump-

tions, which we use to establish the asymptotic theory of the resulting estimators.

Definition 1. Let Hd define the collection of all functions on the support U
whose mth-order derivative satisfies the Hölder condition of order ν, with d ≡
m + ν, where 0 < ν ≤ 1. That is, for each h ∈ Hd, there exists a constant

M0 ∈ (0,∞), such that |h(m)(u)− h(m)(v)| ≤M0|u− v|ν , for any u, v ∈ U .
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(A1) The random variable Xit is independent and identically distributed (i.i.d.)

across the N individuals, and there exists a positive M , such that |Xit,k| ≤
M < ∞, for all k = 1, . . . , p. We further assume that {Xit : 1 ≤ t ≤ T}
is strictly stationary for each i. The eigenvalues ρ1(u) ≤ · · · ≤ ρp(u) of

Ω(u) = E(XitX
τ
it|Uit = u) are bounded away from zero and ∞ uniformly

over u ∈ U ; that is, there exist positive constants ρ0 and ρ∗, such that

0 < ρ0 ≤ ρ1(u) ≤ · · · ≤ ρp(u) ≤ ρ∗ <∞, for u ∈ U .

(A2) The observation variables Uit are chosen independently according to a dis-

tribution FU on the support U . Moreover, the density function of U , fU (u),

is uniformly bounded away from zero and∞, and continuously differentiable

uniformly over u ∈ U .

(A3) βk(u) ∈ Hd, for all k = 1, . . . , p.

(A4) Let uk1, . . . , uklk be the interior knots of the kth coefficient function over

u ∈ U = [U0, U1], for k = 1, . . . , p. Furthermore, let uk0 = U0 and uk(lk+1) =

U1. There exists a positive constant C0, such that

hk
min1≤i≤lk hki

≤ C0 and
max1≤k≤p hki
min1≤k≤p hki

≤ C0,

where hki = uki − uk(i−1) and hk = max1≤i≤lk+1 hki.

(A5) Suppose that inf
F∈F

D(F ) > 0.

(A6) E‖Ft‖4 ≤M and
∑T

t=1 FtF
τ
t

/
T

P−→ ΣF > 0, for some r × r matrix ΣF , as

T →∞, where “
P−→” denotes convergence in probability.

(A7) E‖λi‖4 ≤M and ΛτΛ/N
P−→ ΣΛ > 0, for some r×r matrix ΣΛ, as N →∞.

(A8) (i) Suppose that εit are independent of Xjs, Ujs, λj , and Fs, for all i, t, j,

and s with zero mean and E(εit)
8 ≤M .

(ii) Let σij,ts = E(εitεjs). |σij,ts| ≤ ρij for all (t, s), and |σij,ts| ≤ %ts for all

(i, j), such that

1

N

N∑
i,j=1

ρij ≤M,
1

T

T∑
t,s=1

%ts ≤M,
1

NT

N∑
i,j=1

T∑
t,s=1

|σij,ts| ≤M.

The smallest and largest eigenvalues of Ωi = E(εiε
τ
i ) are bounded uniformly

for all i and t, where εi = (εi1, . . . , εiT )τ .
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(iii) For every (t, s), E
∣∣∣N−1/2

∑N
i=1[εitεis − E(εitεis)]

∣∣∣4 ≤M .

(iv) Moreover, we assume that T−2N−1
∑

t,s,u,v

∑
i,j |cov(εitεis, εjuεjv)| ≤

M and T−1N−2
∑

t,s

∑
i,j,m,l |cov(εitεjt, εmsεls)| ≤M.

(A9) lim supN,T (maxk Lk/mink Lk) <∞.

Assumptions (A1)–(A4) are mild conditions that can be validated in many

practical situations. These conditions have been widely assumed in studies on

varying-coefficient models with repeated measurements, such as those of Huang,

Wu and Zhou (2002), Huang, Wu and Zhou (2004), and Wang, Li and Huang

(2008). Assumption (A5) is an identification condition for γ, and γ can be

uniquely determined by (2.7) if D(F ) is positive-definite. Assumptions (A6) and

(A7) imply the existence of r factors. In this study, whether Ft or λi has a zero

mean is not crucial, because they are treated as parameters to be estimated.

Assumption (A8) allows for weak forms of both cross-sectional dependence and

serial dependence in the error processes. Assumption (A9) can also be found in

Noh and Park (2010), and is used for the system of general basis functions Bkl,

which includes orthonormal bases, non-orthonormal bases, and B-splines.

Let ‖a‖L2
= {

∫
U a

2(u)du}1/2 be the L2 norm of any square integrable real-

valued function a(u) on U , and let ‖A‖L2
= {

∑p
k=1 ‖a‖

2
L2
}1/2 be the L2 norm

of A(u) = (a1(u), . . . , ap(u))τ , where ak(u) are real-valued functions on U (see

Huang, Wu and Zhou (2002)). We define β̂k(·) as a consistent estimator of βk(·) if

limN,T→∞ ‖β̂k(·)−βk(·)‖L2
= 0 holds in probability. Define δNT = min[

√
N,
√
T ]

and LN = max1≤k≤p Lk, which tend to infinity as N or T tends to infinity. Let

D = {(Xit, Uit, λi, Ft), i = 1, . . . , N, t = 1, . . . , T}. We use ED and VarD to

denote the expectation and variance conditional on D, respectively.

3.2. Asymptotic properties

Let F 0 be the true value of F . With an appropriate choice of Lk to bal-

ance the bias and variance, our proposed estimators have asymptotic properties

including consistency, a convergence rate, and an asymptotic distribution.

Theorem 1. Suppose assumptions (A1)–(A9) hold. If δ−2
NTLN logLN → 0 as

N →∞ and T →∞ simultaneously, then

(i) β̂k(·), for k = 1, . . . , p, are uniquely defined with probability tending to one.

(ii) The matrix F 0τ F̂ /T is invertible and ‖PF̂ − PF 0‖ P−→ 0, where PA =

A(AτA)−1Aτ for a given matrix A.
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Part (i) of Theorem 1 implies that, with probability tending to one, we

can obtain unique estimators β̂k(·) for the unknown coefficient functions βk(·)
under some regularity assumptions, regardless of whether unobservable multiple

interactive fixed effects exist in model (1.2). Part (ii) of Theorem 1 indicates that

the spaces spanned by F̂ and F 0 are asymptotically consistent. This is a key

result that guarantees that the estimators β̂k(·) have good asymptotic properties,

including the optimal convergence rate, consistency, and asymptotic normality.

Theorem 2. Under the assumptions of Theorem 1, we further have

‖β̂k(u)− βk(u)‖2L2
= OP

(
LN
NT

+
LN
T 2

+
LN
N2

+ L−2d
N

)
, k = 1, . . . , p.

Theorem 2 gives the convergence rate of β̂k(u), for all k = 1, . . . , p, and,

hence, establishes the consistency of our proposed estimators under the condition

δ−2
NTLN logLN → 0 as N → ∞ and T → ∞ simultaneously. From the proof

of Theorem 2, we note the following. The first term in the convergence rate

is caused by the stochastic error. The second and third terms are caused by

the estimation error of the fixed effects F 0 and the presence of cross-sectional

and serial correlation and heteroskedasticity, respectively. The last term is the

error due to the basis approximation. If we take the appropriate relative rate

T/N → c > 0 as N → ∞ and T → ∞ simultaneously, then we have a more

accurate convergence rate, as follows

‖β̂k(u)− βk(u)‖2L2
= OP

(
LN
NT

+ L−2d
N

)
, k = 1, . . . , p.

Furthermore, if we take LN = O((NT )1/(2d+1)), then

‖β̂k(u)− βk(u)‖2L2
= OP

(
(NT )−2d/(2d+1)

)
, k = 1, . . . , p.

This leads to the optimal convergence rate of order OP
(
(NT )−2d/(2d+1)

)
, which

holds for the i.i.d. data in Stone (1982).

Next, we establish the asymptotic distribution of β̂(u). Let Zi = MF 0Ri −
N−1

∑N
j=1 aijMF 0Rj . The variance-covariance matrix of β̂(u), conditioning on

D, is Σ = Var(β̂(u)|D) = B(u)ΦB(u)τ , where Φ is the limit in probability of

Φ∗ =

(
N∑
i=1

Zτ
i Zi

)−1

ΣNT1

(
N∑
i=1

Zτ
i Zi

)−1

,
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with ΣNT1 =
∑N

i=1

∑N
j=1

∑T
t=1

∑T
s=1 σij,tsZitZ

τ
js. Let $k denote the unit vector

in Rp with one in the kth coordinate, and zero in all other coordinates, for

k = 1, . . . , p. Then, the conditional variance of β̂k(u) is

Σkk = Var(β̂k(u)|D) = $τ
kΣ$k, k = 1, . . . , p.

To study the asymptotic distribution of β̂(u), we add the following assump-

tion.

(A10) Let Σ1 be the limit in probability of (1/NT )ΣNT1; then, (1/
√
NT )

∑N
i=1

Zτ
i εi

L−→ N(0,Σ1), where “
L−→” denotes convergence in distribution.

Denote Σ̃ = D−1
0 Σ1D

−1
0 , where D0 = plim(LN/NT )

∑N
i=1Z

τ
i Zi. The fol-

lowing theorem establishes the asymptotic distribution of β̂(u).

Theorem 3. Suppose that assumptions (A1)–(A10) hold. If δ−2
NTLN logLN → 0,

L2d+1
N /NT →∞, and T/N → c as N →∞ and T →∞ simultaneously, then

Σ−1/2(β̂(u)− β(u))
L−→ N(b(u), Ip),

where b(u) = Σ̃−1/2c1/2W 0
1 + Σ̃−1/2c−1/2W 0

2 , and W 0
1 is the limit in probability

of W1, with

W1 = −B(u)
(
LND(F 0)

)−1 1

N

N∑
i=1

N∑
j=1

(Ri − Vi)τF 0

T

(
F 0τF 0

T

)−1

×
(

ΛτΛ

N

)−1

λj

(
1

T

T∑
t=1

σij,tt

)
,

and W 0
2 is the limit in probability of W2, with

W2 = −B(u)
(
LND(F 0)

)−1 1

NT

N∑
i=1

Rτ
iMF 0ΩF 0

(
F 0τF 0

T

)−1(
ΛτΛ

N

)−1

λi,

where Vi = N−1
∑N

j=1 aijRj and Ω = N−1
∑N

i=1 Ωi.

From the asymptotic normality in Theorem 3, we find that β̂(u) has a bias

term b(u), and b(u) has a complex structure. In order to improve the efficiency of

a statistical inference, we propose a bias-corrected procedure to remove the bias

term b(u). Noting that cross-sectional and serial dependence and heteroskedas-
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ticity are allowed in the error terms, we first estimate W1 and W2, as follows:

Ŵ1 = −B(u)D̂−1
0

1

n

n∑
i=1

n∑
j=1

(Ri − V̂i)τ F̂
T

(
Λ̂τ Λ̂

N

)−1

λ̂j

(
1

T

T∑
t=1

ε̂itε̂jt

)
,

Ŵ2 = −B(u)D̂−1
0

1

NT

N∑
i=1

1

N

N∑
k=1

(
Rτ
i Ω̂kF̂ − T−1F̂ F̂ τ Ω̂kF̂

)( Λ̂τ Λ̂

N

)−1

λ̂i,

where n satisfies n/N → 0, n/T → 0, and D̂0 = (LN/NT )
∑N

i=1

∑T
t=1 ẐitẐ

τ
it,

with F 0, λi, and Λ replaced with F̂ , λ̂i, and Λ̂ in Ẑit, respectively. Note that

Rτ
i Ω̂kF̂ = (Ip0 ,0)(Sτi Ω̂kSi)(0

τ , Ir)
τ and F̂ τ Ω̂kF̂ = (0, Ir)(S

τ
i Ω̂kSi)(0

τ , Ir)
τ ,

where p0 =
∑p

k=1 Lk and Sτi Ω̂kSi = C0i +
∑q

ν=1 [1− ν/(q + 1)] (Cνi + Cτνi),

Si = (Ri, F̂ ), Cνi = (1/T )
∑T

t=ν+1 Sitε̂ktε̂k,t−νSi,t−ν , and q →∞ and q/T 1/4 → 0

as T →∞. Thus, we define the bias-corrected estimator of β(u) as

β̆(u) = β̂(u)− LN
N
Ŵ1 −

LN
T
Ŵ2.

The following theorem shows there is no bias term in the asymptotic distri-

bution of the bias-corrected estimator β̆(u).

Theorem 4. Suppose that assumptions (A1)–(A10) hold. If δ−2
NTLN logLN → 0,

L2d+1
N /NT →∞, and T/N → c as N →∞ and T →∞ simultaneously, then

Σ−1/2(β̆(u)− β(u))
L−→ N(0, Ip).

In particular, we have Σ
−1/2
kk (β̆k(u)− βk(u))

L−→ N(0, 1), for k = 1, . . . , p.

Next, we consider some special cases where the asymptotic bias can be sim-

plified. (1) In the absence of serial correlation and heteroskedasticity, E(εitεjt) =

σij,tt = σij , because it does not depend on t. It is easy to show that W2 = 0. (2)

In the absence of cross-sectional correlation and heteroskedasticity, E(εitεis) =

σii,ts = ωts, because it does not depend on i, in which case, a simple calculation

yields W1 = 0. Let Π and Ξ be the probability limits, defined as, respectively,

Π = plimB(u)

(
N∑
i=1

Zτ
i Zi

)−1

ΣNT2

(
N∑
i=1

Zτ
i Zi

)−1

B(u)τ ,

Ξ = plimB(u)

(
N∑
i=1

Zτ
i Zi

)−1

ΣNT3

(
N∑
i=1

Zτ
i Zi

)−1

B(u)τ ,
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where ΣNT2 =
∑N

i=1

∑N
j=1 σij

∑T
t=1ZitZ

τ
jt and ΣNT3 =

∑T
t=1

∑T
s=1 ωts

∑N
i=1ZitZ

τ
is.

Corollary 1. Suppose that assumptions (A1)–(A10) hold. If δ−2
NTLN logLN → 0

and L2d+1
N /NT → ∞ as N → ∞ and T → ∞ simultaneously, we have the

following results:

(i) In the absence of serial correlation and heteroskedasticity and T/N → 0,

Π−1/2(β̂(u)− β(u))
L−→ N(0, Ip).

(ii) In the absence of cross-sectonal correlation and heteroskedasticity and N/T

→ 0, Ξ−1/2(β̂(u)− β(u))
L−→ N(0, Ip).

For model (1.2) with unobservable multiple interactive fixed effects, Theorem

4 establishes the asymptotic normality for the bias-corrected estimator β̆k(·) of

βk(·). Hence, if we can obtain a consistent estimator Σ̂kk of Σkk, the asymptotic

pointwise confidence intervals for βk(u) can be constructed as

β̆k(u)± zα/2Σ̂
−1/2
kk , k = 1, . . . , p,

where zα/2 is the (1− α/2) quantile of the standard normal distribution.

4. A Residual-Based Block Bootstrap Procedure

In theory, we can construct the pointwise confidence intervals for the coef-

ficient functions βk(·) from Theorems 3 and 4. For Theorem 3, we first need

to derive consistent estimators for the asymptotic biases and variances of the

estimators β̂k(·), for k = 1, . . . , p. Nevertheless, because the asymptotic biases

and variances involve the unknown fixed effects F and the covariance matrices

Ωi of εi, it is difficult to obtain their consistent and efficient estimators, even if

the plug-in method is used. For Theorem 4, it is difficult to show the consistency

of the estimators Ŵ1 and Ŵ2, because cross-sectional and serial dependence and

heteroskedasticity are allowed in the error terms.

Therefore, the standard nonparametric bootstrap procedure cannot be ap-

plied to construct the pointwise confidence intervals directly, because cross-

sectional and serial correlations exist within the group in model (1.2). In ad-

dition to increasing the computational burden and causing accumulative errors,

they make it more difficult to construct the pointwise confidence intervals. To

overcome these limitations, we propose a residual-based block bootstrap bias-

correction procedure to construct the pointwise confidence intervals for βk(·).
The algorithm follows.
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Step 1. Fit model (1.2) using the methods proposed in Section 2, and estimate

the residuals εit using

ε̂it = Yit −
p∑

k=1

Lk∑
l=1

γ̂klXit,kBkl(Uit) + λ̂τi F̂t, i = 1, . . . , N, t = 1, . . . , T.

Step 2. Generate the bootstrap residuals ε∗it by ε̂it using the block bootstrap

method with a two-step procedure: (i) Choose the block lengths. In

our block bootstrap procedure, similarly to Inoue and Shintani (2006), we

choose block lengths of l1 = cT 1/3 and l2 = cN1/3, respectively, for some

c > 0. (ii) Resample the blocks and generate the bootstrap samples. The

blocks can be overlapping or non-overlapping. According to Lahiri (1999),

there is little difference in the performance for these two methods. We hence

adopt the non-overlapping method, for simplicity. Then, we first divide the

N × T residual matrix ε̂ into m1 = T/l1 blocks by column, and generate

the bootstrap samples N × T matrix ε̃ by resampling, with replacement,

the m1 blocks of columns of ε̂. Next, we divide ε̃ into m2 = N/l2 blocks

by row, and generate the bootstrap samples matrix ε∗ by resampling, with

replacement, the m2 blocks of rows of ε̃.

Step 3. We generate the bootstrap sample Y ∗it using the following model:

Y ∗it =

p∑
k=1

Lk∑
l=1

γ̂klXit,kBkl(Uit) + λ̂τi F̂t + ε∗it, i = 1, . . . , N, t = 1, . . . , T,

where γ̂kl, F̂t, and λ̂i are the respective estimators of γkl, Ft, and λi, us-

ing the estimation procedure in Section 2. Based on the bootstrap sample

{(Y ∗it , Xit, Uit), i = 1, . . . , N, t = 1, . . . , T}, we calculate the bootstrap esti-

mator β̂(b)(·), also using the estimation procedure in Section 2.

Step 4. Repeat Steps 2 and 3 B times to obtain a size B bootstrap estimator

β̂(b)(u), for b = 1, . . . , B. The bootstrap estimator Var∗(β̂(u)|D) of Σ =

Var(β̂(u)|D) is taken as the sample variance of β̂(b)(u). Next, the bootstrap

bias-corrected estimator of β̂k(u) can be defined as

β̆k(u) = β̂k(u)−

(
1

B

B∑
b=1

β̂
(b)
k (u)− β̂k(u)

)
= 2β̂k(u)− 1

B

B∑
b=1

β̂
(b)
k (u).

Intuitively, the bias of a bootstrap estimator is a good approximation to that
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of a true coefficient function estimator. Finally, we construct the asymptotic

pointwise confidence intervals for βk(u) as

β̆k(u)± zα/2{Var∗(β̂k(u)|D)}1/2, k = 1, . . . , p,

where zα/2 is the (1− α/2) quantile of the standard normal distribution.

5. Partially Linear Varying-Coefficient Model

In this section, we consider a special case of model (1.2), where some com-

ponents Xit = (Xit,1, . . . , Xit,q)
τ of Xit are constant effects, and the rest Xit =

(Xit,q+1, . . . , Xit,p)
τ are varying effects, for i = 1, . . . , N and t = 1, . . . , T . Then,

model (1.2) becomes the following partially linear varying-coefficient model with

interactive fixed effects:

Yit = Xτ
itβ

(1)(Uit) +X
τ
itθ + λτi Ft + εit, (5.1)

where β(1)(u) = (β1(u)), . . . , βq(u))τ and θ = (βq+1, . . . , βp)
τ .

Similarly to the proposed estimation procedure in Section 2, we can define

the following objective function:

Q(γ(1),θ,F ) =

N∑
i=1

(Yi −Riγ
(1) −Xiθ)τMF (Yi −Riγ

(1) −Xiθ). (5.2)

Thus, the estimators of γ(1) and θ can be obtained by iterating between γ(1), θ,

and F using the following nonlinear equations:

θ̂ =

 N∑
i=1

X
τ
iMF̂

IT −Ri

(
N∑
i=1

Rτ
iMF̂Ri

)−1 N∑
i=1

Rτ
iMF̂

Xi

−1

×
N∑
i=1

X
τ
iMF̂

IT −Ri

(
N∑
i=1

Rτ
iMF̂Ri

)−1 N∑
i=1

Rτ
iMF̂

Yi,
γ̂(1) =

(
N∑
i=1

Rτ
iMF̂Ri

)−1 N∑
i=1

Rτ
iMF̂ (Yi −X

τ
i θ̂),

F̂VNT =

[
1

NT

N∑
i=1

(Yi −Riγ̂
(1) −Xτ

i θ̂)(Yi −Riγ̂
(1) −Xτ

i θ̂)τ

]
F̂ . (5.3)

By the property of B-spline bases that
∑Lk

l=1Bkl(u) = 1 if βk(u) is a constant
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βk, we set γk = βk1Lk
, where 1Lk

is an Lk × 1 vector with entries of one. With

a slight abuse of notation, (5.2) can be rewritten as

Q(γ(1),θ,F ) = Q(γ,F ) =

N∑
i=1

(Yi −Riγ)τMF (Yi −Riγ), (5.4)

where γ = (γτ1 , . . . , γ
τ
q , βq+11

τ
Lq+1

, . . . , βp1
τ
Lp

)τ = (γ(1)τ , βq+11
τ
Lq+1

, . . . , βp1
τ
Lp

)τ .

For each k = q + 1, . . . , p, we treat βk as a function, and apply the estimation

procedure in Section 2 to obtain the initial estimators of γ̂(1), F̂ , and Λ̂. Then,

we propose the following robust iteration algorithm for estimating the parameters

(γ(1),θ,F ,Λ).

Step 1. Start with an initial estimator (γ̂(1), F̂ , Λ̂).

Step 2. Given γ̂(1), F̂ , and Λ̂, compute

θ̂(γ̂(1), F̂ , Λ̂) =

(
N∑
i=1

X
τ
iXi

)−1 N∑
i=1

X
τ
i (Yi −Riγ̂

(1) − F̂ λ̂i).

Step 3. Given θ̂, F̂ , and Λ̂, compute

γ̂(1)(θ̂, F̂ , Λ̂) =

(
N∑
i=1

Rτ
iRi

)−1 N∑
i=1

Rτ
i (Yi −Xiθ̂ − F̂ λ̂i).

Step 4. Given γ̂(1) and θ̂, compute F̂ according to (5.3) (multiplied by
√
T ,

owing to the restriction that F τF /T = Ir), and calculate Λ̂ using formula

(2.9), with γ̂ = (γ̂(1)τ , β̂q+11
τ
Lq+1

, . . . , β̂p1
τ
Lp

)τ .

Step 5. Repeat Steps 2–4 until (γ̂(1), θ̂, F̂ , Λ̂) satisfy the given convergence cri-

terion.

In order to give the following asymptotic distribution, we first introduce some

notation. Let

Zi = MF 0Xi −
1

N

N∑
j=1

MF 0Xjaij , Zi = MF 0Ri −
1

N

N∑
j=1

MF 0Rjaij ,

Φ =
1

NT

N∑
i=1

Z
τ
iZi, Φ =

1

NT

N∑
i=1

Zτ
iZi, Ψ =

1

NT

N∑
i=1

Z
τ
iZi,
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and Ži = Zi−ZiΦ
−1Ψτ . In addition, we define the following probability limits:

Π1 = plim
1

NT

N∑
i=1

Žτ
i Ži = plim(Φ−ΨΦ−1Ψτ ),

Π2 = plim
1

NT

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

σij,tsŽitŽ
τ
js.

The following theorem gives the asymptotic normality of the parametric

components.

Theorem 5. Suppose that assumptions (A1)–(A10) hold. If δ−2
NTLN logLN → 0,

L2d+1
N /NT →∞, and T/N → c as N →∞ and T →∞ simultaneously, then

(NT )−1/2(θ̂ − θ)
L−→ N(b,Π−1

1 Π2Π−1
1 ),

where b = c1/2Š0
1 + c−1/2Š0

2 , and Š0
1 is the probability limit of Š1, with

Š1 = −(Φ−ΨΦ−1Ψτ )−1

[
1

N

N∑
i=1

N∑
j=1

(Xi − V i)
τF 0

T
G0λj

(
1

T

T∑
t=1

εitεjt

)

−ΨΦ−1 1

N

N∑
i=1

N∑
j=1

(Ri − V i)
τF 0

T
G0λj

(
1

T

T∑
t=1

εitεjt

)]
,

and Š0
2 is the probability limit of Š2, with

Š2 = −(Φ−ΨΦ−1Ψτ )−1

(
1

NT

N∑
i=1

X
τ
iMF 0ΩF 0G0λi

−ΨΦ−1 1

NT

N∑
i=1

Rτ
iMF 0ΩF 0G0λi

)
,

where G0 = (F 0τF 0/T )−1(ΛτΛ/N)−1 and V i = N−1
∑N

j=1 aijXj.

It is easy to show that Š0
1 = 0 in the bias term b if the cross-sectional

correlation and heteroskedasticity are absent. Similarly, Š0
2 = 0 if the serial

correlation and heteroskedasticity are absent. We also show that both Š0
1 =

Š0
2 = 0 if εit are i.i.d. over i and t. From Theorem 5, the convergence rate of

θ̂ is of order OP ((NT )−1/2). Thus substituting θ̂ for θ in model (5.1) will have

little effect on the estimation of βj(u), for j = 1, . . . , q. This implies that the

estimator β̂j(u) will have similar asymptotic distributions in Theorems 3 and 4.
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6. Hypothesis Testing

In practice, it is often of interest to test whether one or several coefficient

functions are nonzero constants or are identically zero. We here propose a

goodness-of-fit test that compares the residual sum of squares from least square

fits under the null and alternative hypotheses.

We consider the null hypothesis that some of the coefficient functions are

constants:

H0 : βq+1(u) = βq+1, . . . , βp(u) = βp,

for all u ∈ U , where βk (k = q + 1, . . . , p) are unknown constants. Under H0,

model (1.2) reduces to the partially linear varying-coefficient panel-data model

(5.1). Let γ̂(1)∗, θ̂, F̂ ∗, and λ̂∗i be the consistent estimators of γ(1), θ, F , and λi,

respectively. Thus, the residual sum of squares under the null hypothesis H0 is

RSS0 =
1

NT

N∑
i=1

(Yi −Riγ̂
(1)∗ −Xiθ̂ − F̂ ∗λ̂∗i )τ (Yi −Riγ̂

(1)∗ −Xiθ̂ − F̂ ∗λ̂∗i ).

Under the general alternative that all coefficient functions are allowed to

vary with u, the residual sum of squares is defined by

RSS1 =
1

NT

N∑
i=1

(Yi −Riγ̂ − F̂ λ̂i)τ (Yi −Riγ̂ − F̂ λ̂i). (6.1)

We extend the generalized likelihood ratio in Fan, Zhang and Zhang (2001) to

the current setting, and construct the test statistic under the null hypothesis H0

as follows:

Tn =
RSS0 − RSS1

RSS1
, (6.2)

where RSS0 − RSS1 indicates the difference of fit under the null and alternative

hypotheses. If Tn is larger than an appropriate critical value, we reject the null

hypothesis H0. Let t0 be the observed value of Tn. Then, the p-value of the

test is defined as p0 = PH0
(Tn > t0), which denotes the probability of the event

{Tn > t0}. For a given significance level α0, the null hypothesis H0 is rejected if

p0 ≤ α0.

Theorem 6. Suppose that the conditions of Theorem 3 are satisfied. Under the

null hypothesis H0, Tn → 0 in probability as N →∞ and T →∞. Otherwise, if

infa∈R ‖βk(u)− a‖L2
> 0, for some k = q + 1, . . . , p, then there exists a constant

t0, such that Tn > t0 with probability approaching one as N →∞ and T →∞.
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Because it is difficult to develop the asymptotic null distribution of the statis-

tic Tn, we use the following bootstrap procedure to evaluate the null distribution

of Tn and compute the p-values of the test.

Step 1. We generate the bootstrap sample {(Y ∗it , Xit, Uit), i = 1, . . . , N, t =

1, . . . , T}, as described in Section 4, and calculate the bootstrap test statis-

tic T ∗n .

Step 2. We repeat Step 1 many times to compute the bootstrap distribution of

T ∗n .

Step 3. When the observed test statistic Tn is greater than or equal to the

{100(1 − α0)}th percentile of the empirical distribution T ∗n , we reject the

null hypothesis H0 at the significance level α0. The p-value of the test is

the empirical probability of the event {T ∗n ≥ Tn}.

7. Conclusion

This study contributes to the literature by proposing an estimation procedure

for a varying-coefficient panel-data model with interactive fixed effects. First, we

use B-splines to approximate the coefficient functions for the model. With an

appropriate choice of smoothing parameters, we propose a robust nonlinear it-

eration scheme based on the least squares method to estimate the coefficient

functions. Then, we establish the asymptotic theory for the resulting estimators

under some regularity assumptions, including their consistency, convergence rate,

and asymptotic distribution. Second, to deal with the serial and cross-sectional

correlation and heteroskedasticity within our model, which increases the compu-

tational burden and cause accumulative errors, we propose using a residual-based

block bootstrap procedure to construct the pointwise confidence intervals for the

coefficient functions. Third, we extend our proposed estimation procedure to

include partially linear varying-coefficient models with interactive fixed effects,

and study the asymptotic properties of the resulting estimator. In addition, we

develop a test statistic for the constancy of the varying coefficient functions, and

propose a bootstrap procedure to evaluate the null distribution of the test statis-

tic. Finally, numerical studies demonstrate the satisfactory performance of our

proposed methods in practice, and support our theoretical results.
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Supplementary Material

The online Supplementary Material contains the numerical studies, proofs of

Theorems 1–6 and Corollary 1, and Lemmas 1–7 and their proofs. In addition,

we introduce the estimation procedure for a special model, namely, the varying-

coefficient panel-data model with additive fixed effects.

Acknowledgments

The authors sincerely thank the Editor, Associate Editor, and two anony-

mous reviewers for their insightful comments and suggestions. Sanying Feng’s

research was supported by the National Statistical Science Research Project

of China (No. 2019LY18), the Foundation of Henan Educational Committee

(No.21A910004), and the Training Fund for Basic Research Program of Zhengzhou

University (No. 32211591). Gaorong Li’s research was supported by NSFC

(Nos. 11871001 and 11971001), the Beijing Natural Science Foundation (No.

1182003), and the Fundamental Research Funds for the Central Universities

(No. 2019NTSS18). Heng Peng’s research was supported by GRF Grants of

the Research Grants Council of Hong Kong (Nos. HKBU12302615 and HKBU

12303618) and NSFC (Nos. 11871409 and 11971018). Tiejun Tong’s research

was supported by NSFC (No. 11671338), RGC Grant (No. HKBU12303918),

and FNRA Fund (No. RC-IG-FNRA/17-18/13).

References

Ahn, S. G., Lee, Y. H. and Schmidt, P. (2001). GMM estimation of linear panel data models

with time-varying individual effects. J. Econometrics 102, 219–255.

Arellano, M. (2003). Panel Data Econometrics. Oxford University Press, Oxford.

Bai, J. S. (2009). Panel data models with interactive fixed effects. Econometrica 77, 1229–1279.

Bai, J. S. and Li, K. P. (2014). Theory and methods of panel data models with interactive

effects. Ann. Statist. 42, 142–170.

Baltagi, B. H. (2005). Econometrics Analysis of Panel Data. Wiley, New York.

Cai, Z. W. (2007). Trending time-varying coefficient time series models with serially correlated

errors. J. Econometrics 136, 163–188.

Cai, Z. W. and Li, Q. (2008). Nonparametric estimation of varying coefficient dynamic panel

data models. Econometric Theory 24, 1321–1342.

Chiang, C. T., Rice, J. A. and Wu, C. O. (2001). Smoothing spline estimation for varying

coefficient models with repeatedly measured dependent variables. J. Amer. Statist. As-

soc. 96, 605–619.

Coakley, J., Fuertes, A.-M. and Smith, R. P. (2002). A principal components approach to cross-

section dependence in panels. In No B5-3, 10th International Conference on Panel Data,



956 FENG ET AL.

Berlin, July 5-6, 1–28.

Fan, J. Q., Zhang, C. M. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks

phenomenon. Ann. Statist. 29, 153–193.

Holtz-Eakin, D., Newey, W. and Rosen, H. (1988). Estimating vector autoregressions with panel

data. Econometrica 56, 1371–1395.

Hsiao, C. (2003). Analysis of Panel Data. Cambridge University Press, Cambridge.

Huang, J. Z., Wu, C. O. and Zhou, L. (2002). Varying-coefficient models and basis

function approximations for the analysis of the analysis of repeated measurements.

Biometrika 89, 111–128.

Huang, J. Z., Wu, C. O. and Zhou, L. (2004). Polynomial spline estimation and inference for

varying coefficient models with longitudinal data. Statist. Sinica 14, 763–788.

Huang, X. (2013). Nonparametric estimation in large panels with cross-sectional dependence.

Econometric Rev. 32, 754–777.

Inoue, A. and Shintani, M. (2006). Bootstrapping GMM estimators for time series. J. Econo-

metrics 133, 531–555.

Jin, S. N. and Su, L. J. (2013). A nonparametric poolability test for panel data models with

cross section dependence. Econometric Rev. 32, 469–512.

Lahiri, S. N. (1999). Theoretical comparisons of block bootstrap methods. Ann. Statist. 27, 386–

404.

Lee, N., Moon, H. R. and Weidner, M. (2012). Analysis of interactive fixed effects dynamic

linear panel regression with measurement error. Econom. Lett. 117, 239–242.

Li, D. G., Chen, J. and Gao, J. T. (2011). Non-parametric time-varying coefficient panel data

models with fixed effects. Econom. J. 14, 387–408.

Li, D. G., Qian, J. H. and Su, L. J. (2016). Panel data models with interactive fixed effects and

multiple structural breaks. J. Amer. Statist. Assoc. 111, 1804–1819.

Li, G. R., Lian, H., Lai, P. and Peng, H. (2015). Variable selection for fixed effects varying

coefficient models. Acta Math. Sin. (Engl. Ser.) 31, 91–110.

Lu, X. and Su, L. J. (2016). Shrinkage estimation of dynamic panel data models with interactive

fixed effects. J. Econometrics 190, 148–175.

Malikov, E., Kumbhakar, S. C. and Sun, Y. (2016). Varying coefficient panel data model in the

presence of endogenous selectivity and fixed effects. J. Econometrics 190, 233–251.

Moon, H. R. and Weidner, M. (2015). Linear regression for panel with unknown number of

factors as interactive fixed effects. Econometrica 83, 1543–1579.

Moon, H. R. and Weidner, M. (2017). Dynamic linear panel regression models with interactive

fixed effects. Econometric Theory 33, 158–195.

Noh, H. S. and Park, B. U. (2010). Sparse varying coefficient models for longitudinal data.

Statist. Sinica 20, 1183–1202.

Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor

error structure. Econometrica 74, 967–1012.

Rodriguez-Poo, J. M. and Soberon, A. (2014). Direct semi-parametric estimation of fixed effects

panel data varying coefficient models. Econom. J. 17, 107–138.

Rodriguez-Poo, J. M. and Soberon, A. (2015). Nonparametric estimation of fixed effects panel

data varying coefficient models. J. Multivariate Anal. 133, 95–122.

Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann.



VARYING-COEFFICIENT PANEL DATA MODEL 957

Statist. 10, 1348–1360.

Su, L. J. and Chen, Q. H. (2013). Testing homogeneity in panel data models with interactive

fixed effects. Econometric Theory 29, 1079–1135.

Su, L. J. and Jin, S. N. (2012). Sieve estimation of panel data models with cross section depen-

dence. J. Econometrics 169, 34–47.

Su, L. J., Jin, S. N. and Zhang, Y. H. (2015). Specification test for panel data models with

interactive fixed effects. J. Econometrics 186, 222–244.

Sun, Y. G., Carroll, R. J. and Li, D. D. (2009). Semiparametric estimation of fixed effects panel

data varying coefficient models. Adv. Econom. 25, 101–129.

Wang, H. S. and Xia, Y. C. (2009). Shrinkage estimation of the varying coefficient model. J.

Amer. Statist. Assoc. 104, 747–757.

Wang, L. F., Li, H. Z. and Huang, J. Z. (2008). Variable selection in nonparametric

varying-coefficient models for analysis of repeated measurements. J. Amer. Statist. As-

soc. 103, 1556–1569.

Wu, J. H. and Li, J. C. (2014). Testing for individual and time effects in panel data models

with interactive effects. Econom. Lett. 125, 306–310.

Xue, L. G. and Zhu, L. X. (2007). Empirical likelihood for a varying coefficient model with

longitudinal data. J. Amer. Statist. Assoc. 102, 642–652.

Sanying Feng

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, P. R. China.

E-mail: fsy5801@zzu.edu.cn

Gaorong Li

School of Statistics, Beijing Normal University, Beijing 100875, P. R. China.

E-mail: ligaorong@bnu.edu.cn

Heng Peng

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong

Kong.

E-mail: hpeng@hkbu.edu.hk

Tiejun Tong

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong

Kong.

E-mail: tongt@hkbu.edu.hk

(Received June 2018; accepted August 2019)

mailto:fsy5801@zzu.edu.cn
mailto:ligaorong@bnu.edu.cn
mailto:hpeng@hkbu.edu.hk
mailto:tongt@hkbu.edu.hk


Statistica Sinica: Supplement

VARYING-COEFFICIENT PANEL DATA MODEL

WITH INTERACTIVE FIXED EFFECTS

Sanying Feng1, Gaorong Li2, Heng Peng3 and Tiejun Tong3

1Zhengzhou University, 2Beijing Normal University,

3Hong Kong Baptist University

Supplementary Material

This is a supplement to the paper “Varying-Coefficient Panel Data

Model with Interactive Fixed Effects”, in which it contains the numeri-

cal studies, proofs of Theorems 1–6 and Corollary 1, and Lemmas 1–7 and

their proofs. In addition, we introduce the estimation procedure for a spe-

cial model, namely, varying-coefficient panel-data model with additive fixed

effects.

S1 Appendix A: Numerical studies

In Appendix A, some simulation examples and a real data are analyzed to

augment the derived theoretical results in the main context.
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S1.1 Choice of smoothing parameters

We develop a data-driven procedure to choose the smoothing parameters

Lk, for k = 1, . . . , p, where Lk control the smoothness of βk(u). In prac-

tice, various smoothing methods can be applied to select the smoothing

parameters, such as the cross validation (CV), the generalized cross valida-

tion (GCV), or the Bayesian information criterion (BIC). Following Huang

et al. (2002), we propose a modified “leave-one-subject-out” CV to auto-

matically select the smoothing parameters Lk by minimizing the following

CV score:

CV =
N∑
i=1

(Yi −Riγ̂
(−i))τMF̂ (−i)(Yi −Riγ̂

(−i)), (A.1)

where γ̂(−i) and F̂ (−i) are the estimators defined by solving the nonlinear

equations (2.7) and (2.8) from data with the ith subject deleted. In fact,

the CV score in (A.1) can also be viewed as a weighted estimate of the true

prediction error. The performance of the modified “leave-one-subject-out”

CV procedure will be evaluated in the next section.

To determine the number r of the factors, we adopt BIC in Li et al.

(2016):

BIC(r) = ln(V (r, γ̇r)) + r
(N + T )

∑p
k=1 Lk

NT
ln

(
NT

N + T

)
, (A.2)

where γ̇r is the estimator of γ, and V (r, γ̇r) is defined as

V (r, γ̇r) =
1

NT

T∑
%=r+1

µ%

( N∑
i=1

(Yi −Riγ̇r)(Yi −Riγ̇r)
τ

)
. (A.3)

In (A.3), µ%(A) denotes the %-th largest eigenvalue of a symmetric matrix

A by counting multiple eigenvalues multiple times. We set rmax = 8, and
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choose the number r of the factors by minimizing the objective function

BIC(r) in (A.2), that is, r̂ = arg min0≤r≤rmax BIC(r).

S1.2 Simulation studies

In this section, we conduct simulation studies to assess the finite sample

performance of our proposed methods.

Example 1 (Varying-coefficient model). In this example, we generate

data from the following model:

Yit = Xit,1β1(Uit) +Xit,2β2(Uit) + λτi Ft + εit, (A.4)

where λi = (λi1, λi2)
τ , Ft = (Ft1, Ft2)

τ , β1(u) = 2 − 5u + 5u2, β2(u) =

sin(uπ), Uit = ωit+ωi,t−1, and ωit are i.i.d. random errors from the uniform

distribution on [0, 1/2]. As the regressors Xit,1 and Xit,2 are correlated with

λi, Ft, and their product λτi Ft, we generate them according to

Xit,1 = 1 + λτi Ft + ιτλi + ιτFt + ηit,1, Xit,2 = 1 + λτi Ft + ιτλi + ιτFt + ηit,2,

where ι = (1, 1)τ , the effects λij, Ftj, j = 1, 2, ηit,1 and ηit,2 are all inde-

pendently from N(0, 1). Lastly, the regression error εit are generated i.i.d.

from N(0, 4).

As a standard measure of the estimation accuracy, the performance of

the estimator β̂(·) will be assessed by the integrated squared error (ISE):

ISE(β̂k) =

∫
{β̂k(u)− βk(u)}2f(u)du, k = 1, 2.

We further approximate the ISE by the average mean squared error (AMSE):

AMSE(β̂k) =
1

NT

N∑
i=1

T∑
t=1

[β̂k(Uit)− βk(Uit)]2, k = 1, 2. (A.5)
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Throughout the simulations, we use the cubic B-splines as the basis func-

tions. Thus Lk = lk + m + 1, where lk is the number of interior knots and

m = 3 is the degree of the spline. For simplicity, we use the equally spaced

knots for all numerical studies. To implement the estimation procedure,

we select Lk by minimizing the modified “leave-one-subject-out” CV score

in (A.1), and determine the number r of the factors using the BIC-type

criterion (A.2).

For comparison, we compute the AMSEs in (A.5) by three estimation

procedures, and report their numerical results in Table 1 based on 1000

repetitions. The column with label “IE” denotes the infeasible estimators,

which are obtained by assuming observable Ft. The column with label

“IFE” denotes the interactive fixed effects estimators obtained by our pro-

posed procedure in Section 2. Finally, the column with label “LSDVE”

denotes the least squares dummy variable estimators, which are obtained

under the false assumption with additive fixed effects in model (A.4) by

applying the least squares dummy variable method (see Section S4 for de-

tails).

Table 1: Finite sample performance of the estimators for model (A.4).

IE IFE LSDVE

N T AMSE(β̂1) AMSE(β̂2) AMSE(β̂1) AMSE(β̂2) AMSE(β̂1) AMSE(β̂2)

100 15 0.0091 0.0092 0.0102 0.0103 0.0947 0.0918
100 30 0.0045 0.0044 0.0047 0.0048 0.0878 0.0909
100 60 0.0021 0.0020 0.0022 0.0022 0.0844 0.0829
100 100 0.0012 0.0012 0.0013 0.0013 0.0830 0.0822
60 100 0.0020 0.0020 0.0021 0.0022 0.0848 0.0838
30 100 0.0043 0.0042 0.0047 0.0048 0.0864 0.0873
15 100 0.0082 0.0083 0.0102 0.0102 0.0946 0.0910
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From Table 1, we note that both the infeasible estimators and the inter-

active fixed effects estimators are consistent, and the results of the latter are

gradually closer to those of the former as both N and T increase. However,

the least squares dummy variable estimators of the coefficient functions are

biased and inconsistent. One possible reason is that the interactive fixed

effects are correlated with the regressors and cannot be removed by the

least squares dummy variable method. In addition, AMSEs decrease sig-

nificantly as both N and T increase for the infeasible estimators and the

interactive fixed effects estimators.
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Figure 1: Simulation results for model (A.4) when N = 100, T = 60.
In each plot, the solid curves are for the true coefficient functions, the
dash-dotted curves are for the interactive fixed effects estimators (IFE),
the dashed curves are for the infeasible estimators (IE), the dotted curves
are for the least squares dummy variable estimators (LSDVE).

Figure 1 presents the estimated curves of β1(·) and β2(·) from a typical

sample, in which the typical sample is selected such that its AMSE is equal

to the median of the 1000 replications. It is also found that the infeasible

estimators and the interactive fixed effects estimators are close to the true

coefficient functions, whereas the least squares dummy variable estimators

are biased.
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To construct the 95% pointwise confidence intervals for β1(·) and β2(·)

using the residual-based block bootstrap procedure in Section 4, we generate

1000 bootstrap samples based on the typical sample, and we choose the

block length l by the criterion l = T 1/3. The 95% bootstrap pointwise

confidence intervals of β1(·) and β2(·) are given in Figure 2. Overall, the

proposed residual-based block bootstrap procedure works quite well.
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Figure 2: 95% pointwise confidence intervals for β(·) when N = 100, T =
60. In each plot, the solid curves are for the true coefficient functions, the
dashed curves are for the interactive fixed effects estimators, the dash-dotted
curves are for the 95% pointwise confidence intervals based on bootstrap
procedure.

Our next study is to investigate the performance of our proposed meth-

ods when the fixed effects are additive. Letting λi = (µi, 1)τ and Ft =

(1, ξt)
τ , we have λτi Ft = µi + ξt. We then consider the following varying-

coefficient panel-data model with additive fixed effects:

Yit = Xit,1β1(Uit) +Xit,2β2(Uit) + µi + ξt + εit, (A.6)

where β1(u), β2(u), Uit, and εit are the same as those in model (A.4). The

regressorsXit,1 andXit,2 are generated according toXit,1 = 3+2µi+2ξt+ηit,1

and Xit,2 = 3 + 2µi + 2ξt + ηit,2, where ηit,j ∼ N(0, 1), j = 1, 2, and the
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fixed effects are generated by

µi ∼ N(0, 1), i = 2, . . . , N and µ1 = −
N∑
i=2

µi,

ξt ∼ N(0, 1), t = 2, . . . , T and ξ1 = −
T∑
t=2

ξt.

With 1000 repetitions, we report the simulation results in Table 2, Figure

3 and Figure 4, respectively. To be specific, Table 2 presents the finite

sample performance of the estimators for model (A.6) with additive fixed

effects, Figure 3 displays the estimated curves of the three estimators for

the coefficient functions, and Figure 4 displays the 95% bootstrap pointwise

confidence intervals for β1(·) and β2(·) when N = 100 and T = 60.

Table 2: Finite sample performance of the estimators for model (A.6) with
additive fixed effects.

IE IFE LSDVE

N T AMSE(β̂1) AMSE(β̂2) AMSE(β̂1) AMSE(β̂2) AMSE(β̂1) AMSE(β̂2)

100 15 0.0102 0.0102 0.0267 0.0260 0.0083 0.0083
100 30 0.0048 0.0048 0.0224 0.0216 0.0040 0.0040
100 60 0.0022 0.0023 0.0192 0.0198 0.0020 0.0019
100 100 0.0013 0.0013 0.0171 0.0176 0.0011 0.0011
60 100 0.0022 0.0022 0.0214 0.0226 0.0019 0.0019
30 100 0.0046 0.0045 0.0271 0.0281 0.0040 0.0040
15 100 0.0089 0.0090 0.0340 0.0343 0.0083 0.0083

Table 2 and Figure 3 show that the infeasible estimators, the interactive

fixed effects estimators, and the least squares dummy variable estimators

are all consistent. Our proposed interactive fixed effects estimators remain

valid even for the varying-coefficient panel-data model with additive fixed

effects. However, they are less efficient than the least squares dummy vari-

able estimators. Finally, the 95% bootstrap pointwise confidence intervals
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Figure 3: Simulation results for model (A.6) with additive fixed effects when
N = 100, T = 60. In each plot, the solid curves are for the true coefficient
functions, the dash-dotted curves are for the interactive fixed effects estima-
tors, the dashed curves are for the infeasible estimators, the dotted curves
are for the least squares dummy variable estimators.

for the typical estimates of β1(·) and β2(·) in Figure 4 demonstrate the

validity and effectiveness of our proposed methods.
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Figure 4: 95% pointwise confidence intervals for β(·) when N = 100, T =
60. In each plot, the solid curves are for the true coefficient functions, the
dashed curves are for the interactive fixed effects estimators, the dash-dotted
curves are for the 95% pointwise confidence intervals based on bootstrap
procedure.

Example 2 (Lagged dependent variables case). In this example, we

consider the following varying-coefficient panel-data model with lagged de-



VARYING-COEFFICIENT PANEL DATA MODEL S9

pendent variables as follows:

Yit = Yi,t−1α(Uit) +Xit,1β1(Uit) +Xit,2β2(Uit) + λτi Ft + εit, (A.7)

where i = 1, . . . , N , t = 2, . . . , T , α(u) = cos(uπ), Xit,1, Xit,2, Uit, λi, and

Ft are generated as in model (A.4). Table 3 presents the results for model

(A.7), and the estimated results show that the proposed method works well

even for model (A.7) with lagged dependent variables.

Table 3: Finite sample performance of the estimators for model (A.7).

IE IFE

N T AMSE(α̂) AMSE(β̂1) AMSE(β̂2) AMSE(α̂) AMSE(β̂1) AMSE(β̂2)

100 15 0.0114 0.0109 0.0105 0.0124 0.0117 0.0118
100 30 0.0073 0.0068 0.0069 0.0082 0.0078 0.0075
100 60 0.0039 0.0035 0.0033 0.0041 0.0041 0.0039
100 100 0.0022 0.0023 0.0024 0.0026 0.0027 0.0025
60 100 0.0038 0.0036 0.0032 0.0040 0.0043 0.0038
30 100 0.0071 0.0072 0.0067 0.0084 0.0078 0.0078
15 100 0.0112 0.0108 0.0106 0.0125 0.0116 0.0115

Example 3 (Partially linear varying-coefficient model). In this exam-

ple, we generate data from the following model:

Yit = Xit,1β1(Uit) +Xit,2β2 +Xit,3β3 + λτi Ft + εit, (A.8)

where β1(u) = sin(uπ), β2 = 3, β3 = 2.5 and Xit,3 = 2+λτi Ft+ ιτλi+ ιτFt+

ηit,3 with ηit,3 ∼ N(0, 1). The regression error εit is generated as AR(1) for

each fixed i such that εit = 0.7εi,t−1 +εit, where εit is i.i.d. N(0, 1). Further,

we use the other settings in model (A.4). The summary of simulation results

is reported in Table 4.

Table 4 indicates that, although there is serial correlation in the error

terms, the interactive fixed effects estimators are gradually closer to the
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Table 4: Finite sample performance of the estimators for model (A.8).

IE IFE

N T AMSE(β̂1) Mean(β̂2) SD(β̂2) Mean(β̂3) SD(β̂3) AMSE(β̂1) Mean(β̂2) SD(β̂2) Mean(β̂3) SD(β̂3)

100 15 0.0109 2.9891 0.0960 2.4872 0.0891 0.0152 3.2104 0.1269 2.6517 0.1174

100 30 0.0069 3.0096 0.0715 2.5081 0.0712 0.0106 3.1017 0.0922 2.5953 0.0918

100 60 0.0044 2.9912 0.0482 2.5066 0.0473 0.0058 3.0192 0.0541 2.5153 0.0536

100 100 0.0028 3.0051 0.0256 2.5039 0.0237 0.0030 3.0079 0.0363 2.4966 0.0344

60 100 0.0032 3.0068 0.0325 2.5052 0.0331 0.0037 3.0087 0.0391 2.5074 0.0395

30 100 0.0051 3.0079 0.0433 2.5068 0.0442 0.0060 3.0098 0.0494 2.5091 0.0497

15 100 0.0092 3.0091 0.0558 2.4917 0.0563 0.0097 3.0112 0.0607 2.5135 0.0618

infeasible estimators as both N and T increase. However, for small T , the

estimators are inconsistent. The simulation results are consistent with the

theoretical results.

To demonstrate the power of the test, for model (A.8), we consider

the null hypothesis H0: β2(u) = 3, β3(u) = 2.5, against the alternative

hypothesis H1: β2(u) = 3 + c0(2 − 5u + 5u2), β3(u) = 2.5 + c0 cos(πu),

where c0 determines the extent that βj(u) varies with u. We set c0 =

0, 0.06, 0.12, . . . , 0.66. If c0 = 0, the alternative hypothesis becomes the

null hypothesis. For sample size N=100 and T = 60, we generate 1000

samples under H1, and use 1000 bootstrap replications for the bootstrap

procedure in Section 6. Figure 5 reports the estimated power function

curves with the significance level α0 = 0.05.

From Figure 5, we have the following results. (1) The size of our test

is close to the nominal 5% when the null hypothesis holds (c0 = 0). This

demonstrates that the bootstrap estimate of the null distribution is approx-

imately correct. (2) When the alternative hypothesis is true (c0 > 0), the

power functions increase rapidly as c0 increases. These results show that
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Figure 5: The simulated power function for sample size N = 100 and T =
60.

the proposed test statistic performs well.

S1.3 Application to a real dataset

We apply our proposed methods to a real dataset from the UK Met Of-

fice that contains the monthly mean maximum temperatures (in Celsius

degrees), the mean minimum temperatures (in Celsius degrees), the days of

air frost (in days), the total rainfall (in millimeters), and the total sunshine

duration (in hours) from 37 stations. For this dataset, one main goal is

to investigate the impact of other factors on the mean maximum temper-

atures across different stations. Li et al. (2011) analyzed the effect of the

total rainfall and the sunshine duration on the mean maximum tempera-

tures. By contrast, we take into account the days of air frost. Data from 21

stations during the period of January 2005 to December 2014 are selected

while, as the record values for the other stations missed too much, we drop

them from further analysis.
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Because there exists the seasonal variation in this dataset, our first step

is to remove the seasonality from the observations. We impose the additive

decomposition on time series objects and then subtract the seasonal term

from the corresponding time series objects. Let Yit be the seasonally ad-

justed monthly mean maximum temperatures in the tth month in station i,

Xit,1 be the seasonally adjusted monthly days of air frost, Xit,2 be the sea-

sonally adjusted monthly total rainfall, and Xit,3 be the seasonally adjusted

monthly total sunshine duration. To analyze the dataset, we consider the

following varying-coefficient panel-data model with interactive fixed effects:

Yit = Xit,1β1(t/T ) +Xit,2β2(t/T ) +Xit,3β3(t/T ) + λτi Ft + εit, (A.9)

where 1 ≤ i ≤ 21, 1 ≤ t ≤ 120, and the multi-factor error structure λτi Ft +

εit is used to control the heterogeneity and to capture the unobservable

common effects.

Note that the objectives of the study are to estimate the trend effects

of the days of air frost, the monthly total rainfall and the sunshine duration

over time. To achieve the goals, we fit model (A.9) using the cubic splines

with equally spaced knots, and select the numbers of interior knots for

the unknown coefficient functions by minimizing the modified “leave-one-

subject-out” CV score in (A.1). Moreover, the number r of the factors

is determined according to the BIC-type criterion (A.2). The estimated

curves and 95% bootstrap pointwise confidence intervals of β1(·), β2(·) and

β3(·) are plotted in Figure 6 based on the proposed methods.

The estimated trend curve in Figure 6 shows that the estimate of β1(·)

is almost flat, thus we assume that the effect of Xit,1 is time-invariant and

test the constancy of the coefficient function β1(·). Based on the proposed
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Figure 6: The estimated curves and 95% pointwise confidence intervals of
β1(·), β2(·) and β3(·). In each plot, the solid curves are for the interac-
tive fixed effects estimators, the dashed curves denote the 95% pointwise
confidence intervals.

bootstrap test procedure, we generate 1000 bootstrap samples and obtain

the p-value of the test is 0.133 at the significance level 5%. This motivates us

consider the following partially linear varying-coefficient panel-data model

with interactive fixed effects:

Yit = Xit,1β1 +Xit,2β2(t/T ) +Xit,3β3(t/T ) + λτi Ft + εit, (A.10)

We apply the proposed estimation procedure in Section 5 to model
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Figure 7: The estimated curves and 95% pointwise confidence intervals of
β2(·) and β3(·) in model (A.10) . In each plot, the solid curves are for
the interactive fixed effects estimators, the dashed curves denote the 95%
pointwise confidence intervals.

(A.10) and obtain that the estimate of β1 is −0.1915, which means there is

a negative effect of monthly days of air frost on monthly mean maximum

temperatures. The estimated curves and 95% bootstrap pointwise confi-

dence intervals of β2(·) and β3(·) are given in Figure 7. From Figure 7, we

can see that the estimated curves of β2(·) and β3(·) are all oscillating over

time, and the effect of the monthly total sunshine duration is obviously

above zero, which shows that the monthly total sunshine duration has an

overall positive effect on the monthly mean maximum temperatures.
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S2 Appendix B: Proofs of theorems

We provide the proofs of Theorems 1–6 and Corollary 1 in Appendix B.

For the ease of the presentation, let C denote some positive constants

not depending on N and T , but which may assume different values at each

appearance. In the proof, we use the following properties of B-spline (see

de Boor (2001)): (1) Bkl(u) ≥ 0 and
∑Lk

l=1Bkl(u) = 1, for u ∈ U and

k = 1, . . . , p. (2) There exist constants 0 < M1,M2 <∞, not depending on

Lk, such that

M1L
−1
k

Lk∑
l=1

γ2kl ≤
∫
U

[ Lk∑
l=1

γklBkl(u)
]2

du ≤M2L
−1
k

Lk∑
l=1

γ2kl,

for any sequence {γkl ∈ R : l = 1, . . . , Lk}.

From Assumptions (A1)–(A4) and Corollary 6.21 in Schumaker (1981),

there exists a constant M > 0 such that

βk(u) =

Lk∑
l=1

γ̃klBkl(u) +Rek(u),

sup
u∈U
|Rek(u)| ≤ ML−dk , k = 1, . . . , p. (B.1)

Let ei = (ei1, . . . , eiT )τ with eit =
∑p

k=1Rek(Uit)Xit,k, and γ̃ = (γ̃τ1 , . . . , γ̃
τ
p )τ

with γ̃k = (γ̃k1, . . . , γ̃kLk
)τ . Then Yi = Riγ̃+F 0λi+εi+ei, for i = 1, . . . , N .

We use the following facts throughout the paper: ‖F 0‖ = OP (T 1/2), ‖Ri‖ =

OP (T 1/2) for all i, and (NT )−1
∑N

i=1 ‖Ri‖2 = OP (1). Note that ‖F̂ ‖ =

T 1/2
√
r. For ease of notation, we define δNT = min[

√
N,
√
T ] and ζLd =∑p

k=1 L
−2d
k . Following the notation of Huang et al. (2004), we write an � bn

if both an and bn are positive and an/bn and bn/an are bounded for all n.
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Proof We only give the proof of ‖Ri‖ = OP (T 1/2), and omit the proofs of

‖F 0‖ = OP (T 1/2) and (NT )−1
∑N

i=1 ‖Ri‖2 = OP (1).

E(‖Ri‖2) = E
(

tr(RiR
τ
i )
)

= E

(
T∑
t=1

‖Xτ
itB(Uit)‖2

)

= E

(
T∑
t=1

p∑
k=1

Lk∑
l=1

X2
it,kB

2
kl(Uit)

)
=

T∑
t=1

p∑
k=1

Lk∑
l=1

E
(
X2
it,kB

2
kl(Uit)

)
.

By Assumption (A1), we have E
(
X2
it,kB

2
kl(Uit)

)
≤ CE

(
B2
kl(Uit)

)
. More-

over, by the properties of B-spline, we can get that

Lk∑
l=1

B2
kl(u) ≤

(
Lk∑
l=1

Bkl(u)

)2

= 1.

Then we have E(‖Ri‖2) = O(T ), which implies that ‖Ri‖ = OP (T 1/2), for

all i. �

S2.1 Proof of Theorem 1

Without loss of generality, we assume that β(·) = 0. Then Yi = F 0λi + εi,

for i = 1, . . . , N . By Lemma 2, we have

QNT (γ,F ) =
1

NT

N∑
i=1

(Yi −Riγ)τMF (Yi −Riγ)

= γτ

(
1

NT

N∑
i=1

Rτ
iMFRi

)
γ + tr

[(
F 0τMFF

0

T

)(
ΛτΛ

N

)]

− 2

NT
γτ

N∑
i=1

Rτ
iMFF

0λi −
2

NT
γτ

N∑
i=1

Rτ
iMFεi

+
2

NT

N∑
i=1

λτiF
0τMFεi +

1

NT

N∑
i=1

ετiMFεi

=: Q̃NT (γ,F ) + oP (1),
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uniformly over bounded γ and over F such that F τF /T = I, where

Q̃NT (γ,F ) = γτ

(
1

NT

N∑
i=1

Rτ
iMFRi

)
γ + tr

[(
F 0τMFF

0

T

)(
ΛτΛ

N

)]

− 2

NT
γτ

N∑
i=1

Rτ
iMFF

0λi.

Let η = vec(MFF
0), and

A1 =
1

NT

N∑
i=1

Rτ
iMFRi, A2 =

(
ΛτΛ

N
⊗ IT

)
, A3 =

1

NT

N∑
i=1

(λτi ⊗MFRi).

Then,

Q̃NT (γ,F ) = γτA1γ + ητA2η − 2γτAτ3η

= γτ (A1 − Aτ3A−12 A3)γ + (ητ − γτAτ3A−12 )A2(η − A−12 A3γ)

=: γτD(F )γ + θτA2θ,

where θ = η−A−12 A3γ. By Assumption (A5), D(F ) is a positive-definite ma-

trix and A2 is also a positive-definite matrix, which show that Q̃NT (γ,F ) ≥

0. By the similar argument as in Bai (2009), it is easy to show that Q̃NT (γ,F )

achieves its unique minimum at (0,F 0H) for any r× r invertible matrix H.

Thus, β̂k(·), k = 1, . . . , p, are uniquely defined. This completes the proof of

part (i).

The proof of (ii) is similar to that of Proposition 1 (ii) in Bai (2009).

To save space, we do not present the detailed proof. �
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S2.2 Proof of Theorem 2

Since β̂k(u) =
Lk∑
l=1

γ̂klBkl(u) and β̃k(u) =
Lk∑
l=1

γ̃klBkl(u), by the properties of

B-spline and (C.2), we have

‖β̂k(·)− βk(·)‖2L2
≤ 2‖β̂k(·)− β̃k(·)‖2L2

+ML−2dk ,

and

‖β̂k(·)− β̃k(·)‖2L2
= ‖γ̂k − γ̃k‖2H � L−1k ‖γ̂k − γ̃k‖

2, k = 1, . . . , p,(B.2)

where ‖γk‖2H = γτkHkγk, and Hk = (hij)Lk×Lk
is a matrix with entries

hij =
∫
U Bki(u)Bkj(u)du. Summing over k for (B.2), we obtain that

‖β̂(·)− β̃(·)‖2L2
=

p∑
k=1

‖γ̂k − γ̃k‖2H � L−1N ‖γ̂ − γ̃‖
2.

By (2.7) and Yi = Riγ̃ + F 0λi + εi + ei, for i = 1, . . . , N , we have

γ̂ − γ̃ =
( N∑
i=1

Rτ
iMF̂Ri

)−1 N∑
i=1

Rτ
iMF̂ (F 0λi + εi + ei),

or equivalently, ( N∑
i=1

Rτ
iMF̂Ri

)
(γ̂ − γ̃)

=
N∑
i=1

Rτ
iMF̂F

0λi +
N∑
i=1

Rτ
iMF̂εi +

N∑
i=1

Rτ
iMF̂ei. (B.3)

We first deal with the third term of the right hand in (B.3). By Assumption

(A1) and (C.2), and using the similar proofs to Lemma A.7 in Huang et al.

(2004), and Lemmas 2 and 3, it is easy to show that∥∥∥∥∥ 1

NT

N∑
i=1

Rτ
iMF̂ei

∥∥∥∥∥
2

= OP

(
L−1N ζLd

)
. (B.4)



VARYING-COEFFICIENT PANEL DATA MODEL S19

For the first term of the right hand in (B.3), by noting that MF̂ F̂ = 0, we

have MF̂F
0 = MF̂ (F 0 − F̂H−1). By (B.3), we have

F 0 − F̂H−1 = −(B1 +B2 + · · ·+B15)G, (B.5)

where H = (ΛτΛ/N)(F 0τ F̂ /T )V −1NT , G = (F 0τ F̂ /T )−1(ΛτΛ/N)−1 is a ma-

trix of fixed dimension and does not vary with i, and B1, . . . , B15 are defined

in Lemma 3. By (B.5), we have

1

NT

N∑
i=1

Rτ
iMF̂F

0λi =
1

NT

N∑
i=1

Rτ
iMF̂ (F 0 − F̂H−1)λi

= − 1

NT

N∑
i=1

Rτ
iMF̂ (B1 +B2 + · · ·+B15)Gλi

=: J1 + J2 + · · ·+ J15.

It is easy to see that J1–J15 depend on B1–B15 respectively. For J2, we have

J2 = − 1

NT

N∑
i=1

Rτ
iMF̂

[
1

NT

N∑
j=1

Rj(γ̃ − γ̂)λτjF
0τ F̂

](
F 0τ F̂

T

)−1(
ΛτΛ

N

)−1
λi

=
1

N2T

N∑
i=1

N∑
j=1

(Rτ
iMF̂Rj)

[
λτj

(
ΛτΛ

N

)−1
λi

]
(γ̂ − γ̃)

=
1

T

[
1

N2

N∑
i=1

N∑
j=1

Rτ
iMF̂Rjaij

]
(γ̂ − γ̃),

where aij = λτi (Λ
τΛ/N)−1λj. For J1, we have

J1 = − 1

NT

N∑
i=1

Rτ
iMF̂B1Gλi = oP (‖γ̂ − γ̃‖).

For J3, we have

J3 =
1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂Rj

(
ετj F̂

T

)
Gλi(γ̂ − γ̃).
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By Lemma 3 and some elementary calculations, we have

T−1ετj F̂ = T−1ετjF
0H + T−1ετj (F̂ − F 0H)

= OP (T−1/2) + T−1/2OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld T

−1/2
)
.

Using the above result and the similar argument as the proof of Lemma 2,

it is easy to verify that J3 = oP (‖γ̂ − γ̃‖). Similarly, we can obtain that

J5 = oP (‖γ̂ − γ̃‖). For J4, we have

J4 = − 1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂F

0λj(γ̃ − γ̂)τ

(
Rτ
j F̂

T

)
Gλi.

Noting that MF̂F
0 = MF̂ (F 0 − F̂H−1), and using Lemma 3 (i), that is,

T−1/2‖F 0 − F̂H−1‖ = OP (‖γ̂ − γ̃‖) + OP (δ−1NT ) + OP (ζ
1/2
Ld ), we can obtain

that J4 = oP (‖γ̂− γ̃‖). For J6, noting that G is a matrix of fixed dimension

and does not vary with i, and by MF̂F
0 = MF̂ (F 0 − F̂H−1), we have

J6 = − 1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂F

0λj

(
ετj F̂

T

)
Gλi

= − 1

NT

N∑
i=1

Rτ
iMF̂ (F 0 − F̂H−1)

[
1

N

N∑
j=1

λj

(
ετj F̂

T

)]
Gλi.

By (B.6) and Lemma 3, we have

1

NT

N∑
j=1

λjε
τ
j F̂ =

1

NT

N∑
j=1

λjε
τ
jF

0H +
1

NT

N∑
j=1

λjε
τ
j (F̂ − F 0H)

= OP ((NT )−1/2) + (TN)−1/2OP (‖γ̂ − γ̃‖) +OP (N−1)

+N−1/2OP (δ−2NT ) +N−1/2OP

(
ζ
1/2
Ld

)
= OP ((NT )−1/2) +OP (N−1) +N−1/2OP (δ−2NT )

+N−1/2OP

(
ζ
1/2
Ld

)
.
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By Lemma 3 (v), then

1

NT

N∑
i=1

Rτ
iMF̂ (F̂ − F 0H) = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP (ζ

1/2
Ld ).

Moreover, the matrix G does not depend on i and ‖G‖ = OP (1), then

J6 =
[
OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)]
×
[
OP ((NT )−1/2) +OP (N−1) +N−1/2OP (δ−2NT ) +N−1/2OP

(
ζ
1/2
Ld

)]
= oP (‖γ̂ − γ̃‖) + oP ((NT )−1/2) +N−1OP (δ−2NT ) +N−1/2OP (δ−4NT )

+N−1OP

(
ζ
1/2
Ld

)
+N−1/2OP (ζLd) .

For J7, we have

J7 = − 1

N2T

N∑
i=1

Rτ
iMF̂

[
N∑
j=1

εjλ
τ
j

(ΛτΛ

N

)−1]
λi = − 1

N2T

N∑
i=1

N∑
j=1

aijR
τ
iMF̂εj,

where aij = λτi (Λ
τΛ/N)−1λj. For J8, by Assumption (A8), and the same

argument as in the Proposition A.2 of Bai (2009), and Lemma 5, we have

J8 = − 1

N2T 2

N∑
i=1

N∑
j=1

Rτ
iMF̂εjε

τ
j F̂Gλi

= − 1

N2T 2

N∑
i=1

N∑
j=1

Rτ
iMF̂ΩjF̂Gλi −

1

N2T 2

N∑
i=1

N∑
j=1

Rτ
iMF̂ (εjε

τ
j − Ωj)F̂Gλi

=: ANT +OP (1/(T
√
N)) + (NT )−1/2

[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]
+

1√
N

[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]2
,

where ANT = − 1
N2T 2

∑N
i=1

∑N
j=1R

τ
iMF̂ΩjF̂Gλi. For J9 and J10, which

depend on γ̂ − γ̃. Using the same argument, it is easy to prove that J9

and J10 are bounded in the Euclidean norm by oP (‖γ̂ − γ̃‖). For J11,



S22 S. Y. FENG, G. R. LI, H. PENG AND T. J. TONG

using MF̂F
0 = MF̂ (F 0 − F̂H−1) again, and letting W̃j = eτj F̂ /T and

‖W̃j‖ = ‖ej‖
√
r/
√
T = OP (ζ

1/2
Ld ), and using Lemma 3 (v), we have

J11 = − 1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂F

0λj

(
eτj F̂

T

)
Gλi

= − 1

NT

N∑
i=1

Rτ
iMF̂ (F 0 − F̂H−1)

[
1

N

N∑
j=1

λj

(
eτj F̂

T

)]
Gλi

= OP

(
ζ
1/2
Ld

) [
OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)]
.

For J12, similar to (B.4), we have

J12 = − 1

N2T

N∑
i=1

Rτ
iMF̂

[
N∑
j=1

ejλ
τ
j

(ΛτΛ

N

)−1]
λi

= − 1

N2T

N∑
i=1

N∑
j=1

aijR
τ
iMF̂ej = OP

(
L
−1/2
N ζ

1/2
Ld

)
,

where aij = λτi (Λ
τΛ/N)−1λj. Using the similar argument, it is easy to see

that J13 = (NT )−1/2OP (ζ
1/2
Ld ).

For J14, by (B.6) we have

J14 = − 1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂ej

(
ετj F̂

T

)
Gλi

= − 1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂ej

(
ετjF

0H

T

)
Gλi

− 1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂ej

(
ετj (F̂ − F 0H)

T

)
Gλi.

Similarly, we can prove that the first term of the above equation is bounded

by T−1/2OP (ζ
1/2
Ld ). For the second term, by a similar argument and Lemma

4, we can prove that the second term is bounded above by

OP

(
ζ
1/2
Ld

)[
T−1/2OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld T

−1/2
)]
.
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For J15, by MF̂ F̂ = 0 and some simple calculations, we have

J15 = − 1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂

(ejeτj
T

)
F̂Gλi = oP (ζLd).

Summarizing the above results, we can obtain that

1

NT

N∑
i=1

Rτ
iMF̂F

0λi

= J2 + J7 + ANT + oP (‖γ̂ − γ̃‖) + oP ((NT )−1/2) +OP

( 1

T
√
N

)
+N−1/2OP (δ−2NT ) +OP

(
T−1/2ζ

1/2
Ld

)
+OP

(
L
−1/2
N ζ

1/2
Ld

)
.

This leads to(
1

NT

N∑
i=1

Rτ
iMF̂Ri + oP (1)

)
(γ̂ − γ̃)− J2

=
1

NT

N∑
i=1

Rτ
iMF̂εi + J7 + ANT + oP ((NT )−1/2) +OP

( 1

T
√
N

)
+N−1/2OP (δ−2NT ) +OP

(
T−1/2ζ

1/2
Ld

)
+OP

(
L
−1/2
N ζ

1/2
Ld

)
.

Multiplying LN(LND(F̂ ))−1 on each side of the above equation, and by

Lemma 6, we have

γ̂ − γ̃ =
(
LND(F̂ )

)−1 LN
NT

N∑
i=1

[
Rτ
iMF 0 − 1

N

N∑
j=1

aijR
τ
jMF 0

]
εi +

LN
T

ΛNT

+
LN
N

(
LND(F̂ )

)−1
ξ∗NT +

(
LND(F̂ )

)−1
OP

(
LN(NT )−1/2

)
+
(
LND(F̂ )

)−1
OP

( LN

T
√
N

)
+ LNN

−1/2
(
LND(F̂ )

)−1
OP (δ−2NT )

+
(
LND(F̂ )

)−1
OP

(
LNT

−1/2ζ
1/2
Ld

)
+
(
LND(F̂ )

)−1
OP

(
L
1/2
N ζ

1/2
Ld

)
,

where

ξ∗NT = − 1

N

N∑
i=1

N∑
j=1

(Ri − Vi)τF 0

T

(
F 0τF 0

T

)−1(
ΛτΛ

N

)−1
λj

(
1

T

T∑
t=1

εitεjt

)
= OP (1),
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and

ΛNT = −
(
LND(F̂ )

)−1 1

NT

N∑
i=1

Rτ
iMF̂ΩF̂Gλi,

with Ω = 1
N

∑N
j=1 Ωj and Ωj = E(εjε

τ
j ). By Lemmas 1 and 7, it can

be shown that D(F̂ ) = D(F 0) + oP (1) and the minimum and maximum

eigenvalues of LND(F̂ ) are bounded with probability tending to 1. In

addition, by Lemma 1 and Lemma A.6 in Bai (2009), it is easy to verify

that ΛNT = OP (1). Using the same argument for Lemma 2, we have∥∥∥∥∥D(F 0)−1
1

NT

N∑
i=1

[
Rτ
iMF 0 − 1

N

N∑
j=1

aijR
τ
jMF 0

]
εi

∥∥∥∥∥
2

�

∥∥∥∥∥ LNNT
N∑
i=1

[
Rτ
iMF 0 − 1

N

N∑
j=1

aijR
τ
jMF 0

]
εi

∥∥∥∥∥
2

= OP (L2
N(NT )−1),

uniformly for F 0. By the above results, together with Lemma 1 and

δ−2NTLN logLN → 0 as N, T →∞, we have

‖γ̂ − γ̃‖ = OP (LN(NT )−1/2) +OP (LNT
−1) +OP (LNN

−1)

+OP

(
LNT

−1/2ζ
1/2
Ld

)
+OP

(
L
1/2
N ζ

1/2
Ld

)
.

Summarizing the above results, we finish the proof of Theorem 2. �

S2.3 Proof of Theorem 3

Note that β̂(u)−β(u) = B(u)τ (γ̂− γ̃)+B(u)τ γ̃−β(u). By (C.2), we have

‖B(u)τ γ̃ − β(u)‖∞ = OP (ζ
1/2
Ld ).

By Assumptions (A1) and (A8), Lemma 1, and the properties of B-spline,

similarly to the proof of Corollary 1 in Huang et al. (2004), we can obtain
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that

$τ
kB(u)

(
N∑
i=1

Zτ
i Zi

)−1
ΣNT1

(
N∑
i=1

Zτ
i Zi

)−1
B(u)τ$k

& C
LN
NT

Lk∑
l=1

B2
kl(u) &

LN
NT

.

Then, as L2d+1
N /NT →∞, we have sup

u∈U

∣∣∣Σ−1/2(B(u)τ γ̃ − β(u))
∣∣∣ = oP (1).

Invoking Lemmas 1 and 7, from the proof of Theorem 2, it is easy to

show that

γ̂ − γ̃ =
(
LND(F 0)

)−1 LN
NT

N∑
i=1

Zτ
i εi +

LN
N

(
LND(F 0)

)−1
ξ̃NT

+
LN
T

(
LND(F 0)

)−1
Λ̃NT +

(
LND(F 0)

)−1
OP

(
LN(NT )−1/2

)
+
(
LND(F 0)

)−1
OP

(
L
1/2
N ζ

1/2
Ld

)
, (B.6)

where

ξ̃NT = − 1

N

N∑
i=1

N∑
j=1

(Ri − Vi)τF 0

T

(
F 0τF 0

T

)−1(
ΛτΛ

N

)−1
λj

(
1

T

T∑
t=1

σij,tt

)
,

and

Λ̃NT = − 1

NT

N∑
i=1

Rτ
iMF 0ΩF 0

(
F 0τF 0

T

)−1(
ΛτΛ

N

)−1
λi.

Under the assumptions that δ−2NTLN logLN → 0, L2d+1
N /NT → ∞, and

T/N → c, we have

Σ−1/2B(u)
LN
N

(
LND(F 0)

)−1
ξ̃NT

P−→ Σ̃−1/2c1/2W 0
1 ,

Σ−1/2B(u)
LN
N

(
LND(F 0)

)−1
Λ̃NT

P−→ Σ̃−1/2c−1/2W 0
2 ,

where W 0
1 and W 0

2 are given in Theorem 3. Combining with Assumption

(A10), we finish the proof of Theorem 3. �
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S2.4 Proof of Theorem 4

Similarly to the argument of Bai and Ng (2006), it is easy to show that Ŵ1

is consistent for W1. Similarly to the argument of Newey and West (1987)

and Bai (2003), we can obtain that Ŵ2 is consistent for W2. Thus, Theorem

4 follows. �

S2.5 Proof of Corollary 1

Invoking (B.6), similarly to the proof of Theorem 2 in Bai (2009), we can

prove Corollary 1, and hence omit the details of proof. �

S2.6 Proof of Theorem 5

SinceQ(γ(1),θ,F ) = Q(γ,F ) attains the minimal value at (γ̂(1)τ , β̂q+11
τ
Lq+1

,

. . . , β̂p1
τ
Lp

)τ , where γ̂(1) = (γ̂τ1 , . . . , γ̂
τ
q )τ . Similarly to the proof of Theorem
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2, invoking Lemmas 3–7 and
∑Lk

l=1Bkl(u) = 1, we can get that

1

NT

N∑
i=1

Rτ
iMF̂Ri(γ̂

(1) − γ̃(1))

=
1

NT

N∑
i=1

Rτ
iMF̂X i(θ − θ̂)− 1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂Xjaij(θ − θ̂)

+
1

NT

N∑
i=1

Rτ
iMF̂εi −

1

N2T

N∑
i=1

N∑
j=1

aijR
τ
jMF̂εi +

1

NT

N∑
i=1

Rτ
iMF̂ei

+
1

N2T

N∑
i=1

N∑
j=1

Rτ
iMF̂Rjaij(γ̂

(1) − γ̃(1))− 1

N2T 2

N∑
i=1

N∑
j=1

Rτ
iMF̂ΩjF̂Gλi

+oP (θ − θ̂) + oP (γ̂(1) − γ̃(1)) +N−1/2OP (δ−2NT ) +OP (ζLd)

+oP ((NT )−1/2) +OP (T−1/2ζ
1/2
Ld ),

and

1

NT

N∑
i=1

X
τ

iMF̂X i(θ̂ − θ)

=
1

NT

N∑
i=1

X
τ

iMF̂Ri(γ̃
(1) − γ̂(1))− 1

N2T

N∑
i=1

N∑
j=1

X
τ

iMF̂Rjaij(γ̃
(1) − γ̂(1))

+
1

NT

N∑
i=1

X
τ

iMF̂εi −
1

N2T

N∑
i=1

N∑
j=1

aijX
τ

jMF̂εi +
1

NT

N∑
i=1

X
τ

iMF̂ei

+
1

N2T

N∑
i=1

N∑
j=1

X
τ

iMF̂Xjaij(θ̂ − θ)− 1

N2T 2

N∑
i=1

N∑
j=1

X
τ

iMF̂ΩjF̂Gλi

+oP (θ̂ − θ) + oP (γ̃(1) − γ̂(1)) +N−1/2OP (δ−2NT ) +OP (ζLd)

+oP ((NT )−1/2) +OP (T−1/2ζ
1/2
Ld ).

LetZi = MF 0X i− 1
N

∑N
j=1MF 0Xjaij andZi = MF 0Ri− 1

N

∑N
j=1MF 0Rjaij,
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a simple calculation yields that

1

NT

N∑
i=1

Zτ
iZi(γ̂

(1) − γ̃(1))

=
1

NT

N∑
i=1

Rτ
iZi(θ − θ̂) +

1

NT

N∑
i=1

Zτ
i εi +

1

NT

N∑
i=1

Rτ
iMF 0ei

− 1

N2

N∑
i=1

N∑
j=1

(Ri − V i)
τF 0

T
G0λj

(
1

T

T∑
t=1

εitεjt

)

− 1

N2T 2

N∑
i=1

N∑
j=1

Rτ
iMF 0ΩjF

0G0λi + oP (θ − θ̂)

+oP (γ̂(1) − γ̃(1)) +N−1/2OP (δ−2NT ) +OP (ζLd)

+oP ((NT )−1/2) +OP (T−1/2ζ
1/2
Ld ) +OP (N−1/2ζ

1/2
Ld ), (B.7)

and

1

NT

N∑
i=1

Z
τ

iZi(θ̂ − θ)

=
1

NT

N∑
i=1

X
τ

iRi(γ̃
(1) − γ̂(1)) +

1

NT

N∑
i=1

Z
τ

i εi +
1

NT

N∑
i=1

X
τ

iMF 0ei

− 1

N2

N∑
i=1

N∑
j=1

(X i − V i)
τF 0

T
G0λj

(
1

T

T∑
t=1

εitεjt

)

− 1

N2T 2

N∑
i=1

N∑
j=1

X
τ

iMF 0ΩjF
0G0λi + oP (θ̂ − θ)

+oP (γ̃(1) − γ̂(1)) +N−1/2OP (δ−2NT ) +OP (ζLd)

+oP ((NT )−1/2) +OP (T−1/2ζ
1/2
Ld ) +OP (N−1/2ζ

1/2
Ld ), (B.8)

where G0 = (F 0τF 0/T )−1(ΛτΛ/N)−1 and V i = N−1
∑N

i=1 aijXj.
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Let Φ = 1
NT

∑N
i=1Z

τ

iZi, Φ = 1
NT

∑N
i=1Z

τ
iZi,

Ξ1 =
1

N2T 2

N∑
i=1

N∑
j=1

Rτ
iMF 0ΩjF

0G0λi,

Ξ1 =
1

N2T 2

N∑
i=1

N∑
j=1

X
τ

iMF 0ΩjF
0G0λi,

Ξ2 =
1

N2

N∑
i=1

N∑
j=1

(Ri − V i)
τF 0

T
G0λj

(
1

T

T∑
t=1

εitεjt

)
,

Ξ2 =
1

N2

N∑
i=1

N∑
j=1

(X i − V i)
τF 0

T
G0λj

(
1

T

T∑
t=1

εitεjt

)
,

Ψ =
1

NT

N∑
i=1

X
τ

iZi =
1

NT

N∑
i=1

Z
τ

iRi =
1

NT

N∑
i=1

Z
τ

iZi.

Then we get

(γ̂(1) − γ̃(1)) = (Φ + oP (1))−1(θ − θ̂) + oP (θ − θ̂)

−(Φ + oP (1))−1Ξ1 − (Φ + oP (1))−1Ξ2

+(Φ + oP (1))−1
1

NT

N∑
i=1

(Zτ
i εi +Rτ

iMF 0ei)

+oP (γ̂(1) − γ̃(1)) +N−1/2OP (δ−2NT ) +OP (ζLd)

+oP ((NT )−1/2) +OP (T−1/2ζ
1/2
Ld ) +OP (N−1/2ζ

1/2
Ld ). (B.9)

Substituting (B.9) into (B.8), and a simple calculation yields that

(Φ−ΨΦ−1Ψτ + oP (1))(θ̂ − θ)

=
1

NT

N∑
i=1

(Z
τ

i εi +X
τ

iMF 0ei)− Ξ1 − Ξ2 + Ψ(Φ−1 + oP (1))Ξ1

+Ψ(Φ−1 + oP (1))Ξ2 −Ψ(Φ−1 + oP (1))
1

NT

N∑
i=1

(Zτ
i εi +Rτ

iMF 0ei)

+N−1/2OP (δ−2NT ) +OP (ζLd) + oP ((NT )−1/2)

+OP (T−1/2ζ
1/2
Ld ) +OP (N−1/2ζ

1/2
Ld ).
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Thus we have

(Φ−ΨΦ−1Ψτ + oP (1))
√
NT (θ̂ − θ)

=
1√
NT

N∑
i=1

(Zi −ZiΦ
−1Ψτ )τεi +

1√
NT

N∑
i=1

(X i −RiΦ
−1Ψτ )τMF 0ei

−
√
NT (Ξ1 −Ψ(Φ−1 + oP (1))Ξ1)−

√
NT (Ξ2 −Ψ(Φ−1 + oP (1))Ξ2) + oP (1).

By Assumption (A1) and (C.2), and using the similar proofs of Lemma A.7

in Huang et al. (2004), and Lemmas 2 and 3, it is easy to show that

∥∥∥ 1√
NT

N∑
i=1

(X i −RiΦ
−1Ψτ )τMF 0ei

∥∥∥ = oP (1).

Using the central limits theorem, we can obtain that

1√
NT

N∑
i=1

(Zi −ZiΦ
−1Ψτ )τεi

L−→ N(0,Π2).

In addition, by the law of large numbers, we have

Φ−ΨΦ−1Ψτ P−→ Π1.

Invoking the Slutsky Theorem, we complete the proof of Theorem 5. �
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S2.7 Proof of Theorem 6

By a simple calculation, we have

RSS0 =
1

NT

N∑
i=1

(Yi −Riγ̂
(1)∗ −X iθ̂ − F̂ ∗λ̂∗i )τ (Yi −Riγ̂

(1)∗ −X iθ̂ − F̂ ∗λ̂∗i )

=
1

NT

N∑
i=1

(Yi −Riγ̂ − F̂ λ̂i +Riγ̂ −Riγ̂
(1)∗ −X iθ̂ − F̂ ∗λ̂∗i + F̂ λ̂i)

τ

×(Yi −Riγ̂ − F̂ λ̂i +Riγ̂ −Riγ̂
(1)∗ −X iθ̂ − F̂ ∗λ̂∗i + F̂ λ̂i)

= RSS1 +
1

NT

N∑
i=1

(Riγ̂ −Riγ̂
(1)∗ −X iθ̂)τ (Riγ̂ −Riγ̂

(1)∗ −X iθ̂)

+
1

NT

N∑
i=1

(F̂ ∗λ̂∗i − F̂ λ̂i)τ (F̂ ∗λ̂∗i − F̂ λ̂i)

+
2

NT

N∑
i=1

(Yi −Riγ̂ − F̂ λ̂i)τ (Riγ̂ −Riγ̂
(1)∗ −X iθ̂)

− 2

NT

N∑
i=1

(Riγ̂ −Riγ̂
(1)∗ −X iθ̂)τ (F̂ ∗λ̂∗i − F̂ λ̂i)

− 2

NT

N∑
i=1

(Yi −Riγ̂ − F̂ λ̂i)τ (F̂ ∗λ̂∗i − F̂ λ̂i).

For the second term of the above equation, by the properties of B-spline,

we have

1

NT

N∑
i=1

(Riγ̂−Riγ̂
(1)∗−X iθ̂)τ (Riγ̂−Riγ̂

(1)∗−X iθ̂) � ‖β̂(u)− β̌(u)‖2L2
,

where β̌(u) = Riγ̌ with γ̌ = (γ̂(1)∗τ , β̂q+11
τ
Lq+1

, . . . , β̂p1
τ
Lp

)τ . Then, under

H0, we have

‖β̂(u)− β̌(u)‖L2 ≤ ‖β̂(u)− β(u)‖L2 + ‖β̌(u)− β(u)‖L2

P−→ 0,
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where β(u) = (β1(u), . . . , βq(u), βq+1, . . . , βp)
τ . For the third term, a simple

calculation yields that

F̂ ∗λ̂∗i − F̂ λ̂i = F̂ ∗λ̂∗i − F 0λi + F 0λi − F̂ λ̂i,

F 0λi − F̂ λ̂i = (F 0H − F̂ )H−1λi − F̂ (λ̂i −H−1λi),

F̂ ∗λ̂∗i − F 0λi = (F̂ ∗ − F 0H)H−1λi + F̂ ∗(λ̂∗i −H−1λi).

Invoking Proposition A.1 (ii) and Lemma A.10 in Bai (2009), Lemma 3

(i), and Assumptions (A6)–(A7), we have 1
NT

∑N
i=1(F̂

∗λ̂∗i − F̂ λ̂i)τ (F̂ ∗λ̂∗i −

F̂ λ̂i) = oP (1). Similarly, it is easy to show that

1

NT

N∑
i=1

(Yi −Riγ̂ − F̂ λ̂i)τ (Riγ̂ −Riγ̂
(1)∗ −X iθ̂) = oP (1),

1

NT

N∑
i=1

(Riγ̂ −Riγ̂
(1)∗ −X iθ̂)τ (F̂ ∗λ̂∗i − F̂ λ̂i) = oP (1),

1

NT

N∑
i=1

(Yi −Riγ̂ − F̂ λ̂i)τ (F̂ ∗λ̂∗i − F̂ λ̂i) = oP (1).

On the other hand, under H1, because ‖β̂(u) − β̌(u)‖L2 ≥ ‖β̌(u) −

β(u)‖L2 − ‖β̂(u)− β(u)‖L2 . As N →∞ and T →∞, we have

‖β̂(u)− β̌(u)‖L2 ≥
p∑

k=1

‖β̌k(u)− βk(u)‖L2 − oP (1)

≥
p∑

k=q+1

inf
a∈R
‖βk(u)− a‖L2 − oP (1).

Then, by the Cauchy-Schwarz inequality, a simple calculation yields that

RSS0 − RSS1 ≥
p∑

k=q+1

inf
a∈R
‖βk(u)− a‖L2 + oP (1).
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It remains to show that, with probability tending to one, RSS1 is

bounded away from zero and infinity. By some elementary calculations,

we have

RSS1 =
1

NT

N∑
i=1

(Yi −Riγ̂ − F̂ λ̂i)τ (Yi −Riγ̂ − F̂ λ̂i)

=
1

NT

N∑
i=1

(εi + ei +Ri(γ̃ − γ̂) + F 0λi − F̂ λ̂i)τ

×(εi + ei +Ri(γ̃ − γ̂) + F 0λi − F̂ λ̂i)

=
1

NT

N∑
i=1

(εi + ei +Ri(γ̃ − γ̂) + (F 0H − F̂ )H−1λi − F̂ (λ̂i −H−1λi))τ

×(εi + ei +Ri(γ̃ − γ̂) + (F 0H − F̂ )H−1λi − F̂ (λ̂i −H−1λi))

=
1

NT

N∑
i=1

ετi εi + oP (1).

Thus, it suffices to show that, with probability tending to one, 1
NT

∑N
i=1 ε

τ
i εi

is bounded away from zero and infinity. By Assumption (A8), we have

Var

(
1

NT

N∑
i=1

ετi εi

)
=

1

N2T 2
Cov

(
N∑
i=1

T∑
t=1

ε2it,
N∑
j=1

T∑
s=1

ε2js

)

=
1

N2T 2

N∑
i=1

N∑
j=1

T∑
t=1

T∑
s=1

Cov
(
ε2it, ε

2
js

)
→ 0.

The Chebyshev inequality then implies that, as N →∞ and T →∞,

1

NT

N∑
i=1

ετi εi − E

(
1

NT

N∑
i=1

ετi εi

)
→ 0

in probability. Since E(ε2it) is bounded away from 0 and infinity, the result

follows. �
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S3 Appendix C: Some lemmas and their proofs

In order to prove Theorems 1–6, we provide Lemmas 1–7 in Appendix

C.

Lemma 1 Let ρmin and ρmax be the minimum and maximum eigenvalues

of LND(F ) respectively. Then there exist two positive constants M3 and

M4 such that M3 ≤ ρmin ≤ ρmax ≤M4.

Proof The proof of Lemma 1 follows the same lines as Lemma A.3 in

Huang et al. (2004), Lemma 3.2 in He and Shi (1994), and Lemma 3 in

Tang and Cheng (2009). We hence omit the proof of Lemma 1. �

Lemma 2 Assume that assumptions (A1), (A2), (A4)–(A8) hold. We

have

sup
F

∥∥∥∥∥ 1

NT

N∑
i=1

Rτ
iMFεi

∥∥∥∥∥ = oP (1),

sup
F

∥∥∥∥∥ 1

NT

N∑
i=1

λτiF
τMFεi

∥∥∥∥∥ = oP (1),

sup
F

∥∥∥∥∥ 1

NT

N∑
i=1

ετi PFεi

∥∥∥∥∥ = oP (1).

Proof Using PF = FF τ/T , we have

1

NT

N∑
i=1

Rτ
iMFεi =

1

NT

N∑
i=1

Rτ
i εi −

1

NT

N∑
i=1

Rτ
i PFεi.

By Assumptions (A1) and (A8), together with the properties of B-spline,

it is easy to show that 1
NT

∑N
i=1R

τ
i εi = OP ((NT )−1/2) = oP (1). Now we
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show that sup
F

1
NT

∑N
i=1R

τ
i PFεi = oP (1). Note that

1

NT

∥∥∥∥∥
N∑
i=1

Rτ
i PFεi

∥∥∥∥∥ =

∥∥∥∥∥ 1

N

N∑
i=1

(
Rτ
iF

T

)
1

T

T∑
t=1

Ftεit

∥∥∥∥∥
≤ 1

N

N∑
i=1

∥∥∥∥Rτ
iF

T

∥∥∥∥ ·
∥∥∥∥∥ 1

T

T∑
t=1

Ftεit

∥∥∥∥∥ . (C.1)

By T−1/2‖F ‖ =
√
r, we have T−1‖Rτ

iF ‖ ≤ T−1‖Ri‖‖F ‖ =
√
rT−1/2‖Ri‖.

By Cauchy-Schwarz inequality, (C.1) is bounded above by

√
r

(
1

N

N∑
i=1

1

T

T∑
t=1

‖Rit‖2
)1/2

 1

N

N∑
i=1

∥∥∥∥∥ 1

T

T∑
t=1

Ftεit

∥∥∥∥∥
2
1/2

.

By T−1/2‖Ri‖ = OP (1), the first term of the above expression is of order

OP (1). Similarly to the proof of Lemma A.1 in Bai (2009), it is easy to

show that the order of the second term is oP (1) uniformly in F .

1

N

N∑
i=1

∥∥∥∥∥ 1

T

T∑
t=1

Ftεit

∥∥∥∥∥
2

= tr

(
1

N

N∑
i=1

1

T 2

T∑
t=1

T∑
s=1

FtF
τ
s εitεis

)

= tr

(
1

N

N∑
i=1

1

T 2

T∑
t=1

T∑
s=1

FtF
τ
s [εitεis − E(εitεis)]

)

+tr

(
1

T 2

T∑
t=1

T∑
s=1

FtF
τ
s

1

N

N∑
i=1

E(εitεis)

)
.

Note that T−1
T∑
t=1

‖Ft‖2 = ‖F τF /T‖ = r. By Cauchy-Schwarz inequality

and Assumption (A8), we obtain that

tr

(
1

N

N∑
i=1

1

T 2

T∑
t=1

T∑
s=1

FtF
τ
s [εitεis − E(εitεis)]

)

≤

(
1

T 2

T∑
t=1

T∑
s=1

‖Ft‖2‖Fs‖2
)1/2

N−1/2

 1

T 2

T∑
t=1

T∑
s=1

[
1√
N

N∑
i=1

[εitεis − E(εitεis)]

]21/2

= rN−1/2OP (1).
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Next, by Assumption (A8)(ii), we have |N−1
∑N

i=1 σii,ts| ≤ %ts, where σii,ts =

E(εitεis). Again using the Cauchy-Schwarz inequality,

tr

(
1

T 2

T∑
t=1

T∑
s=1

FtF
τ
s

1

N

N∑
i=1

E(εitεis)

)

≤

(
1

T 2

T∑
t=1

T∑
s=1

‖Ft‖2‖Fs‖2
)1/2(

1

T 2

T∑
t=1

T∑
s=1

%2ts

)1/2

≤ rT−1/2C

(
1

T

T∑
t=1

T∑
s=1

%ts

)1/2

= rO(T−1/2).

This shows that

sup
F

∥∥∥∥∥ 1

NT

N∑
i=1

Rτ
iMFεi

∥∥∥∥∥ = OP ((NT )−1/2) = oP (1).

The proofs of the second and third results are similar to the proof of the

first one, and hence are omitted. �

Lemma 3 Assume that assumptions (A1)–(A9) hold. For ease of notation,

let H = (ΛτΛ/N)(F 0τ F̂ /T )V −1NT . We have

(i) T−1/2‖F̂ − F 0H‖ = OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)
,

(ii) T−1F 0τ (F̂ − F 0H) = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
,

(iii) T−1F̂ τ (F̂ − F 0H) = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
,

(iv) T−1Rτ
j (F̂ − F 0H) = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
, for all j,

(v)
1

NT

N∑
j=1

Rτ
jMF̂ (F̂ − F 0H) = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
,

(vi) HHτ − (T−1F 0τF 0)−1 = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
.
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Proof (i) Note that F̂VNT =
[

1
NT

∑N
i=1(Yi −Riγ̂)(Yi −Riγ̂)τ

]
F̂ and

sup
u∈U
|Rek(u)| ≤ML−dk , k = 1, . . . , p. (C.2)

In addition, noting that Yi = Riγ̃ + F 0λi + εi + ei, for i = 1, . . . , N , we

have the following expansion:

F̂VNT =
1

NT

N∑
i=1

Ri(γ̃ − γ̂)(γ̃ − γ̂)τRτ
i F̂ +

1

NT

N∑
i=1

Ri(γ̃ − γ̂)λτiF
0τ F̂

+
1

NT

N∑
i=1

Ri(γ̃ − γ̂)ετi F̂ +
1

NT

N∑
i=1

F 0λi(γ̃ − γ̂)τRτ
i F̂

+
1

NT

N∑
i=1

εi(γ̃ − γ̂)τRτ
i F̂ +

1

NT

N∑
i=1

F 0λiε
τ
i F̂ +

1

NT

N∑
i=1

εiλ
τ
iF

0τ F̂

+
1

NT

N∑
i=1

εiε
τ
i F̂ +

1

NT

N∑
i=1

Ri(γ̃ − γ̂)eτi F̂ +
1

NT

N∑
i=1

ei(γ̃ − γ̂)τRτ
i F̂

+
1

NT

N∑
i=1

F 0λie
τ
i F̂ +

1

NT

N∑
i=1

eiλ
τ
iF

0τ F̂ +
1

NT

N∑
i=1

εie
τ
i F̂

+
1

NT

N∑
i=1

eiε
τ
i F̂ +

1

NT

N∑
i=1

eie
τ
i F̂ +

1

NT

N∑
i=1

F 0λiλ
τ
iF

0τ F̂

=: B1 +B2 +B3 + · · ·+B16,

where B16 = 1
NT

∑N
i=1 F

0λiλ
τ
iF

0τ F̂ = F 0(ΛτΛ/N)(F 0τ F̂ /T ). This leads

to

F̂ − F 0H = (B1 +B2 + · · ·+B15)V
−1
NT . (C.3)

Noting that T−1/2‖F̂ ‖ =
√
r and ‖Ri‖ = OP (T 1/2), we have

T−1/2‖B1‖ ≤
1

N

N∑
i=1

(‖Ri‖2

T

)
‖γ̂ − γ̃‖2

√
r = OP (‖γ̂ − γ̃‖2) = oP (‖γ̂ − γ̃‖),

T−1/2‖B2‖ ≤
1

N

N∑
i=1

(‖Ri‖√
T

)
‖γ̂ − γ̃‖‖λi‖‖F 0τ F̂ /T‖ = OP (‖γ̂ − γ̃‖).
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Using the same argument, it is easy to show that T−1/2‖Bl‖ = OP (‖γ̂−γ̃‖),

for l = 3, 4 and 5, and T−1/2‖Bl‖ = OP (δ−1NT ), for l = 6, 7 and 8. For B9,

using the same argument, and by (C.2) and Assumption (A1), we have

T−1/2‖B9‖ ≤ T−1/2
1

N

N∑
i=1

(‖Ri‖√
T

)
‖γ̂ − γ̃‖

(‖F̂ ‖√
T

)√√√√ T∑
t=1

e2it

≤ OP (‖γ̂ − γ̃‖) ·Mζ
1/2
Ld .

Similarly, we can prove that T−1/2‖B10‖ = OP (‖γ̂ − γ̃‖) ·Mζ
1/2
Ld . For B11,

we have

T−1/2‖B11‖ ≤ T−1/2
1

N

N∑
i=1

(‖F 0‖√
T

)
‖λi‖

√√√√r
T∑
t=1

e2it = OP

(
ζ
1/2
Ld

)
.

Similarly, it yields that T−1/2‖B12‖ = OP (ζ
1/2
Ld ). For B13, we have

T−1/2‖B13‖ ≤
1

NT

N∑
i=1

‖εi‖

√√√√r
T∑
t=1

e2it = OP

(
ζ
1/2
Ld δ

−1
NT

)
.

Similarly, it yields that T−1/2‖B14‖ = OP (ζ
1/2
Ld δ

−1
NT ). For B15, we have

T−1/2‖B15‖ ≤
1

NT

N∑
i=1

( T∑
t=1

e2it

)√
r = OP (ζLd).

Following the same arguments as in the proof of Proposition A.1 in Bai

(2009), together with the above results, we have

T−1/2‖F̂ − F 0H‖ = OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)
.

(ii) By (C.3), we have the following decomposition:

T−1F 0τ (F̂ − F 0H) = T−1F 0τ (B1 +B2 + · · ·+B15)V
−1
NT .
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Invoking the similar arguments as in the proof of Lemma A.3 (i) in Bai

(2009s) to the first eight terms, we can obtain that

T−1F 0τ (B1 +B2 + · · ·+B8)V
−1
NT = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ).

For the other terms, we can show that T−1F 0τB9V
−1
NT and T−1F 0τB10V

−1
NT

are of order OP (‖γ̂− γ̃‖ζ1/2Ld ), T−1F 0τB11V
−1
NT and T−1F 0τB12V

−1
NT are of or-

der OP (ζ
1/2
Ld ), T−1F 0τB13V

−1
NT and T−1F 0τB14V

−1
NT are of order OP (ζ

1/2
Ld δ

−1
NT ),

and T−1F 0τB15V
−1
NT = OP (ζLd). This finishes the proof of (ii).

(iii) By (i) and (ii) and some elementary calculations, we have

‖T−1F̂ τ (F̂ − F 0H)‖ ≤ T−1‖F̂ − F 0H‖2 + ‖H‖T−1‖F 0τ (F̂ − F 0H)‖

= OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
.

(iv) The proof of (iv) is similar to that for (ii), and hence is omitted.

(v) Noting that MF̂ = IT − F̂ F̂ τ/T , we have

1

NT

N∑
j=1

Rτ
jMF̂ (F̂ − FH)

=
1

N

N∑
j=1

1

T
Rτ
j (F̂ − FH)− 1

N

N∑
j=1

Rτ
j F̂

T
T−1F̂ τ (F̂ − FH)

=: I1 + I2.

Since I1 is an average of 1
T
Rτ
j (F̂ − F 0H) over j, it is easy to verify that

I1 = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP (ζ
1/2
Ld ). For I2, by (iii) we have

‖I2‖ ≤
1

N

N∑
j=1

‖Rj‖√
T

√
r‖T−1F̂ τ (F̂ − F 0H)‖

= OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
.
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This completes the proof of (v).

(vi) By (ii), we have

F 0τ F̂ /T − (F 0τF 0/T )H

= OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
. (C.4)

By (iii) and the fact that F̂ τ F̂ /T = Ir, we have

Ir − (F̂ τF 0/T )H = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
. (C.5)

Left-multiplying by Hτ in (C.4), and using the transpose for (C.5), we have

Ir −Hτ (F 0τF 0/T )H = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
,

which shows that (vi) holds. �

Lemma 4 Assume that assumptions (A1)–(A9) hold. We have

(i) T−1ετj (F̂ − F 0H) = T−1/2OP (‖γ̂ − γ̃‖) +OP (δ−2NT )

+OP

(
ζ
1/2
Ld T

−1/2
)
, for all j = 1, . . . , N,

(ii)
1

T
√
N

N∑
j=1

ετj (F̂ − F 0H) = T−1/2OP (‖γ̂ − γ̃‖) +N−1/2OP (‖γ̂ − γ̃‖)

+OP (N−1/2) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
,

(iii)
1

NT

N∑
j=1

λjε
τ
j (F̂ − F 0H) = (TN)−1/2OP (‖γ̂ − γ̃‖) +OP (N−1)

+N−1/2OP (δ−2NT ) +N−1/2OP

(
ζ
1/2
Ld

)
.

Proof (i) By (C.3), we have

T−1ετj (F̂ − F 0H) = T−1ετj (B1 +B2 + · · ·+B15)V
−1
NT . (C.6)
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Invoking the similar arguments as in the proof of Lemma A.4 (i) in Bai

(2009s) to the first eight terms, we can obtain that

T−1ετj (B1 +B2 + · · ·+B8)V
−1
NT = T−1/2OP (‖γ̂ − γ̃‖) +OP (δ−2NT ).

For the other terms in (C.6), similarly to the proof of (i) in Lemma 3, we

only need to show that the dominant terms T−1ετjB11V
−1
NT and T−1ετjB12V

−1
NT

are the same order as OP (ζ
1/2
Ld T

−1/2). For T−1ετjB11V
−1
NT , we have

∥∥∥T−1ετjB11V
−1
NT

∥∥∥ ≤ 1√
T

‖ετjF 0‖
√
T

1

N
√
T

N∑
i=1

‖λi‖‖V −1NT ‖

√√√√r
T∑
t=1

e2it = OP

(
ζ
1/2
Ld T

−1/2
)
.

This leads to T−1/2‖ετjF 0‖ = OP (1). Similarly, ‖T−1ετjB12V
−1
NT

∥∥∥ = OP (ζ
1/2
Ld T

−1/2).

Thus, we finish the proof of (i).

(ii) By F 0 − F̂H−1 = −(B1 +B2 + · · ·+B15)G, we have

1

T
√
N

N∑
j=1

ετj (F̂H
−1 − F 0) =

1

T
√
N

N∑
j=1

ετj (B1 +B2 + · · ·+B15)G

=: a1 + · · ·+ a15.

Next we derive the orders of the fifteen terms, respectively. For the first

four terms, we have

‖a1‖ ≤ T−1/2‖G‖

(
1

N

N∑
i=1

∥∥∥ 1√
NT

N∑
j=1

T∑
t=1

εjtRit

∥∥∥(‖Ri‖2

T

))
‖γ̂ − γ̃‖2

= T−1/2OP (‖γ̂ − γ̃‖2),

a2 =
1

NT

1√
N

N∑
j=1

N∑
i=1

ετjRi(γ̃ − γ̂)λτi

(ΛτΛ

N

)−1
=

1√
T

1

N

N∑
i=1

1√
NT

N∑
j=1

T∑
t=1

εjtRit(γ̃ − γ̂)λτi

(ΛτΛ

N

)−1
= T−1/2OP (‖γ̂ − γ̃‖),
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‖a3‖ ≤ T−1/2‖G‖

(
1

N

N∑
i=1

∥∥∥ 1√
NT

N∑
j=1

T∑
t=1

εjtRit

∥∥∥(‖εi‖2
T

))
‖γ̂ − γ̃‖

= T−1/2OP (‖γ̂ − γ̃‖),

‖a4‖ ≤ T−1/2‖G‖

∥∥∥∥∥ 1√
NT

N∑
j=1

T∑
t=1

εjtF
τ
t

∥∥∥∥∥
∥∥∥∥∥ 1

N

N∑
i=1

(Rτ
i F̂

T

)∥∥∥∥∥ ‖λi‖‖γ̂ − γ̃‖
= T−1/2OP (‖γ̂ − γ̃‖).

For a5, let Wi = Rτ
i F̂ /T . It is easy to verify that ‖Wi‖2 ≤ ‖Ri‖2/T =

OP (1). Further,

a5 =
1

NT

1√
N

N∑
j=1

N∑
i=1

ετjεi(γ̃ − γ̂)τWiG

=
1√
N

1

T

T∑
t=1

( 1√
N

N∑
j=1

εjt

)( 1√
N

N∑
i=1

εit(γ̃ − γ̂)τWi

)
G

= N−1/2OP (‖γ̂ − γ̃‖).

For a6, we have

a6 =
1

NT 2

1√
N

N∑
j=1

ετjF
0

N∑
i=1

λiε
τ
i F̂G

=
1

NT 2

1√
N

N∑
j=1

ετjF
0

N∑
i=1

λiε
τ
iF

0HG+
1

NT 2

1√
N

N∑
j=1

ετjF
0

N∑
i=1

λiε
τ
i (F̂ − F 0H)G

=: a6.1 + a6.2.

By the proof of Lemma A.4 in Bai (2009s), a6.1 = OP (T−1N−1/2). Also,

a6.2 = T−1/2

(
1√
NT

N∑
j=1

T∑
t=1

εjtF
0τ
t

)
1

NT

N∑
i=1

λiε
τ
i (F̂ − F 0H)G.

By (i) of Lemma 3 and some elementary calculations, we have

‖a6.2‖ ≤ T−1/2OP (1)
1

N

N∑
i=1

‖λi‖‖T−1/2εi‖
‖F̂ − F 0H‖√

T
‖G‖

= T−1/2
[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]
.
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Since a7 and a8 have the same structures as a7 and a8 in Bai (2009s), we

can prove that a7 = OP (N−1/2) and a8 = OP (T−1) + OP ((NT )−1/2) +

N−1/2[OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP (ζ
1/2
Ld )]. For a9, by (C.2) we have

‖a9‖ ≤
1√
T

1

N

N∑
i=1

∥∥∥∥∥ 1√
NT

N∑
j=1

T∑
t=1

εjtRit

∥∥∥∥∥T−1/2
√√√√r

T∑
t=1

e2it‖γ̂ − γ̃‖‖G‖

= T−1/2OP

(
‖γ̂ − γ̃‖ζ1/2Ld

)
.

Similarly, a10 = T−1/2OP (‖γ̂ − γ̃‖ζ1/2Ld ). For a11, we have

‖a11‖ ≤ T−1/2

∥∥∥∥∥ 1√
NT

N∑
j=1

T∑
t=1

εjtF
τ
t

∥∥∥∥∥ 1

N

N∑
i=1

‖λi‖T−1/2

√√√√r
T∑
t=1

e2it‖G‖

= T−1/2OP

(
ζ
1/2
Ld

)
.

For a12, we have

a12 =
1√
N

1

NT

N∑
j=1

N∑
i=1

ετjeiλ
τ
i

(ΛτΛ

N

)−1
=

1

T

T∑
t=1

[(
1√
N

N∑
j=1

εjt

)(
1

N

N∑
i=1

eitλ
τ
i

)](ΛτΛ

N

)−1
= OP

(
ζ
1/2
Ld

)
.

For a13, let W̃i = eτi F̂ /T . Then we have ‖W̃i‖ = ‖ei‖
√
r/
√
T = OP (ζ

1/2
Ld )

and

a13 =
1√
N

1

T

T∑
t=1

[(
1√
N

N∑
j=1

εjt

)(
1√
N

N∑
i=1

εitW̃i

)]
G

= N−1/2OP

(
ζ
1/2
Ld

)
.

Finally, we can obtain that

a14 = N−1/2OP

(
ζ
1/2
Ld

)
and a15 = OP (ζLd).
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Summarizing the above results, we finish the proof of (ii).

(iii) Part (iii) follows immediately from (ii) by noting that the presence

of λj does not alter the results. �

Lemma 5 Assume that assumptions (A1)–(A9) hold. We have

1

N2T 2

N∑
i=1

N∑
j=1

Rτ
iMF̂ (εjε

τ
j − Ωj)F̂Gλi

= OP (1/(T
√
N)) + (NT )−1/2

[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]
+

1√
N

[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]2
.

Proof Some elementary calculations yield that

1

N2T 2

N∑
i=1

N∑
j=1

Rτ
iMF̂ (εjε

τ
j − Ωj)F̂Gλi

=
1

N2T 2

N∑
i=1

N∑
j=1

Rτ
i (εjε

τ
j − Ωj)F̂Gλi

− 1

N2T 2

N∑
i=1

N∑
j=1

Rτ
i

(F̂ F̂ τ

T

)
(εjε

τ
j − Ωj)F̂Gλi

=: I + II.

For the first term, by some basic calculations we have

I =
1

N2T 2

N∑
i=1

N∑
j=1

Rτ
i (εjε

τ
j − Ωj)F

0HGλi

+
1

N2T 2

N∑
i=1

N∑
j=1

Rτ
i (εjε

τ
j − Ωj)(F̂ − F 0H)Gλi

=: I1 + I2.

For I1, invoking Lemma A.2 (i) in Bai (2009) and Assumption (A8)(iv), it
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is easy to show that

I1 =
1

N2T 2

N∑
i=1

N∑
j=1

{ T∑
t=1

T∑
s=1

Rit[εjtεjs − E(εjtεjs)]F
0τ
s HGλi

}
=

1

T
√
N

1

N

N∑
i=1

{ 1√
N

N∑
j=1

1

T
Rit[εjtεjs − E(εjtεjs)]F

0τ
s

}
HGλi

= OP

(
1

T
√
N

)
.

Let

as =
1√
NT

N∑
j=1

T∑
t=1

Rit[εjtεjs − E(εjtεjs)] = OP (1).

Then we have

I2 =
1√
NT

1

N

N∑
i=1

1

T

T∑
s=1

as(F̂s − F 0
sH)τGλi.

By Cauchy-Schwarz inequality and Lemma 3 (i), we have

∥∥∥ 1

T

T∑
s=1

as(F̂s − F 0
sH)

∥∥∥ ≤ ( 1

T

T∑
s=1

‖as‖2
)1/2( 1

T

T∑
s=1

‖F̂s − F 0
sH‖2

)1/2
= OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)
.

This leads to

I2 = (NT )−1/2
[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]
.

For the second term, by the similar proof of Lemma A.4 (ii) in Bai
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(2009), we have

‖II‖ ≤ 1

N

N∑
i=1

∥∥∥Rτ
i F̂

T

∥∥∥‖Gλi‖∥∥∥ 1

NT 2

N∑
j=1

F̂ τ (εjε
τ
j − Ωj)F̂

∥∥∥
= OP (1)

∥∥∥ 1

NT 2

N∑
j=1

F̂ τ (εjε
τ
j − Ωj)F̂

∥∥∥
= OP (1/(T

√
N)) + (NT )−1/2

[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]
+

1√
N

[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]2
.

Summarizing the above results, we finish the proof of Lemma 5. �

Lemma 6 Assume that assumptions (A1)–(A9) hold. We have

1

NT

N∑
i=1

[
Rτ
iMF̂ −

1

N

N∑
j=1

aijR
τ
jMF̂

]
εi

=
1

NT

N∑
i=1

[
Rτ
iMF 0 − 1

N

N∑
j=1

aijR
τ
jMF 0

]
εi +N−1ξ∗NT +N−1/2OP (‖γ̂ − γ̃‖2)

+(NT )−1/2OP (‖γ̂ − γ̃‖) +N−1/2OP (δ−2NT ) +N−1/2OP

(
ζ
1/2
Ld

)
,

where

ξ∗NT = − 1

N

N∑
i=1

N∑
j=1

(Ri − Vi)τF 0

T

(
F 0τF 0

T

)−1(
ΛτΛ

N

)−1
λj

(
1

T

T∑
t=1

εitεjt

)
= OP (1),

with Vi = N−1
N∑
j=1

aijRj.

Proof For the term
1

NT

N∑
i=1

Rτ
i (MF −MF̂ )εi, we consider the following
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decomposition:

MF 0 −MF̂ = PF̂ − PF 0

= T−1(F̂ − F 0H)HτF 0τ + T−1(F̂ − F 0H)(F̂ − F 0H)τ

+T−1F 0H(F̂ − F 0H)τ

+T−1F 0[HHτ − (T−1F 0τF 0)−1]F 0τ ,

for any invertible matrix H. Therefore, we have

1

NT

N∑
i=1

Rτ
i (MF 0 −MF̂ )εi

=
1

NT

N∑
i=1

Rτ
i (F̂ − F 0H)

T
HτF 0τεi +

1

NT

N∑
i=1

Rτ
i (F̂ − F 0H)

T
(F̂ − F 0H)τεi

+
1

NT

N∑
i=1

Rτ
iF

0H

T
(F̂ − F 0H)τεi +

1

NT

N∑
i=1

Rτ
iF

0

T
[HHτ − (T−1F 0τF 0)−1]F 0τεi

=: s1 + s2 + s3 + s4.

For s1, noting that (F̂s −HτF 0
s )τHτF 0

t is scalar, we have

s1 =
1√
NT

1

T

T∑
s=1

(F̂s −HτF 0
s )τHτ

(
1√
NT

N∑
i=1

T∑
t=1

F 0
t Risεit

)
.

Further, we can derive that

‖s1‖ ≤
1√
NT

[
1

T

T∑
s=1

‖F̂s −HτF 0
s ‖2
]1/2
‖H‖

 1

T

T∑
s=1

∥∥∥∥∥ 1√
NT

N∑
i=1

T∑
t=1

F 0
t Risεit

∥∥∥∥∥
2
1/2

=
1√
NT

[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]
OP (1)

= oP ((NT )−1/2).

Similarly, we can obtain that

s2 =
1√
N

1

T 2

T∑
s=1

T∑
t=1

(F̂s −HτF 0
s )τ (F̂t −HτF 0

t )

(
1√
N

N∑
i=1

Risεit

)
,
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and

‖s2‖ ≤
1√
N

(
1

T

T∑
t=1

‖F̂t −HτF 0
t ‖2
) 1

T 2

T∑
t=1

T∑
s=1

∥∥∥∥∥ 1√
N

N∑
i=1

Risεit

∥∥∥∥∥
2
1/2

=
1√
N

[
OP (‖γ̂ − γ̃‖) +OP (δ−1NT ) +OP

(
ζ
1/2
Ld

)]2
OP (1).

For s3, by some simple calculations we have

s3 =
1

NT

N∑
i=1

Rτ
iF

0

T
HHτ (F̂H−1 − F 0)τεi

=
1

NT

N∑
i=1

Rτ
iF

0

T

(
F 0τF 0

T

)−1
(F̂H−1 − F 0)τεi

+
1

NT

N∑
i=1

Rτ
iF

0

T

[
HHτ −

(
F 0τF 0

T

)−1]
(F̂H−1 − F 0)τεi

=: s3.1 + s3.2.

Let Q = HHτ − (F 0τF 0/T )−1. By Lemma 4 (iii) and Lemma 3 (vi), we

have

s3.2 =

(
1

NT

N∑
i=1

[
ετi (F̂H

−1 − F 0)⊗
(Rτ

iF
0

T

)])
vec(Q)

=
[
(TN)−1/2OP (‖γ̂ − γ̃‖) +OP (N−1) +N−1/2OP (δ−2NT ) +N−1/2OP

(
ζ
1/2
Ld

)]
×
[
OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)]
= N−1OP (‖γ̂ − γ̃‖) +N−1OP (δ−2NT ) +N−1/2OP (δ−4NT ) +N−1OP

(
ζ
1/2
Ld

)
.

Similarly to the proof of c1 in Lemma A.8 in Bai (2009s), we have

s3.1 = N−1ψNT + (NT )−1/2OP (‖γ̂ − γ̃‖) +N−1/2OP (δ−2NT ) +N−1/2OP

(
ζ
1/2
Ld

)
,

where

ψNT =
1

N

N∑
i=1

N∑
j=1

Rτ
iF

0

T

(
F 0τF 0

T

)−1(
ΛτΛ

N

)−1
λj

(
1

T

T∑
t=1

εitεjt

)
= OP (1).
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For s4, note that Q = HHτ − (F 0τF 0/T )−1. Then,

s4 =
1

NT

N∑
i=1

[
ετiF

0 ⊗
(
Rτ
iF

0

T

)]
vec(Q)

=
1√
NT

[
1√
NT

N∑
i=1

T∑
t=1

F 0
t εit ⊗

(
Rτ
iF

0

T

)]
vec(Q)

= oP (1),

by the facts that vec(Q) = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP (ζ
1/2
Ld ) and

1√
NT

N∑
i=1

T∑
t=1

F 0
t εit ⊗

(
Rτ
iF

0

T

)
= OP (1).

In summary, we have

1

NT

N∑
i=1

Rτ
i (MF 0 −MF̂ )εi

= N−1ψNT +N−1/2OP (‖γ̂ − γ̃‖2) + (NT )−1/2OP (‖γ̂ − γ̃‖)

+N−1/2OP (δ−2NT ) +N−1/2OP

(
ζ
1/2
Ld

)
. (C.7)

Let Vi = N−1
N∑
j=1

aijRj. Replacing Ri with Vi, by the same argument, we

have

1

NT

N∑
i=1

V τ
i (MF 0 −MF̂ )εi

= N−1ψ∗NT +N−1/2OP (‖γ̂ − γ̃‖2) + (NT )−1/2OP (‖γ̂ − γ̃‖)

+N−1/2OP (δ−2NT ) +N−1/2OP

(
ζ
1/2
Ld

)
, (C.8)

where ψ∗NT = OP (1) is defined as

ψ∗NT = − 1

N

N∑
i=1

N∑
j=1

V τ
i F

0

T

(
F 0τF 0

T

)−1(
ΛτΛ

N

)−1
λj

(
1

T

T∑
t=1

εitεjt

)
.

Letting ξ∗NT = ψNT −ψ∗NT , and together with (C.7) and (C.8), we finish the

proof of Lemma 6. �
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Lemma 7 Assume that assumptions (A1)–(A9) hold. We have

D(F̂ )−1 −D(F 0)−1 = oP (1).

Proof Similarly to the proof of Lemma A.7 (ii) in Bai (2009), we can show

that

‖PF̂ − P
0
F ‖ = OP (‖γ̂ − γ̃‖) +OP (δ−2NT ) +OP

(
ζ
1/2
Ld

)
. (C.9)

This leads to

D(F̂ )−D(F 0)

=
1

NT

N∑
i=1

Rτ
i (MF̂ −MF 0)Ri −

1

T

[ 1

N2

N∑
i=1

N∑
j=1

Rτ
i (MF̂ −MF 0)Rjaij

]
=

1

NT

N∑
i=1

Rτ
i (PF̂ − PF 0)Ri −

1

T

[ 1

N2

N∑
i=1

N∑
j=1

Rτ
i (PF̂ − PF 0)Rjaij

]
.

The norm of the first term in the above expression is bounded above by∥∥∥∥∥ 1

NT

N∑
i=1

Rτ
i (PF̂ − PF 0)Ri

∥∥∥∥∥ ≤ 1

N

N∑
i=1

(
‖Ri‖2

T

)
‖PF̂ − PF 0‖ = oP (1).

Similarly, the order of the second term is also oP (1). Noting that [D(F̂ ) +

oP (1)]−1 = D(F̂ )−1 + oP (1), we complete the proof of Lemma 7. �

S4 Appendix D: Additive fixed effects model

In Appendix D, we also consider an important special case of model (1.2).

By letting λi = (µi, 1)τ and Ft = (1, ξt)
τ , model (1.2) reduces to the varying-

coefficient panel-data model with additive fixed effects:

Yit = Xτ
itβ(Uit) + µi + ξt + εit, i = 1, . . . , N, t = 1, . . . , T. (D.1)
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Similar to (2.3), for the purpose of identification, we assume that

N∑
i=1

µi = 0 and
T∑
t=1

ξt = 0. (D.2)

Invoking (2.1), we have

Yit ≈
p∑

k=1

Lk∑
l=1

γklXit,kBkl(Uit) + µi + ξt + εit. (D.3)

Note that, if we further assume that
∑T

t=1 ξ
2
t = T , then γ can be esti-

mated by the iteration procedure described in Section 2. However, we need

to estimate the fixed effects Ft and λi, where i = 1, . . . , N and t = 1, . . . , T .

In order to avoid estimating the fixed effects Ft and λi, we propose to re-

move the unknown fixed effects by a least squares dummy variable method

based on the identification condition (D.2). The estimation procedure is

described in what follows.

Let 1N denote an N × 1 vector with all elements being ones, Y =

(Y τ
1 , . . . ,Y

τ
N )τ , R = (Rτ

1 , . . . ,R
τ
N)τ , ε = (ετ1, . . . , ε

τ
N)τ , µ = (µ2, . . . , µN)τ

and ξ = (ξ2, . . . , ξT )τ . By the identification condition (D.2), we have

D = [−1N−1 IN−1]
τ ⊗ 1T and S = 1N ⊗ [−1T−1 IT−1]

τ ,

where ⊗ denotes the Kronecker product. Then model (D.3) can be rewrit-

ten as the matrix form:

Y ≈ Rγ + Dµ+ Sξ + ε.

Next, we solve the following optimization problem:

min
γ,µ,ξ

(Y −Rγ −Dµ− Sξ)τ (Y −Rγ −Dµ− Sξ). (D.4)
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Taking partial derivatives of (D.4) with respect to µ and ξ, and setting

them equal to zero, we have

Dτ (Y −Rγ −Dµ− Sξ) = 0,

Sτ (Y −Rγ −Dµ− Sξ) = 0.

By a simple calculation, we can obtain that

ξ̃ = (SτS)−1Sτ (Y −Rγ),

µ̃ = (DτD)−1Dτ
[
Y −Rγ − S(SτS)−1Sτ (Y −Rγ)

]
.

Replacing µ and ξ in (D.4) by µ̃ and ξ̃ respectively, the parameter γ can

be estimated by minimizing (Y −Rγ)τΓ(Y −Rγ), where Γ = H(INT −

S(SτS)−1Sτ ) and H = INT −D(DτD)−1Dτ . Specifically, the least squares

estimator of γ is

γ̌ = (RτΓR)−1 RτΓY .

Then with the estimator γ̌ = (γ̌τ1 , . . . , γ̌
τ
p )τ of γ, where γ̌k = (γ̌k1, . . . , γ̌kLk

)τ ,

for k = 1, . . . , p, we can estimate βk(u) by

β̌k(u) =

Lk∑
l=1

γ̌klBkl(u), k = 1, . . . , p.

S5 Appendix E: Simulation studies

In Appendix E, we consider the following varying-coefficient panel-data

model with individual fixed effects:

Yit = Xit,1β1(Uit) +Xit,2β2(Uit) + µi + εit, (E.1)
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where β1(u), β2(u), Uit, and εit are the same as those in model (7.2). The

regressors Xit,1 and Xit,2 are generated according to

Xit,1 = 3 + 2µi + ηit,1, Xit,2 = 3 + 2µi + ηit,2,

where ηit,j ∼ N(0, 1), j = 1, 2, and the fixed effects are generated by

µi ∼ N(0, 1), i = 2, . . . , N and µ1 = −
N∑
i=2

µi.

With 1000 repetitions, we report the simulation results in Table 5 and

Figure 8, respectively.

Table 5: Finite sample performance of the estimators for model (E.1) with
additive fixed effects.

IFE LSDVE

N T AMSE(β̂1) AMSE(β̂2) AMSE(β̂1) AMSE(β̂2)

100 15 0.0115 0.0118 0.0093 0.0095

100 30 0.0048 0.0058 0.0044 0.0050

100 60 0.0024 0.0023 0.0021 0.0020

100 100 0.0012 0.0013 0.0011 0.0011

60 100 0.0024 0.0025 0.0020 0.0021

30 100 0.0052 0.0053 0.0047 0.0046

15 100 0.0127 0.0110 0.0108 0.0101

From Table 5 and Figure 8 we can see that the interactive fixed effects

estimators and the least squares dummy variable estimators are all con-

sistent. The interactive fixed effects estimators remain valid even for the
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Figure 8: Simulation results for model (E.1) when N = 100, T = 60. In
each plot, the solid curves are for the true coefficient functions, the dashed
curves are for the interactive fixed effects estimators, the dash-dotted curves
are for the least squares dummy variable estimators.

general fixed effects model. However, they are less efficient than the least

squares dummy variable estimators.
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