Bounds for bilinear forms $u^T f(A)v$

Gérard MEURANT

October, 2008
1. Introduction

2. The case $u = v$

3. The case $u \neq v$

4. The block case
Introduction

We are interested in computing bounds or approximations for bilinear forms

\[u^T f(A) v \]

where \(A \) is a symmetric square matrix of order \(n \), \(u \) and \(v \) are given vectors and \(f \) is a smooth (possibly \(C^\infty \)) function on a given interval of the real line

\[A = Q\Lambda Q^T \]

where \(Q \) is the orthonormal matrix whose columns are the normalized eigenvectors of \(A \) and \(\Lambda \) is a diagonal matrix whose diagonal elements are the eigenvalues \(\lambda_i \)

\[f(A) = Qf(\Lambda)Q^T \]
\[u^T f(A)v = u^T Qf(\Lambda)Q^Tv \]
\[= \gamma^T f(\Lambda)\beta \]
\[= \sum_{i=1}^{n} f(\lambda_i)\gamma_i\beta_i \]

This last sum can be considered as a Riemann–Stieltjes integral

\[I[f] = u^T f(A)v = \int_{a}^{b} f(\lambda) \, d\alpha(\lambda) \]

where the measure \(\alpha \) is piecewise constant and defined by

\[\alpha(\lambda) = \begin{cases}
0 & \text{if } \lambda < a = \lambda_1 \\
\sum_{j=1}^{i} \gamma_j\beta_j & \text{if } \lambda_i \leq \lambda < \lambda_{i+1} \\
\sum_{j=1}^{n} \gamma_j\beta_j & \text{if } b = \lambda_n \leq \lambda
\end{cases} \]
The case $u = v$

When $u = v$, we remark that α is an increasing positive function.

How do we generate the Jacobi matrix corresponding to the measure α which is unknown?

The algorithm is the following:

- normalize u if necessary to obtain v^1
- run k iterations of the Lanczos algorithm with A starting from v^1, compute the Jacobi matrix J_k
- if we use the Gauss–Radau or Gauss–Lobatto rules, modify J_k to \tilde{J}_k accordingly. For the Gauss rule $\tilde{J}_k = J_k$
- if this is feasible, compute $(e^1)^T f(\tilde{J}_k)e^1$. Otherwise, compute the eigenvalues and the first components of the eigenvectors using the Golub and Welsch algorithm to obtain the approximations from the Gauss, Gauss–Radau and Gauss–Lobatto quadrature rules
Let n be the order of the matrix A and V_k be the $n \times k$ matrix whose columns are the Lanczos vectors. If A has distinct eigenvalues, after n Lanczos iterations we have $AV_n = V_nJ_n$. If Q (resp. Z) is the matrix of the eigenvectors of A (resp. J_n) we have the relation $V_nZ = Q$.

$$u^T f(A)u = (e^1)^T V_n^T Q f(\Lambda) Q^T V_n e^1 = (e^1)^T Z^T f(\Lambda) Z e^1 = (e^1)^T f(J_n) e^1$$

$$R[f] = (e^1)^T f(J_n) e^1 - (e^1)^T f(J_k) e^1$$

The convergence of the Gauss quadrature approximation to the integral depends on the convergence of the Ritz values to the eigenvalues of A.
Preconditioning

The convergence rate can be improved in some cases by preconditioning.

If we are interested in $u^T A^{-1} u$ and if we have a preconditioner $M = LL^T$ for A,

$$u^T A^{-1} u = u^T L^{-T} (L^{-1} A L^{-T})^{-1} L^{-1} u$$

$L^{-1} A L^{-T}$ is the preconditioned matrix to which we apply the Lanczos algorithm.
The case $u \neq v$

A first possibility is to use the identity

$$u^T f(A)v = [(u + v)^T f(A)(u + v) - (u - v)^T f(A)(u - v)]/4$$

Another possibility is to apply the nonsymmetric Lanczos algorithm to the symmetric matrix A.

The framework of the algorithm is the same as for the case $u = v$. However, the algorithm may break down.

A way to get around the breakdown problem is to introduce a parameter δ and use $v^1 = u/\delta$ and $\tilde{v}^1 = \delta u + v$. This will give an estimate of $u^T f(A)v/\delta + u^T f(A)u$.

The block case

\[I_B[f] = W^T f(A) W = \int_a^b f(\lambda) \, d\alpha(\lambda) \]

For the generation of the matrix orthogonal polynomials we use the block Lanczos algorithm. However, we have seen that we have to start the algorithm from an \(n \times 2 \) matrix \(X_0 \) such that \(X_0^T X_0 = I_2 \)

Considering the bilinear form \(u^T f(A)v \) we would like to use \(X_0 = [u \ v] \) but this does not fulfill the condition on the starting matrix.

We have to orthogonalize the pair \([u \ v] \) before starting the algorithm. Let \(u \) and \(v \) be independent vectors and \(n_u = \| u \| \)

\[\tilde{u} = \frac{u}{n_u}, \quad \tilde{v} = v - \frac{u^T v}{n_u^2} u, \quad n_v = \| \tilde{v} \|, \quad \tilde{v} = \frac{\tilde{v}}{n_v}, \]

and we set \(X_0 = [\tilde{u} \ \tilde{v}] \)
Let J^1 be the leading 2×2 submatrix of the matrix $f(J_k)$

$$u^T f(A)v \approx (u^T v)J^1_{1,1} + n_u n_v J^1_{1,2}$$

Moreover

$$u^T f(A)u \approx n_u^2 J^1_{1,1}$$

$$v^T f(A)v \approx n_v^2 J^1_{2,2} + 2(u^T v)\frac{n_u}{n_v} J^1_{1,2} + \frac{(u^T v)^2}{n_u^2} J^1_{1,1}$$
Extensions to nonsymmetric matrices

- nonsymmetric Lanczos algorithm (Saylor and Smolarski)
- Arnoldi algorithm (Calvetti, Kim and Reichel)
- Generalized LSQR (Golub, Stoll and Wathen)
- Vorobyev moment problem (Strakoš and Tichý)

