Colloquium/Seminar

YearMonth
2020 Jan   Feb  
2019 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov  
2018 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2017 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2016 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2015 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Oct   Nov   Dec  
2014 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2013 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Nov   Dec  
2012 Jan   Feb   Apr   May   Jun   Jul   Aug   Sep   Nov   Dec  
2011 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2010 Jan   Feb   Mar   Apr   May   Jun   Sep   Oct   Nov   Dec  
2009 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2008 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2007 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2006 Jan   Feb   Mar   Apr   May   Jun   Jul   Sep   Oct   Nov   Dec  
2005 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2004 Jan   Feb   Mar   Apr   May   Aug   Sep   Oct   Nov   Dec  

Coming event(s)


  • Tuesday, 25th February, 2020

    Title: Confirmation of PhD Candidature: A new convexity prior for n-dimensional shapes and its applications.
    Speaker: LI Lingfeng (李凌丰), Department of Mathematics, Hong Kong Baptist University, HKSAR
    Time/Place: 10:30  -  12:00
    FSC1217, Fong Shu Chuen Library, HSH Campus, Hong Kong Baptist University
    Abstract: In this work, we present a prior for representing convex shapes using level-set methods. Compared to other methods in the literature, the main advantage of this prior is that it works not only for 2 dimension but also higher dimensions. To test our new prior, we apply it to two different types of models, which are convex hull models and segmentation models, and design appropriate algorithms. The algorithms are based on the Alternating direction methods of multipliers and the convexity constraint can be handled easily by a projection. We then conduct numerical experiments for these two models on 2-D and 3-D cases. The results show that our convexity prior can characterize the convex shapes very accurately.