Colloquium/Seminar

YearMonth
2017 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2016 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Oct   Nov   Dec  
2015 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Oct   Nov   Dec  
2014 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2013 Jan   Feb   Mar   Apr   May   Jun   Aug   Sep   Nov   Dec  
2012 Jan   Feb   Apr   May   Jun   Jul   Aug   Sep   Nov   Dec  
2011 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2010 Jan   Feb   Mar   Apr   May   Jun   Sep   Oct   Nov   Dec  
2009 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2008 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2007 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2006 Jan   Feb   Mar   Apr   May   Jun   Jul   Sep   Oct   Nov   Dec  
2005 Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec  
2004 Jan   Feb   Mar   Apr   May   Aug   Sep   Oct   Nov   Dec  

Event(s) on November 2011


  • Tuesday, 1st November, 2011

    Title: DLS: Leonhard Euler - His Life, Personality, Discoveries and Their Impact Today
    Speaker: Prof. Rolf Jeltsch, ETHZ, Switzerland
    Time/Place: 11:00  -  12:00 (Preceded by Reception at 10:30am)
    RRS905, Sir Run Run Shaw Building, HSH Campus, Hong Kong Baptist University
    Abstract: In this lecture we attempt to give a glimpse of the genius of Leonhard Euler and provide some insight into his personality. We start with a brief review of those places where he spent extended periods of his life, namely Basel, St. Petersburg and Berlin. Euler’s output was huge, contributing in many diverse fields; his major discoveries and clever inventions will be presented. Some of his results are so fundamental that they are taught at high school. This talk will end with a few examples where Euler’s work still has a significant impact on modern-day life.


  • Friday, 18th November, 2011

    Title: Piecewise algebraic variety
    Speaker: Prof. WANG Renhong, School of Mathematical Sciences, Dalian University of Technology, China
    Time/Place: 11:30  -  12:30
    FSC1217, Fong Shu Chuen Library, HSH Campus, Hong Kong Baptist University
    Abstract: It is clear that any faces of object are combined by some surfaces, and their intersections. It is well known that Algebraic variety in the classical algebraic geometry deals with the intersection of surfaces of polynomials. This is the reason why the algebraic variety is one of the most important subjects in the classical algebraic geometry. However the most surfaces have been recently represented in piecewise polynomials, so the study of so-called “piecewise algebraic variety” defined as an intersection of surfaces represented by piecewise polynomials should be also most important in both theory and practice. In this talk I will introduce the piecewise algebraic variety, some recent results, and some open problems on the piecewise algebraic variety.


  • Friday, 25th November, 2011

    Title: DLS: 一個幾何公式的故事 --- 從扭轉、絞擰到基因、藤蔓、太陽爆發
    Speaker: Prof. Boju Jiang, Peking University, China
    Time/Place: 11:00  -  12:00 (Preceded by Reception at 10:30pm)
    SCT909, Cha Chi-ming Science Tower, HSH Campus, Hong Kong Baptist University
    Abstract: 介紹關于扭轉、絞擰與環繞數的一個幾何公式。 我們將解釋其中各幾何量的含義, 公式發現的背景, 以及在自然科學三個領域中發揮的作用。不 同自然現象的探索因共通的幾何現象而互相借鑒 的故事。


  • Tuesday, 29th November, 2011

    Title: Diffusion, Chemotaxis and Pattern Formation: A Case Study Via Topological method and Asymptotic Analysis
    Speaker: Dr. Chunhua OU, Department of Mathematics and Statistics, Memorial University of Newfoundland, Canada
    Time/Place: 11:30  -  12:30
    FSC1217, Fong Shu Chuen Library, HSH Campus, Hong Kong Baptist University
    Abstract: Pattern formation is quite common to be seen in natural environment such as the formation of animal skin spots. Besides the pioneering explanation of Alan Turing in 1952 in terms of reaction diffusion equations, recently chemotaxis is thought as another important factor in the process of pattern formation. In this talk, by a case study we analyze the effect of diffusion and chemotaxis in a volume-filling model. The existence of Turing Pattern can be proved by topological-degree method. Via an asymptotic analysis, we derive an explicit formula for the stationary patterns. Moreover, based on this explicit formula, we establish the stability criteria and find a selection mechanism of principal wave modes for the stable stationary solutions in virtue of the estimation of the leading term of principal eigenvalues. We show that all bifurcations except the one at the first location of the bifurcation parameter are unstable, and if the pattern is stable, then its principal wave mode must be a positive integer which minimizes the bifurcation parameter.