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Weekly Review 10

Last week we introduce the χ2-distribution for the goodness-of-fit test, which is a one-
population problem. Section 11.3 discusses the χ2-test for the independence of two variables
or the homogeneity of distributions in two or more populations. The data in either case can
be tabulated as a so-called R× C (contingency) table.

Let’s consider test of independence first. Under the null hypothesis that the two variables
are independent, we know that pij = pi·p·j, where pij is the proportion of cases belong to
the ith row and jth column, pi· is the proportion of cases belong to the ith row and p·j is the
proportion of cases belong to the jth column. The independence null hypothesis means that
the joint probability pij is equal to the product of two individual probabilities pi· and p·j and
hence allows us to estimate the joint probability by estimates of two individual probabilities:

p̂ij = p̂i· × p̂·j =
ith row total

grand total
× jth column total

grand total
.

To test the null hypothesis that the two variables are independent, we can calculate the
expected count (under the null hypothesis, of course) for the i-j cell in the table by

Eij = grand total× p̂ij =
ith row total× jth column total

grand total
.

After we get all the expected counts, we combine the information of the differences between
the observed counts and the expected counts (under the null hypothesis) by the following
test statistic:

χ2 =
∑
i,j

(Oij − Eij)2

Eij
=
∑ (O − E)2

E
,

which has approximately a χ2-distribution. This approximation works well if all E’s are at
least 5. I explained that the number of the degrees of freedom is (R− 1)(C − 1).

For homogeneity, the null hypothesis states that either (i) for each fixed j, pij’s are the
same for all i (where the ith row represents the data from the ith population), or (ii) for each
fixed i, pij’s are the same for all j (then it means that the jth column represents the data
from the jth population). These two statements are interchangeable because which variable
is the row variable, and consequently which variable is the column variable, is arbitrarily
chosen. In my lecture I used the formulation in case (i). Then under the homogeneity null
hypothesis, for each fixed j (i.e. for the jth column), p1j = p2j = · · · = pRj can be estimated
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by jth column total divided by the grand total, and hence the expected count in the i-j
position is the product of the estimated probability p̂·j and the ith row total, i.e.

Eij =
jth column total

grand total
× ith row total =

ith row total× jth column total

grand total
,

which is the same formula as in the test of independence. The rest of the testing procedure
is also the same and so I do not repeat here.

That is, for a givenR×C table, no matter we test independence (when we have one sample
in which everyone has two attributes) or homogeneity (when we have many populations and
one sample from each population), except the null hypothesis and the alternative hypothesis,
the testing procedures are exactly the same.

If we use our pocket calculator, the formula

χ2 =
∑ (O − E)2

E

is not too convenient because each calculated E has to be used twice (and E is not necessarily
an integer). To make the calculation a bit less laborious, we may use the formula

χ2 =
∑ O2

E
− n,

where n =
∑
O =

∑
E is the grand total. In this expression each expected count will be

used only once, leading to fewer calculation steps.

The χ2-distribution has another important application, which comes from the math-
ematical fact that if the population has a normal distribution with variance σ2, then the
distribution of the sample variance can be expressed in terms of:

(n− 1)s2

σ2
∼ χ2-distribution, (1)

where the degrees of freedom are n − 1. A normal distribution population means that in
a random sample {X1, . . . , Xn} of size n, each Xi follows N(µ, σ2). If this is true, then (as
we mentioned before) X ∼ N(µ, σ

2

n
) exactly (i.e. this is not a large-sample approximation

by the central limit theorem but is the true distribution of X even without taking the limit
n→∞).

Suppose we want to estimate the population variance σ2. The point estimate is naturally
the sample variance s2. In order to construct confidence intervals for σ2, we need to know
the sampling distribution of s2. Now we know its distribution, and so it is straightforward to
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derive the formula of confidence interval. A 100(1−α)% confidence interval for σ2 is simply

χ2
1−α/2 <

(n− 1)s2

σ2
< χ2

α/2

⇒ (n− 1)s2

χ2
α/2

< σ2 <
(n− 1)s2

χ2
1−α/2

.

Note that because the normal distribution is symmetric, we have z1−α/2 = −zα/2, but since
s2 is nonnegative, the χ2-distribution is not symmetric and so χ2

1−α/2 6= −χ2
α/2. Hence, the

values for χ2
1−α/2 for various α are tabulated together with χ2

α/2 in the χ2-table.

Suppose we want to test

H0 : σ2 = σ2
o ,

against one of the following three different alternative hypotheses:

HA : σ2 6= σ2
o , HA : σ2 > σ2

o , or HA : σ2 < σ2
o .

Again, what we need is the distribution given in (1). Thus, the natural test statistic is

χ2 =
(n− 1)s2

σ2
o

,

and if the null hypothesis is true, we know the distribution of the test statistic χ2 and we
know how large the observed χ2 is too large and how small is too small. The decision rule
can be tabulated as:

H0 HA Reject H0 at the α significance level if

σ2 = σ2
0 or σ2 ≤ σ2

0 σ2 > σ2
0 χ2 ≥ χ2

α

σ2 = σ2
0 or σ2 ≥ σ2

0 σ2 < σ2
0 χ2 ≤ χ2

1−α

σ2 = σ2
0 σ2 6= σ2

0 χ2 ≥ χ2
α/2 or χ2 ≤ χ2

1−α/2

where χ2
1−α

2
, χ2

1−α, χ2
α and χ2

α/2 all have the same degrees of freedom, namely, n− 1.

Note that this decision rule table is not the same as that for z or t; we need two different
critical values for χ2 in a two-sided test. This has been explained above when we discussed
confidence intervals for σ2. Note also unlike the goodness-of-fit or the R × C table, the
χ2-test here is not one-sided but two-sided for a two-sided alternative hypothesis.

If we want to perform a two-independent-sample t-test, we have to know whether the
two unknown variances are the same or not. Thus, when we have two independent samples
from two populations, it is a very standard procedure to test

H0 : σ2
1 = σ2

2,
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against one of the following three different alternative hypotheses:

HA : σ2
1 6= σ2

2, HA : σ2
1 > σ2

2, or HA : σ2
1 < σ2

2.

Assume the populations have normal distributions. If the null hypothesis is true, then

F =
s21
s22
∼ Fn1−1, n2−1-distribution,

where the first subscript indicates that the numerator of F has n1−1 degrees of freedom and
the second subscript indicates that the denominator has n2− 1 degrees of freedom. Once we
know the distribution, we can find the critical values from the corresponding table to deter-
mine whether an observed F is too large or is too small. The F -distribution is obviously not
symmetric, as it is a ratio of two nonnegative values. Thus, we need two critical values for
a two-sided test, and the decision rule for the F -distribution has the same form as that for
the χ2-distribution, i.e.

H0 HA Reject H0 at the α significance level if

σ2
1 = σ2

2 or σ2
1 ≤ σ2

2 σ2
1 > σ2

2 F ≥ Fα, n1−1, n2−1

σ2
1 = σ2

2 or σ2
1 ≥ σ2

2 σ2
1 < σ2

2 F ≤ F1−α, n1−1, n2−1

σ2
1 = σ2

2 σ2
1 6= σ2

2 F ≥ Fα/2, n1−1, n2−1 or F ≤ F1−α/2, n1−1, n2−1

Interestingly, if we want to know whether s21/s
2
2 is too small, it is equivalent to ask whether

s22/s
2
1 is too large, where

s22
s21
∼ Fn2−1, n1−1-distribution.

Thus, we do not need a separate table for F1−α because

F1−α, df1, df2 =
1

Fα, df2, df1
,

(please pay particular attention to the change of the two values of the degrees of freedom)
or equivalently, we have

s21
s22
≤ F1−α, n1−1, n2−1 ⇔ s22

s21
≥ Fα, n2−1, n1−1.

Thus, the decision rule table can be re-written as
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H0 HA Reject H0 at the α significance level if

σ2
1 = σ2

2 or σ2
1 ≤ σ2

2 σ2
1 > σ2

2
s21
s22
≥ Fα, n1−1, n2−1

σ2
1 = σ2

2 or σ2
1 ≥ σ2

2 σ2
1 < σ2

2
s22
s21
≥ Fα, n2−1, n1−1

σ2
1 = σ2

2 σ2
1 6= σ2

2
s21
s22
≥ Fα/2, n1−1, n2−1

or
s22
s21
≥ Fα/2, n2−1, n1−1

Be careful with the order of the two values of the degrees of freedom in the critical values.
Also, as I mentioned, for the two-sided alternative, we only have to consider the ratio of
the larger sample variance to the smaller sample variance, i.e. consider only the larger one

between
s21
s22

and
s22
s21

, because the smaller one is always not greater than 1 and so of course is

not greater than the critical value Fα/2, which is always greater than 1.

Note that both the χ2-test and the F -test are not robust , i.e. they are sensitive to de-
partures from the normality assumption. That is to say, inferences drawn from samples (no
matter n is small or large) can be seriously misleading when the population distribution
departs from normality. Thus, if the population does not have a normal distribution, we
cannot use the χ2-distribution or the F -distribution. (In contrast, the t-test is robust when
the sample is reasonably large.)

Chapter 12 is devoted to a famous statistical analysis, called the Analysis of Variance, or
ANOVA for short. The problem to tackle is: for k populations following normal distributions
with population means µ1, µ2, . . ., µk, we test at the α significance level the hypothesis that
all the means are the same. That is to say, we test

H0 : µ1 = µ2 = · · · = µk

HA : µi 6= µj for some i 6= j

The ANOVA is famous and widely used because in many contexts we will face the following
situation: we apply k different treatments (e.g. different medicines) to k groups, assuming
each group is a sample taken independently from the same population (e.g. patients suffering
from the same illness) so that if there are any differences between groups, the differences are
caused by the different treatments they received. We discussed that if we want to (actually,
we have to) control the type I error probability for this yes-no question, just one question, it
is more appropriate to test the null hypothesis by just one test, instead of testing the equality
of each pair of population means by applying repeatedly the two-independent-sample t-tests.
[How many times? Ans:

(
k
2

)
.] Thus, we need a new method.

Some weeks ago we already discussed how to test the above hypotheses if k = 2 by using
the two-independent-sample t-test, in which we have to ask whether the two variances σ2

1 and
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σ2
2 are the same or not; if they are the same, we simply pool the data to get one estimate of

the common unknown variance, otherwise we have to estimate two unknown variances and
have to use an approximation formula for the degrees of freedom.

For k ≥ 3, we still have to know whether the variances are the same or not. Here we only
consider the case that all variances are the same, and we still have to estimate this common
value. The idea of the analysis is to estimate the common variance σ2 by two methods,
one assumes the null hypothesis is true while the other does not make such an assumption,
and then we compare these two estimates to see if they differ significantly. That’s why this
approach is called analysis of variance.

Now, given k samples of data, for each sample we calculate its sample mean and sample
variance. Then we can estimate the unknown common variance by the following argument.

First, assume the null hypothesis is true, the k sample means will then have the same
mean µ (because of the null hypothesis) and the same variance σ2 (assumption used in ANO-
VA), and hence the same (normal) distribution. We know from the Central Limit Theorem
that for a sample of size n taken from the population N(µ, σ2), the sample mean will follow:

X ∼ N
(
µ,

σ2

n

)
.

[Be careful: N(µ, σ2) is the distribution of the population, while N
(
µ, σ

2

n

)
is the distribution

of X.] So, if we have many sample means {x1, . . . , xk} of independent samples of size n from
the population N(µ, σ2), then the sample variance, denote by s2x, of these sample means will
be an estimate of σ2/n (remember: though the statement is true no matter what the value
of µ is, this is true only if all µk’s are equal). That is to say, if the null hypothesis is true,
then s2x is an estimate of σ2/n; in other words, ns2x is an estimate of σ2.

Second, we calculate the sample variance for each of the k samples and get k sample
variances {s21, . . . , s2k}. Each of these k sample variances is an estimate of σ2, no matter
whether the population means are the same or not. Because the sample sizes of these k
samples are the same, each s2i is equally trustworthy. Thus, we take the mean of them,
denoted by s2, and this mean will be another estimate of σ2, which does not require the
assumption that all µk’s are equal.

We presented the numerical calculation of Example 12–2, in which we estimate the com-
mon variance by the two different methods explained above. Next week we will explain how
to use these two different estimates of σ2 to decide whether we reject H0 or not and then
generalise the above technique to the case that the sample sizes are different. Afterwards,
we will move to the next chapter for linear regression, which is the starting point of all, or
almost all, advanced statistical analyses.

Cheers,
Heng Peng
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