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Weekly Review 11

In the last review when we wanted to test

H0 : µ1 = µ2 = · · · = µk

HA : µi 6= µj for some i 6= j

under the assumption that σ2
1 = · · · = σ2

k = σ2, we obtained two different estimates of the
unknown σ2. The first one is ns2x and the second one is s2.

If the first estimate ns2x is much smaller than the second one s2, this tells us that the
sample means x1, . . ., xk have little variation (because s2x is a measure of variation in these
sample means), and so it is likely that the population means are the same, i.e. it is likely
that the null hypothesis is true. In contrast, if the first estimate is much larger than the
second one, then the variation among the sample means is larger than expected under H0,
meaning that the variation comes not only from σ2 but probably also from some variation in
the true means (i.e. µi are not the same and hence their estimates xi are estimating different
numbers). Hence, we will reject the null hypothesis if the ratio of the first estimate to the
second estimate is much larger than 1. The distribution of this ratio is Fk−1, k(n−1), where the
numerator degrees of freedom come from that of s2x, i.e. the value of the numerator degrees
of freedom is equal to k−1, and the denominator degrees of freedom come from s21 + · · ·+s2k,
i.e. the value of the denominator degrees of freedom is k(n− 1). Thus, we know how large is
too large. (How large? Ans: when F ≥ Fα, k−1, k(n−1).) Note that it is a one-sided test even
though we have a two-sided alternative.

In order to allow us to generalise the above approach to k samples of different sample
sizes, the procedure for doing these two estimation is summarised into the so-called ANOVA
table:

Source of degrees of (Sum of Squares) (Mean Square)
variation freedom SS MS F

Between k − 1 SSB MSB =
SSB

k − 1

MSB

MSW

Within k(n− 1) SSW MSW =
SSW

k(n− 1)

Total kn− 1 SST
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where
SST =

k∑
i=1

n∑
j=1

(xij − x..)2,

SSB =
k∑
i=1

n∑
j=1

(xi. − x..)2 = n ·
k∑
i=1

(xi. − x..)2,

SSW =
k∑
i=1

n∑
j=1

(xij − xi.)2 = SST − SSB,

in which
xi. = xi+ =

Ti.
n
, x.. = x++ =

T..
kn
,

and
Ti. = Ti+ =

∑
j

xij, T.. = T++ =
∑
i

∑
j

xij,

i.e., xi. is the mean of the ith sample, x.. is the mean of all data from k samples, Ti. is the
total (the sum) of the ith sample, and T.. is the total (the sum) of all data.

Note that I dislike that the textbook uses n to denote the total sample size.
Here and in many books, n denotes the sample size of each sample.

Thus,

MSB = n ·
∑k

i=1(xi. − x..)2

k − 1
= ns2x

gives us an estimate of σ2 if the null hypothesis is true. On the other hand,

MSW =

∑k
i=1

∑n
j=1(xij − xi.)2

k(n− 1)
=

k∑
i=1

1

k

{∑n
j=1(xij − xi.)2

n− 1

}
=

k∑
i=1

s2i
k

= s2

(where s2i denotes the sample variance of the ith sample) is the mean of the sample variances,
which gives us another estimate of σ2 that does not require the null hypothesis.

If the F -ratio is equal to or greater than Fα, k−1, k(n−1), then the variation among the
sample means is too large and so we reject the null hypothesis at the α significance level.

Note that in many books, “Between” and “Within” are called “Treatments” and “Er-
ror”, respectively, because if each group receives a different treatment, then between-group
variation is the same as between-treatment variation; the within-group variation comes from
randomness in each group and hence is considered as variation from random errors. Conse-
quently, SSB and SSW will then be denoted by SS(Tr) and SSE, respectively.

Please go through the numerical calculation shown in Section 12.2 carefully.
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The above formulae can also be expressed as

SST =
∑∑

x2ij −
T 2
..

kn
=
∑∑

x2ij − knx2..,

SSB =
1

n

∑
i

T 2
i. −

T 2
..

kn
= n

∑
i

x2i. − knx2..,

SSW = SST − SSB,

which will make the numerical calculation easier.

In the old time when ANOVA was done by pens and papers with pocket calculators, the
ANOVA table would be very helpful and such a table becomes a standard procedure so that
nowadays all computer software packages will report the full ANOVA table, even though our
interest is usually in the test statistic value only.

Now it is straightforward to modify the ANOVA table and the corresponding formulae
for unequal sample sizes cases by changing n to ni and kn to

∑k
i=1 ni:

Source of degrees of
variation freedom SS MS F

Between k − 1 SSB MSB =
SSB

k − 1

MSB

MSW

Within
∑k

i=1(ni − 1) SSW MSW =
SSW∑k

i=1(ni − 1)

Total
∑k

i=1 ni − 1 SST

where

SST =
k∑
i=1

ni∑
j=1

(xij − x..)2 =
∑∑

x2ij −
T 2
..∑
i ni

,

SSB =
k∑
i=1

ni∑
j=1

(xi. − x..)2 =
k∑
i=1

ni(xi. − x..)2 =
∑
i

T 2
i.

ni
− T 2

..∑
i ni

,

SSW = SST − SSB.

If k = 2, can we apply ANOVA instead of two-independent-sample t-test? The answer
is yes if the alternative hypothesis of the t-test is two-sided. For marginal cases (i.e. the
test statistics are close to the critical values), would it be possible that ANOVA and two-
independent-sample t test give different conclusions? No! Mathematicians tell us that when
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k = 2, the F -statistic in ANOVA is in fact equivalent to the square of the t-statistic of
two-independent-sample t-test (under the equal variance assumption), and the critical value
of F with numerator degrees of freedom k − 1 = 1 and denominator degrees of freedom∑k

i=1(ni − 1) = n1 + n2 − 2 is the square of that of t with degrees of freedom n1 + n2 − 2 (I
encourage you to check this equality in the F -table and t-table yourselves). Thus, the two
testing procedures are equivalent when k = 2. The advantage of t-test is that the alternative
hypothesis can be one-sided but the alternative hypothesis of ANOVA must be two-sided.

Note that the χ2-table and the F -tables do not tabulate the critical values for all different
degrees of freedom. When the exact critical values are not available from the tables given,
if we are lucky, then we may apply some inequality arguments to draw conclusions without
any approximation. In class, I showed you how to do this and I do not repeat it here. This
concludes Chapter 12.

Perhaps you have already noticed that after finishing Chapters 9 and 10, we had proceed-
ed with quicker and quicker pace because now you should have already acquired the necessary
basic ideas of statistical inferences, and what we have learnt in Chapters 11 and 12 (as well as
Chapter 15 and the confidence interval and hypothesis testing part in Chapter 13) are only
technically more sophisticated procedures but not conceptually more difficult ideas. If you
understand the philosophy behind those simple tests of hypotheses concerning one mean or
two means, there is nothing really new in concept for you to understand; instead, there are
only new mathematical formulae and computational procedures for you or waiting for you to
get familiar with them. Of course, it does not mean that the final exam will be easy; for each
question, you have to choose the appropriate method and this is the most challenging part;
once the appropriate method is identified, then the implementation of the chosen method
is entirely mechanical (but please make sure you can implement each method correctly; it
would be a pity if you choose the appropriate method [the most difficult part] but fail to
implement it correctly, as I could not give you marks if you fail to carry out the required
statistical procedure).

The idea of linear regression, the theme of Chapter 13, is that we have a sample of paired
data {(xi, yi), i = 1, . . . , n} (i.e. a sample of n points with x- and y-coordinates) and we want
to find a straight line that describes the relationship between x and y. The model we have
is

y = α + βx+ ε,

where ε (epsilon) represents random errors. That is to say, we have errors in the values of y
but not the values of x, and so it makes sense to find a line

ŷ = a+ bx

that minimises some function of the differences of the observed y and the predicted ŷ.
(Finding a line means finding its intercept a and slope b.) A natural way is to minimise
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∑n
i=1(yi − ŷi)2, i.e. to minimise

∑n
i=1(yi − a− bxi)2 by finding some optimal a and b. Using

simple calculus argument (which will be demonstrated in MATH2205 Multivariate Calculus
next semester) or using orthogonal projection argument (which will soon be demonstrated
in MATH2207 Linear Algebra) [if you don’t know calculus or linear algebra, it does not
matter], we can obtain

b =
SSxy
SSxx

and a = y − bx,

where

SSxy =
n∑
i=1

(xi − x)(yi − y) and SSxx =
n∑
i=1

(xi − x)2.

The symbols SSxy and SSxx are easy to understand: SS stands for sum of squares (as in
the ANOVA table), whilst the subscript x represents (xi − x) and y represents (yi − y) so
that the double subscript xy in SSxy represents the cross product terms (xi−x)(yi− y) and
the double script xx in SSxx represents the squared terms (xi − x)2.

This method of estimation is called the least squares estimation (LSE for short). You
should read the instruction of your own scientific calculator to see how to obtain a and b by
using the LR mode (LR stands for Linear Regression) or the Lin option under the Reg mode.
In the exam, it is possible that I would ask students to report these two values directly from
their calculators without showing the intermediate calculation steps. Don’t think it is a
näıve question. For a given story, it may not be straightforward to determine which variable
is x and which variable is y.

The estimators a and b give us point estimates only, and of course we would like to be
able to construct confidence intervals for and perform tests of hypotheses concerning the two
unknown parameters α and β.

Alright. What do we have to know in order to construct confidence intervals or carry out
hypothesis testing? Yes, the distributions. And whose distributions? Yes, the distributions
of the estimators. Why are the estimators random? Where does the randomness come from?
From the random error ε! If ε ∼ N(0, σ2), then it can be shown

a ∼ N

(
α, σ2

{
1

n
+

x2

SSxx

})
and b ∼ N

(
β,

σ2

SSxx

)
. (1)

These results will be proved rigorously next year, in MATH3805 Regression Analysis. The
two ugly formulae for variances will be replaced by much more elegant matrix formulae.
In fact, next year you will see how beautiful the mathematics for regression is, when we
formulate and solve the problem in terms of matrices.

I explained that σ can be estimated by the sample standard deviation of residuals

ei = yi − ŷi,
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which are estimates of the random error ε. However, the sample deviation of ei does not
involve the sample mean e because we know the true population mean of ε is zero, and so we
need not estimate it (a known value) by e; as a matter of fact, e = 0 anyway. Nevertheless,
two degrees of freedom are still lost because in the calculation of ŷi, we estimated the unknown
parameters α and β by the estimators a and b. Thus, the sample standard deviation of ei,
denoted by se, is:

se =

√∑
e2i

n− 2
=

√∑
(yi − ŷi)2
n− 2

=

√
SSyy − bSSxy

n− 2
.

Let me show you here (but not in class) why the last equality (solely for ease of computation)
holds:∑

(yi − ŷi)2 =
∑

(yi − y + y − ŷi)2 =
∑

(yi − y)2 +
∑

(y − ŷi)2 + 2
∑

(yi − y)(y − ŷi)

=
∑

(yi − y)2 +
∑

(y − a− bxi)2 + 2
∑

(yi − y)(y − a− bxi)

=
∑

(yi − y)2 +
∑
{y − (y − bx)− bxi}2 + 2

∑
(yi − y){y − (y − bx)− bxi}

=
∑

(yi − y)2 +
∑

(bx− bxi)2 + 2
∑

(yi − y)(bx− bxi)

=
∑

(yi − y)2 + b2
∑

(xi − x)2 − 2b
∑

(yi − y)(xi − x)

= SSyy + b2SSxx − 2bSSxy = SSyy + b
SSxy
SSxx

SSxx − 2bSSxy

= SSyy − bSSxy.

Of course from the last two rows we can see that bSSxy = b2SSxx.

Consequently, 100(1 − α)% confidence intervals for the intercept and the slope, respec-
tively, are

a± tα/2 · se ·

√
1

n
+

x2

SSxx
,

b± tα/2 ·
se√
SSxx

,

where the number of degrees of freedom of tα/2 is, of course, equal to n − 2. Note that α
in the above confidence interval formulae are not the intercept of the regression line but is,
say, 0.05 if we consider a 95% confidence interval. It looks a bit confusing but it is the usual
practice to denote the significance level, the loss in confidence and the intercept of the model
of the linear regression by α (some authors will use β0 to denote the intercept and β1 to
denote the slope in regression). However, if you understand what we are doing, in fact no
confusion is possible.
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Sometimes we are interested not only in the confidence interval for the slope or the
intercept individually but also in the confidence interval for the predicted value of y when
e.g. x = x0. There are two formulae, one is for the confidence interval for estimating the
mean of y when x = x0:

(a+ bx0)± tα/2 · se ·

√
1

n
+

(x0 − x)2

SSxx
,

and another one for the confidence interval for predicting an individual y when x = x0:

(a+ bx0)± tα/2 · se ·

√
1 +

1

n
+

(x0 − x)2

SSxx
.

The difference in the formulae is easy to understand. Intuitively it is clear that if we want to
predict an individual y, there is more uncertainty than the estimation of the mean, because
an individual y will include a random error ε, which will however be gone when we take the
mean of y. Thus, a 95% confidence interval for an individual y has to be wider than a 95%
confidence interval for the mean of y, even though they will be centred at the same mid-point
(i.e. they have the same point estimate). More precisely, for predicting an individual y, there
is an error term ε added to the point a+ bx0 and the variance of ε is σ2, whilst for the mean
of y this extra error term vanishes, because the mean of ε is zero. Thus, when the variance

of the estimated mean of y is σ2{ 1
n

+ (x0−x)2
SSxx

}, the variance of an individual predicted y

is σ2{1 + 1
n

+ (x0−x)2
SSxx

}, which results from adding σ2 (from ε in every individual y) to the
variance of the estimated mean of y.

Note that the term (x0 − x)2 in these two formulae suggest that confidence intervals are
the narrowest when x0 = x, i.e. when x0 is somewhere in the middle of the observed x-values,
and the further away x0 from x, the wider the confidence intervals, because (x0 − x)2 are
getting larger. This also alerts us that extrapolation (extending the regression line beyond
the range of observed x-values) is not recommended because confidence intervals would be
very wide; moreover, we in fact do not know whether the relationship between x and y is still
well-described by our regression line when we go beyond our observations; thus, extrapolation
is risky.

We also discussed how to carry out hypothesis testing for α and β. To test the null
hypotheses that α = α0 and β = β0, respectively, from the normal distributions of a and b
given in (1) above, we can use the test statistics:

t =
a− α0

se

√
1
n

+ x2

SSxx

and t =
b− β0

se√
SSxx

,

respectively. Each of them, under the null hypothesis, has a t-distribution with degrees of
freedom n− 2.
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After estimating the regression line, we should determine how well such a line actually
describes the relationship between x and y (i.e. how strong the relationship is). That is the
purpose of the coefficient of determination, denoted by R2.

A simple algebraic calculation shows that∑
(yi − y)2 =

∑
(yi − ŷi + ŷi − y)2 = · · · =

∑
(yi − ŷi)2 +

∑
(ŷi − y)2. (2)

The total sum of squares
∑

(yi − y)2 tells you the total variation of y. The value y is not
a constant because there are two sources of variation, namely the vertical variation comes
from random error ε and the horizontal variation comes from variation in the values of x.
The first term on the right-hand side of equation (2), called the residual sum of squares ,∑

(yi − ŷi)2, is the sum of the squares of the vertical distances (the residuals) from each yi
to the regression line and hence is the vertical variation. It is also known as error sum of
squares , denoted by SSE . It is also the sum that we want to minimise in the least squares
estimation of the slope and the intercept of the regression line. Thus, the smaller the residual
sum of squares, the smaller the vertical variation and hence the better the regression line
describing the relationship (no vertical variation means the line can perfectly describe the
relationship, as all points are lying on the line). Since the sum of the two terms on the
right-hand side of equation (2) is the total variation, which is fixed for a given sample, the
smaller the first term, the larger the second term. Thus, the larger the second term on
the right-hand side of equation (2), called the regression sum of squares (SSR for short),∑

(ŷi− y)2, the better the regression line describing the relationship. However, the variation
in ŷi (i.e. the horizontal variation of yi) is entirely under my ‘control’ because ŷi are all
lying on the regression line and their variation comes from and only from the variation in xi
(the vertical variation is entirely out of my ‘control’ because it comes from random errors,
which are not controllable). That is, this SSR is the variation that can be explained by the
regression line.

If we divide the regression sum of squares by the total sum of squares, we will get a
nonnegative ratio that is at most 1:

R2 :=

∑
(ŷi − y)2∑
(yi − y)2

,

which is called the coefficient of determination.

A large coefficient of determination means a strong relationship between x and y. Next
week we will give a more precise interpretation of its numerical value and then introduce a
related notion called coefficient of correlation.

Next week we will finish Chapter 13 in 30 minutes or so and then move to Chapter 15
(we will skip Chapter 14). The pdf file of Chapter 15 can be downloaded from the homepage
of the book (though it is free to download from the publisher, I do not have the copyright to
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re-distribute it, and so please download the file directly from the publisher; the link can be
found in the course homepage). Chapter 15 will be our last chapter! Though the last, this
chapter will still introduce new statistical arguments and new tests developed from the same
idea that we have acquired in previous chapters. Believe me, we still have a lot to learn! So,
please make sure that you are not lagging behind too much.

Cheers,
Heng Peng
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