
MATH2206 Prob Stat/Feb.2018

Weekly Review 5

This week we had three hours. We discussed in details the normal distribution and
concluded our discussion on probability by building a bridge between the world of probability
and the realm of statistics, namely the central limit theorem, presented in Chapter 7. The
example class shows some binomial and Poisson examples and you can see that to make
such questions a bit more challenging, it is typical that the probability p in binomial or the
parameter λ in Poisson is not given explicitly but is a value that you have to calculate from
the information given in the question.

Suppose X ∼ N(µ, σ2). The probability density function of X is given by

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 for all x.

To get the probability Pr(X ≤ x), we have to find the area under the curve of f(x).

For those who know calculus, the area is equal to the integral

Pr(X ≤ x) =

∫ x

−∞
f(u) du.

If you try to do the integration, you will soon find that there is no closed form solution (i.e.
no nice mathematical formula can be the solution).

If X ∼ N(µ, σ2) and we want to calculate Pr(X ≤ x), what we have to do is to consider
another random variable Z ∼ N(0, 1) and then

Pr(X ≤ x) = Pr

(
Z ≤ x− µ

σ

)
.

Therefore, only one table is sufficient for all normal distributions and this important special
normal distribution N(0, 1) is called the standard normal distribution.

Now, we can see that the calculation of probability for normal distribution is straight-
forward and routine. Let me describe it as follows. Suppose X ∼ N(µ, σ2), we calculate
Pr(X ≤ x) mechanically by the following steps:

1. calculate z = (x− µ)/σ (correct to two decimal places);

2. turn to Table IV (the very first piece of paper of the textbook) and check the entry
corresponding to the numerical value of z.
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For example, consider z = 2.74. First, find the row starting with 2.7 and then find the column
with heading .04, we get 0.9969. Please, do not write 2.74 = 0.9969; it is ridiculously absurd!
The figure on the top right corner of the table tells you that the value 0.9969 is the area
under the curve to the left of z = 2.74, and so a proper way to relate these two values is:

Pr(Z ≤ 2.74) = 0.9969.

Another example, consider z = −1.37. First, find the row starting with −1.3, and then
find the column with heading 0.07, we get 0.0853.

However, the page containing the table for negative z is in fact not necessary and will
not be provided in the examination. Consider, say, z = 1.37, we get

Pr(Z ≤ 1.37) = 0.9147,

and because of symmetry,

Pr(Z ≤ −1.37) = Pr(Z ≥ 1.37) = 1− Pr(Z ≤ 1.37) = 1− 0.9147 = 0.0853.

I would advice you to sketch the curve of the normal distribution and indicate the area you
want to calculate first. Then get the value from the table for positive z and see how you can
get the answer you want from this value. The fundamental relations are:

Pr(a ≤ Z ≤ b) = Pr(Z ≤ b)− Pr(Z ≤ a),

Pr(Z ≥ a) = Pr(Z > a) = 1− Pr(Z ≤ a) = Pr(Z ≤ −a),

Pr(Z ≥ −a) = Pr(Z ≤ a),

Pr(Z ≥ 0) = Pr(Z ≤ 0) = 0.5.

However, do not try to memorise them by heart. Always sketch the curve first and then do
the corresponding arithmetics.

You must know how to use the normal table. In the exam you must use the tables
provided, in which I may intentionally change the entries a little bit to check whether
you are really using the tables provided or you just have a super-calculator with you. Marks
will be deducted if you are not using the tables provided.

Sometimes we are interested in getting a cutoff value, say a, where the area corresponding
to Pr(Z ≤ a) is some pre-specified value given in the question. For example, to find the
cutoff value for the top 2.5%, we have to check what value of a will give Pr(Z ≤ a) = 0.975,
and from the table we get a = 1.96.

One interesting application of the normal distribution is that it can be used to approx-
imate the binomial distribution when n is large and p close to 0.5. (Question: Why do we
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want to do so?) Practically, we may use Y ∼ N
(
np, np(1− p)

)
to approximate X ∼ B(n, p)

when np > 5 and n(1−p) > 5. Please note that the continuity correction is important when
we approximate a discrete distribution by a continuous distribution. More precisely, because
X must be integers but Y is not, we have e.g.

Pr(X ≤ 4) = Pr(X ≤ 4.5) ≈ Pr(Y ≤ 4.5), Pr(X < 4) = Pr(X < 3.5) ≈ Pr(Y < 3.5),

Pr(X ≥ 4) = Pr(X ≥ 3.5) ≈ Pr(Y ≥ 3.5), Pr(X > 4) = Pr(X > 4.5) ≈ Pr(Y > 4.5).

To get e.g. Pr(Y ≤ 4.5), you do exactly the same as before, i.e.

Pr(Y ≤ 4.5) = Pr

(
Z ≤ 4.5− np√

np(1− p)

)
,

where Z has the standard normal distribution N(0, 1). Be careful: the denominator is√
np(1− p), because σ =

√
np(1− p). Forgetting the square root sign is a common mistake

among careless students (and professors).

I mentioned (but did not work out any example) that the normal distribution can also
be used to approximate Poisson when λ is very large, because Poisson itself can be used to
approximate binomial for large n (and small p). Of course the continuity correction is still
needed because Poisson is also discrete.

However, be careful! If the question is talking about a normal random variable itself, then
you should not make the ±0.5 continuity correction; the continuity correction is needed when
and only when you are using a continuous distribution (such as the normal) to approximate a
discrete distribution (such as the binomial or the Poisson). The purpose of this correction is
to make a discrete distribution closer to a continuous distribution so that the approximation
has a smaller error, and that is exactly the reason why this ±0.5 adjustment is called the
continuity correction. When a question concerns not a discrete but a continuous distribution,
then we are not approximating any discrete distribution, and of course making any continuity
correction is inappropriate.

That is the end of Chapter 6. Chapter 7 builds a bridge from probability to statistics.

I have repeatedly mentioned the following in the early weeks of this semester. Suppose
we have a very large population and we want to know some important parameters such as
its mean µ and its variance σ2. However, in real life situations, because of limited resources
and limited time, we are not able to study each individual of the very large population.
What we can do is to take a random sample of size n and then study each individual in this
sample. From the information obtained from this sample, we want to estimate the unknown
population parameters µ and σ2.

The first parameter we studied is the population mean µ. Naturally, if we have a random
sample {X1, . . . , Xn}, then we can calculate the sample mean X, which is an example of
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what we called a statistic (generally, a statistic is a number calculated from a sample, e.g.
sample mean, sample median, sample variance, sample maximum, etc.). Then we use X to
estimate µ. Therefore, we say that X is an estimator of µ. If the sample mean of a sample is,
say, 151, and we simply say that my estimate of µ is 151. That is to say, the estimator X is a
random variable, whilst a particular realisation of it, which is a number, generically denoted
by the lower case x, is an estimate. However, it is not clear how accurate and how precise an
estimate is. Thus, we would like to tell the reader the possible size of error. When we say
“possible size”, obviously it has something to do with probability. To calculate probability
related to X, we have to know something about X. What is that ‘something’? We have to
know its distribution. It has a distribution because the sample is taken randomly and we
can take samples repeatedly. If I take another sample, I may get a different sample mean;
and if I take 100 samples, I will have 100 sample means, and they are not necessarily the
same value. The distribution of a statistic, such as the sample mean, is generally called a
sampling distribution.

Since samples are random, the sample mean X is a random variable, and consequently
we can talk about its distribution and in particular, its mean and its variance. It happens
that the mean µX and the variance σ2

X
of the sample mean X of a random sample of size n

are related to the population mean µ and the population variance σ2 in a very nice way:

µX = µ, (1)

σ2
X

=


σ2

n
for an infinite population,

σ2

n

N − n
N − 1

for a finite population of size N ,

(2)

where the standard deviation of X, denoted by σX , is also (in fact, more commonly) called
the standard error of the mean. Though in practical applications we often have populations
of finite sizes, to make life easier (well well, easier 6= easy), in this course we only consider
an infinite population and so N =∞; consequently, the standard error is:

σX =
σ√
n
.

Note that I did not explain mathematically why equations (1) and (2) hold, but our intuition
suggests that we would be happy if they are true, and I simply told you without any proofs
that, luckily, they are really true.

In particular, if n = 1, i.e. we just randomly take one number, denoted by X1, from the
population, the sample mean X of this sample is of course the same as X1, whose mean is µ
and variance is σ2/1 = σ2, which are the same as the population mean and the population
variance. Taking a sample of size n can be interpreted as taking n samples, each of size 1,
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independently, and then pooling all these together to form one sample of size n. That is to
say, in the sample {X1, . . . , Xn}, each individual Xi (no matter what the value i is) plays
an equally important role as the others do; each Xi has the same mean µ and the same
variance σ2, and in fact, all X1, . . ., Xn have the same distribution, because each of them is
sampled from the same population in exactly the same way. We usually say that they are
independent and identically distributed , or i.i.d. for short.

Knowing the mean and the variance is not enough; we have to know its sampling distribu-
tion. Section 7.3 states the most important theorem in Statistics, the central limit theorem,
which says that

Central Limit Theorem The sample mean X follows approximately the normal distri-
bution with mean µX = µ and variance σ2

X
= σ2

n
if n is large, i.e.

Z =
X − µ
σ/
√
n

has approximately the standard normal distribution when n is large, no matter what the
distribution ofXi is. However, in particular, if the population itself has a normal distribution,
then X follows exactly, no matter whether n is large or small, the normal distribution.

(Often, people will consider that when n ≥ 30, then n is large enough to guarantee a
reasonably good approximation by the normal distribution.)

The central limit theorem explains why we have to study the normal distribution before
we have a deeper discussion of statistical inference. This is the only topic in Chapter 7 that
I would like you to understand and also is the end of our appetizer.

Now, we are ready to enjoy the main course of our dinner, namely, statistical inference,
which includes estimation and hypothesis testing .

The first estimation problem addressed is the estimation of the population mean µ by
the sample mean X. Clearly, because X follows the normal distribution, Pr(X = µ) = 0.
Therefore, it is more sensible to talk about errors. Perhaps we would like to know, for a
given value of acceptable error, say a, what is the probability Pr(|X − µ| ≤ a)? This is a
simple question on probabilities of a normal distribution, is not particularly exciting here.
In applications, when we do not know what µ is, a more natural question is: how large is
the error? However, since X is normally distributed, mathematically speaking, any value is
possible. We only know that extremely large or extremely small values are unlikely but still
possible. Therefore, if we do not know what µ is and if we want to use X to estimate this
unknown µ, it is more useful if you can tell me something like: with say 95% chance the
mean µ is some value between X ± a.

Next week we will see how to get the value a above. We will then consider the estimation
of the parameter p, denoting the proportion of successes in a population containing solely
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successes and failures (e.g. males and females, yes and no, or pass and fail, etc.).

Cheers,
Heng Peng
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