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Weekly Review 7

Last week we discussed the question: Is u # po? This leads to the two-sided alternative
hypothesis:

Ho: po = po
Ha:p # o

by using z- or t-table for the case that ¢ is known and that ¢ is unknown and estimated by
s. Whenever a testing procedure uses t-table, it is often called a t-test.

Now consider the question: Is p greater than pug? Statistically, we test a one-sided
alternative hypothesis:

Ho: p < po
Ha:p> po

I have emphasised that the null hypothesis must contain the equality sign. Thus, no
matter the question is asking: “Is u > po?” or asking: “Is p < pg?”, the null hypothesis
must be u < . Also, this means that we have to be very careful with the English language
here: the phrase “greater than/less than” does not contain the equality sign and hence is
the alternative hypothesis, while “not less than/not greater than“ contains the equality sign
and hence is the null hypothesis. In other words, when you have two hypotheses, the one
containing the equality sign will be the null, and the other one will then be the alternative.

In the same spirit as the argument used above, we first assume Hy is true and then check
whether the test statistic calculated from the given sample is too unusual under Hy. If yes,
then we reject Hy. How unusual is too unusual? It is too unusual when 95% of the time
[or 100(1 — @)% of the time] it would not happen. In this story, depending on whether o is
known or is unknown respectively, it is too unusual (or too extreme) if

_ T~ o _ T~ Ho
o/vn s/v/n

is too large. Although we say we assume Hj is true, we use only po in the calculation
because if using p in the test statistic, it is still too large, then any other values less than
o (i.e. any other values satisfying Hg) would only give us even larger test statistic. Thus,
assuming p = o is assuming the worst scenario or assuming the value closest to H4. This
will lead to the most conservative way to measure the strength of the evidence. If under
this worst scenario (i.e. evaluated in the most conservative way) we still find this evidence
strong enough to reject Hy, then we can comfortably reject Hy, because using other values
satisfying Hy in the test statistic will result in even larger test statistic values.
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OK, I still have not yet answered how large is too large. To answer this question, we have
to know the distribution of the test statistic and once we know it, then it is straightforward:
if it follows the standard normal (which happens when o is known), then reject Hy at the «
significance level whenever z > z,; if it follows the ¢-distribution with degrees of freedom n—1
(it happens when o is unknown and is estimated by s), then reject Hy at the « significance
level whenever ¢t > t,. It is because by the definition of z, and t,, we know that 100(1 — )%
of the time the test statistic would be on the left-hand side of the critical value z, or t,.
Thus, if the event {z > z,} or {t > t,} really happens, then it is too unusual (having
chance no more than a) under Hy, and so it is reasonable to conclude that the calculation
of the probability is actually incorrect, because if the probability were really so small, the
event should not have happened. The only place where the calculation can be wrong is the
assumption that Hy is true. Thus, rejecting Hy is a very reasonable conclusion.

Notice that in the above procedure when we say we assume Hg: 1 < pg, as a matter of
fact the calculation assumes only p = o and so the testing procedure for a composite null
hypothesis hypothesis (specifying a range of possible values)

Ho:p < po
Ha:p> po

will be identical to the testing procedure for a simple null hypothesis (specifying only one
single possible value)

Ho @ p=pio
Ha:p>po

The only difference is in the meaning of the significance level. For the latter (simple null
hypothesis), the significance level « is equal to the probability of committing type I error,
while for the former (composite null hypothesis), then using 1 in the calculation is only the
worst scenario and so the worst (largest) probability of committing type I error is «, i.e. «
is the upper bound of the type I error probability.

Comparing the procedure for testing a one-sided alternative hypothesis with that for
testing a two-sided alternative, we can see that the formulae for the test statistic are the
same but the critical values are not. Therefore, it is also important to write down both the
null hypothesis and the alternative hypothesis explicitly beforehand, especially the latter,
because, for instance, in the case ¢ is known and o = 0.05, if the test statistic z is say 1.75,
then for the two-sided alternative Ha: o # po we will not reject Hy because 1.75 < 1.96 and
so is not too large. However, for the one-sided alternative H4: i1 > 19, then we will reject Hy
because 1.75 > 1.645 and so is too large. Thus, if you write down the alternative hypothesis
(or you fix «) after calculating the test statistic, you may be able to choose a conclusion
according to your own wish (i.e. you can conclude whatever you want to conclude)!

Remember: We are checking whether our evidence is strongly supporting the alternative
hypothesis, and hence we have to know what the alternative hypothesis is beforehand so



that we know how to measure the strength of our evidence. That is to say, we have to fix
our decision rule before we collect our data.

By the same token, if the alternative hypothesis is H4 : p < pg, we should reject the null
hypothesis Hy when the observed sample mean is much smaller than the value o assumed
in the null hypothesis. We reject the null hypothesis at the a significance level whenever the
test statistic is too negative, i.e. whenever z < —z, if we know o. If we do not know the
population standard deviation o, we estimate it by s and so the test statistic will be t. We
reject the null hypothesis at the a significance level whenever ¢ < —t, where the degrees of
freedom is n — 1.

To summarise, the idea of the decision described above is, therefore, to investigate
whether the sample provides strong evidence to support the alternative hypothesis. More
precisely, we reject the null hypothesis if the test statistic is more extreme than the critical
value, where the critical value depends on the alternative hypothesis. A value is more ex-
treme if it suggests that H, is more likely to be true. For testing hypotheses concerning a
population mean, a two-side alternative hypothesis will lead to two critical values, and so we
have a two-sided (or two-tailed) test; a one-sided alternative hypothesis leads to one critical
value, and so we have a one-sided (or one-tailed) test.

In conclusion, suppose we are testing the null hypothesis
Ho : p = po,
against one of the three different alternative hypotheses:
Ha:p # po, Ha @y > po, or  Ha:p < po.
The test statistic is simply

z= m, if we know o,
a/v/n
T — Mo .
t= , if we do not know o,
s/\/n
and the decision rule is:
(Critical region)
Hy Ha Reject Hy at the « significance level if
1= [l I 1o 2| > za  if we know o,
lt] > te if we do not know o,
= o or it < L > o 2> Zy if we know o,
t > t, if we do not know o,
L= [lg or [t > [ < o z < —z, if we know o,

t < —t, if we do not know o,




where ta and t, have degrees of freedom n — 1.

If we find strong evidence against the null hypothesis, we reject it; after rejection, we
conclude that the true mean p is significantly different from po (when H 4 is #), significantly
greater than o (when Hy is >), or significantly less than py (when Hy is <). In particular,
when g = 0, then “u is significantly different from zero” will often be shortened to just “u
is significant” .

Sometimes when we are testing hypotheses, we may want to calculate the p-value which is
the lowest significance level for which the null hypothesis could have been rejected. It can also
be considered as the probability (if we take another random sample) of getting the observed
value or “more extreme” values; a value is “more extreme” when it provides even stronger
evidence than the observed value to support the alternative hypothesis. (Graphically, it will
be equal to the area to the right or to the left of the test statistic under the probability
density function of the test statistic, if the alternative is “>” or “<”, respectively; when the
alternative is “#£”, the p-value is the double of smaller one between the area to the right
and the area to the left.) The calculation of the p-value depends on which parameter we are
testing and also depends on the alternative hypothesis, but the decision rule does not depend
on the alternative hypothesis and is always as follows. If the p-value is less than or equal
to a, we reject the null hypothesis at the «a significance level. This decision rule is
a general principle, which can be applied to all tests of hypotheses.

In practice, however, without a computer, we are able to calculate the p-value only if
the distribution of the test statistic is the standard normal (or other distributions, such
as binomial, that we know how to calculate probabilities by pocket calculators); for the ¢-
distribution, the critical values for different degrees of freedom are tabulated as the t-table,
but in order to calculate probabilities without a computer, we need one table (similar to
the standard normal table) for each value of the degrees of freedom; this is obviously not
practically feasible.

After talking about continuous data, we considered binary data. If a population consists
of 0’s (failures) and 1’s (successes) only, then the parameter of interest is the proportion p of
successes. In Section 8.4 we already discussed the construction of confidence intervals for p.
Now in Section 9.4 we consider a significance test for the population proportion. The null
hypothesis is simply

H03PZPOa

where pg is an explicitly hypothesised known value, and the three different alternative hy-
potheses are:

Hy:p # po, Ha:p > po, or Ha:p <po.

As mentioned in the previous example (of testing hypotheses concerning a population mean),
if the alternative is > or <, the null hypothesis can be < or >, respectively. (Why?)
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Suppose the sample proportion is p. Obvious, we would like to know whether p— py is too
unusual or not. In order to tell whether it is too unusual, we have to know its distribution.
This consideration leads to the following test statistic:

P — Do
Po(1 — po)
n

Note that the philosophy of hypothesis testing is that we first assume the null hypothesis is
true and calculate the value of the test statistic. If the value of the test statistic is too large
or/and too small, then it is unreasonable and so our assumption (i.e. the null hypothesis)
is probably wrong. Therefore, in the above formula, the denominator contains po(1 — pp)
instead of p(1 — p), which was used in the formula of confidence interval for p; it is because
we assume that Hy: p = pg is true in this context, while for confidence interval we of course
would not assume any value for the parameter that we are estimating. Now, if the alternative
is #, > and <, respectively, we reject the null hypothesis at the « significance level whenever
2| > za, 2 > z, and 2z < —z,, respectively.

To summarise, we have:

Hy Hy Reject Hy at the « significance level if
p= Do P # Po 2] > za

P =Doorp = po P> po Z 2 Za

P =Poorp = po P <Do Z < —Za

This is the end of Chapter 9. Please read Chapter 9 repeatedly until you understand
everything explained in this (and the last two pages of the previous) review and until you
are able to work out some numerical exercises in the book. This is very important for the
rest of this course.

Cheers,
HENG PENG



