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Chapter 9 is talking about one population. In Chapter 10 we are interested in not the
case of only one population but the case of two populations, e.g. men and women. The most
typical question is: whether their means are the same or not. Therefore, we consider the
difference between two means:

H0 : µ1 = µ2,

and we may have three different alternative hypotheses:

HA : µ1 6= µ2, HA : µ1 > µ2, or HA : µ1 < µ2.

We first discuss the case that we have two independent samples, one from each
population.

To test the above null hypothesis, we have to construct a test statistic and a very natural
one is to consider the difference between two sample means x1−x2. Corresponding to each of
the three possible alternative hypotheses above, if the difference is very different from zero,
much larger than zero, or much smaller than zero, respectively, then we should reject the null
hypothesis and conclude that the difference is significantly different from zero, significantly
greater than zero, or significantly smaller than zero, respectively. (As we mentioned above,
in particular, “significantly different from zero” is often simply shortened to just one word:
“significant”.)

To see whether the difference is much larger than zero or much smaller than zero, we
have to know its distribution and an important feature of the normal distribution is that if
X and Y are two independent normally distributed random variables with means µX and
µY , respectively, and variances σ2

X and σ2
Y , respectively, then

X ± Y ∼ N(µX ± µY , σ2
X + σ2

Y ). (1)

Note that the variance of the sum or the difference is the same and is equal to the sum of
two individual variances. Let me emphasise again that the variance is the sum of the two
variances, not the difference. Please keep it in mind. Moreover, we take the sum of the
two variances, not the sum of the two standard deviations. We will never take the sum of
standard deviations. The result given in (1) also explains why we use σ2 instead of σ as the
second parameter in the notation N(µ, σ2). From (1), we can see immediately that

X1 ±X2 ∼ N

(
µ1 ± µ2,

σ2
1

n1

+
σ2
2

n2

)
. (2)

[Question: why do we have n1 and n2 in (2) but not in (1)?]
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If the null hypothesis is true, from the distribution given in (2) we know that the test
statistic

z =
x1 − x2√
σ2
1

n1

+
σ2
2

n2

follows (by the central limit theorem) approximately the standard normal distribution for
large n1 and n2; in particular, if the two populations themselves follow two independent
normal distributions, z follows exactly the standard normal distribution.

If we rephrase the hypotheses as

H0 : µ1 − µ2 = 0

HA : µ1 − µ2 6= 0 (or > 0, or < 0)

it is natural to generalise the hypotheses from asking whether the difference is zero to asking
whether the difference is some number we have in mind. First, we introduce the Greek
alphabet δ (delta) as a symbol for the difference and then add a subscript ‘0’ to it to get
δ0 to denote the hypothesised value specified in the null hypothesis (c.f. the symbols µ0 and
p0). More precisely, we consider the following hypotheses:

H0 : µ1 − µ2 = δ0

HA : µ1 − µ2 6= δ0 (or > δ0, or < δ0)

where δ0 is an explicitly known number that we ourselves (or the question) hypothesised,
and the test statistic is simply

z =
(x1 − x2)− δ0√

σ2
1

n1

+
σ2
2

n2

,

which will have the standard normal distribution (which is an approximation, when n1 and
n2 are large; or is an exact result [i.e. not an approximation but is rigorously correct], when
the two populations are indeed normal) if the null hypothesis is true. [Questions: (i) why

normal? (ii) why the denominator is
√

σ2
1

n1
+

σ2
2

n2
? Read the previous review if you don’t know

the answers.]

Now, consider the alternative hypothesis HA: µ1−µ2 > δ0. If the alternative is true, then
z is likely to be a large value. In other words, a larger value of z provides stronger evidence
to support the alternative and when z is too large, we reject the null hypothesis. When is
it too large? When it is greater than or equal to the critical value zα. By the same token,
if the alternative hypothesis is HA : µ1 − µ2 < δ0, then the smaller the value of z, the more
likely the alternative hypothesis is true and so we reject the null hypothesis if z is too small,
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i.e. if z ≤ −zα. Finally, if the alternative hypothesis is HA : µ1 − µ2 6= δ0, then a large or a
small value of z suggests the alternative is more likely. The same as in other two-sided tests
discussed before, we do not use ±zα but use ±zα/2 because the total area excluded by ±zα
would become 2α. Thus, we use ±zα/2 and we reject the null hypothesis whenever |z| ≥ zα/2.

The above situation is quite ideal but unrealistic because we assume that we know σ2
1 and

σ2
2. In reality, however, we seldom know them and so we have to estimate them. Nevertheless,

before we estimate them, we have to know whether they are the same or not; if they are,
then we simply have to estimate one unknown common variance. That is to say, we have
three cases: (a) σ1 and σ2 are known, (b) σ1 and σ2 are unknown but σ1 = σ2, and (c) σ1
and σ2 are unknown and σ1 6= σ2.

Case (a) has been discussed above.

For case (b), σ1 = σ2, we estimate the common variance by

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
.

I already explained the idea behind this formula. The pooled estimate s2p can be considered
either a weighted mean of the two sample variances (weighed by their degrees of freedom)
or, better, the sum of the squared deviations from the sample mean divided by the degrees
of freedom (where for data in sample 1 we consider their deviations from x1, while for data
in sample 2, we consider deviations from x2, i.e. each deviation is the difference between the
datum and its corresponding sample mean). The latter interpretation is better because then
we would not mistakenly invent a weighted mean of the two sample standard deviations; it
does not make any sense to take the mean, no matter weighted or unweighted, of standard
deviations. Then, the test statistic becomes

t =
(x1 − x2)− δ0

sp

√
1

n1

+
1

n2

,

which has the t-distribution with degrees of freedom n1 + n2 − 2. Therefore,

H0 : µ1 − µ2 HA : µ1 − µ2 Reject H0 at the α significance level if

= δ0 6= δ0 |z| ≥ zα
2
, if we know σ,

|t| ≥ tα
2
, if we do not know σ,

= δ0 or ≤ δ0 > δ0 z ≥ zα, if we know σ,
t ≥ tα, if we do not know σ,

= δ0 or ≥ δ0 < δ0 z ≤ −zα, if we know σ,
t ≤ −tα, if we do not know σ,
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where tα
2

and tα have degrees of freedom n1 + n2 − 2.

Now, for case (c), σ1 and σ2 are unknown and σ1 6= σ2. In this case we estimate the two
variances by s21 and s22, and the test statistic becomes

t =
(x1 − x2)− δ0√

s21
n1

+
s22
n2

.

For alternatives with 6=, > and <, we again reject the null hypothesis whenever |t| ≥ tα/2,
t ≥ tα and t ≤ −tα, respectively, where the degrees of freedom of t is

ν =

(
s21
n1

+
s22
n2

)2

(
s21
n1

)2
n1 − 1

+

(
s22
n2

)2
n2 − 1

,

which is known as Welch’s approximation (and ν is the Greek alphabet nu). For checking
the critical values from the t-table, we need an integer for ν (in fact, mathematics allows us
to have non-integer values for degrees of freedom, but it is beyond the scope of this course).
We always round it down in order to get a conservative critical value (a critical value
greater than the one you actually have to use so that it is more difficult to reject under this
conservative critical value and so less likely to commit type I error). It would be helpful to
keep the following inequality in mind:

tα, df1 ≥ tα, df2 whenever df1 ≤ df2,

where the second subscript in tα, df denotes the value of the degrees of freedom. That is, e.g.
if ν = 3.9, we will round it down to 3 so that we can obtain the critical value tα, 3 from the
t-table and if

test statistic ≥ tα, 3

then because
tα, 3 ≥ tα, 3.9

it is actually true that
test statistic ≥ tα, 3.9

and using tα, 3 as the critical value is conservative because then the probability of making a
type I error will be at most α.

Unfortunately, there is no interpretation for this formula of ν and so I am afraid you have
to remember it by heart and by brute force.
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So, for each of the three cases, we have a different test statistic:

σ1, σ2 known σ1, σ2 unknown but equal σ1, σ2 unknown and unequal

z =
(x1 − x2)− δ0√

σ2
1

n1

+
σ2
2

n2

t =
(x1 − x2)− δ0

sp

√
1

n1

+
1

n2

t =
(x1 − x2)− δ0√

s21
n1

+
s22
n2

and we can extend the above table to the following one to summarise the decision rules:

H0 : µ1 − µ2 HA :µ1 − µ2 Reject H0 at the α significance level if

= δ0 6= δ0 |z| ≥ zα
2
, σ1, σ2 known,

|t| ≥ tα
2
, n1+n2−2, σ1, σ2 unknown but equal,

|t| ≥ tα
2
, ν , σ1, σ2 unknown and unequal,

= δ0 or ≤ δ0 > δ0 z ≥ zα, σ1, σ2 known,
t ≥ tα, n1+n2−2, σ1, σ2 unknown but equal,
t ≥ tα, ν , σ1, σ2 unknown and unequal,

= δ0 or ≥ δ0 < δ0 z ≤ −zα, σ1, σ2 known,
t ≤ −tα, n1+n2−2, σ1, σ2 unknown but equal,
t ≤ −tα, ν , σ1, σ2 unknown and unequal,

where the second subscript df in tα
2
, df or tα, df denotes the value of its degrees of freedom.

The above problem concerns the means of two independent samples and is called the two-
independent-sample t-test or simply the two-sample t-test if we do not know the variances,
and is called the two-(independent-)sample z-test if we know the variances.

Since the basic idea is the same for all tests and I already explained the idea repeatedly
in these two weeks, starting from here, the focus is no longer on the basic idea but on
the particular feature of each test. Hence, the pace is getting quicker because a thorough
understanding of the basic idea has been presumed. It would be very difficult to catch up
with me if you do not understand the basic idea. Please, (I have said this many times:) read
Chapters 9 and 10 carefully and repeatedly, at least three times, until you really understand
all materials in these two chapters.

Cheers,
Heng Peng
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