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It is important but not so straightforward for beginners to distinguish two independent
samples from paired-sample, which can be described as follows. We have paired-population,
e.g. pre- and post-treatment, left- and right-arms, husband and wives, twin brothers, test
and exam scores, etc. For paired-data we are still interested in the difference of the means
but the difference of the means is the same as the mean of differences for paired-data. Thus,
the paired-sample t-test is the same as the t-test for one sample of pairwise differences. So,
what we have to do is to take all pairwise differences. These differences form one sample
and we are interested in the population mean µdiff , which is just equal to µ1 − µ2. Tests for

H0 : µ1 − µ2 = δ0,

HA : µ1 − µ2 6= δ0, HA : µ1 − µ2 > δ0 or HA : µ1 − µ2 < δ0

in the paired-sample case is equivalent to tests for

H0 : µdiff = δ0,

HA : µdiff 6= δ0, HA : µdiff > δ0 or HA : µdiff < δ0.

Thus, we just have to apply the test we learnt in Section 9.3 to the sample of the differences
{d1, d2, . . . , dn}, where each di denotes the difference of the ith pair. Read Section 10.4. Note
that in practice we seldom know the population variance of the differences. Even if we know
the two variances of the two original populations, we cannot derive the population variance
of their pairwise differences, and so for paired-data it is unlikely that we can use z-test.

After discussing µ1 = µ2, we talk about the null hypothesis p1 = p2 in Section 10.5. To
test the equality of two unknown population proportions:

H0 : p1 = p2

against one of the three possible alternative hypotheses:

HA : p1 6= p2, HA : p1 > p2, or HA : p1 < p2,

we consider the test statistic

z =
p̂1 − p̂2√

p̂(1− p̂)
(

1

n1

+
1

n2

) ,
where p̂ is the sample proportion obtained by combining two samples into one. If in the first
sample we have x1 successes out of n1 trials and in the second sample we have x2 successes
out of n2 trials. Then

p̂1 =
x1

n1

, p̂2 =
x2

n2

, and p̂ =
x1 + x2

n1 + n2

.
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We can do so because if the null hypothesis is true, the two populations have the same
proportion and so we have to estimate only one unknown proportion. When n1 and n2 are
large, this z has approximately the standard normal distribution and so the decision rule is
the same as other tests having a standard normal test statistic, i.e.

H0 HA Reject H0 at the α significance level if

p1 = p2 p1 6= p2 |z| ≥ zα
2

p1 = p2 or p1 ≤ p2 p1 > p2 z ≥ zα

p1 = p2 or p1 ≥ p2 p1 < p2 z ≤ −zα

To conclude Chapter 10, we should also mention the confidence intervals for the dif-
ference between two population means and between two population proportions from two
independent samples. For µ1 − µ2, a 100(1− α)% confidence interval is

x1 − x2 ±



zα/2 ·

√
σ2

1

n1

+
σ2

2

n2

if σ1 and σ2 are known,

tα/2, n1+n2−2 · sp ·
√

1

n1

+
1

n2

if σ1 and σ2 are unknown but equal,

tα/2, ν ·

√
s2

1

n1

+
s2

2

n2

if σ1 and σ2 are unknown and unequal,

and for p1 − p2, it is

p̂1 − p̂2 ± zα/2

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

.

Obviously we would not assume p1 = p2 in the construction of the confidence interval for
p1 − p2 (why not?), and so two different estimators, p̂1 and p̂2, are needed to estimate the
two unknown proportions p1 and p2, respectively.

What I would like you to be able to do is to write down the formulae of test statistics and
confidence intervals by using statistical arguments, rather than by retrieving them from your
memory. There are too many formulae and some of them are very similar. If you can obtain
each of them by statistical argument, then they are easy to distinguish; if you remember
them by brute force, then they are easy to be confused. I hope you have noticed that I spent
most of my efforts not on how to use the formulae (which will be nothing more than routine
work; what you need is not more examples shown by me but more practice by yourselves)
but on how these formulae can be obtained by using statistical arguments based on what we
have learnt (what you need is not more practice but a thorough understanding of what we
have learnt).
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Chapter 11 introduces some more complicated tests. The first one is to test how good a
hypothesised distribution can describe the given data, which is known as the goodness-of-fit
test . It can be considered as a null hypothesis concerning several proportions for a population
containing not only 0’s and 1’s but also, say, 2’s, 3’s and 4’s (representing e.g. grade A, grade
B, grade C, grade D and grade F) so that we have not only a proportion of successes (which
consequently gives us a proportion of failures) but more than two proportions such that the
sum of all proportions is still equal to one. That is, such a problem is a generalisation of
the hypothesis concerning a hypothesised value of one proportion p = p0 to the hypothesis
concerning hypothesised values for several proportions p1 = p10, p2 = p20, . . ., pk = pk0,
where p1 + · · ·+pk = 1. (What does pi0 stands for? Compare it with the notation µ0, p0 and
δ0.) However, in the discussion below, we use English words to describe the true proportions
and pi to denote the ith hypothesised proportion, so that we can omit the second one in the
double subscript ‘i0’ to avoid messy expressions. The price to pay is some inconsistence in
the use of notations.

The idea of the test statistic is to compare the observed values and the expected values
under the null hypothesis. The observed values are e.g. the number of grade A, the number
of grade B, etc., observed in the given sample; the expected values are values obtained by
assuming the null hypothesis. More precisely, each expected value is simply the product of
the total and the corresponding probability calculated by using the distribution specified in
the null hypothesis.

Suppose the distribution specified in the null hypothesis has k possible outcomes with
probabilities p1, . . ., pk. Then Ei = npi, where n is the total number of observations. Denote
by Oi the observed frequency of the ith outcome. Then the larger the difference Oi−Ei, the
more likely the null hypothesis is wrong. To combine the information in all k outcomes, we
first have to get rid of the sign of the differences and so we consider

∑k
i=1(Oi−Ei)2. However,

we do not know the distribution of this sum. Mathematicians worked out the large-sample
distribution (i.e. an approximation when n is large) of the sum of the ratios:

χ2 =
k∑
i=1

(Oi − Ei)2

Ei
=
∑ (O − E)2

E
,

which is called the χ2-distribution, with degrees of freedom k − 1. We lose one degree of
freedom because there is one constraint:

∑
i(Oi − Ei) = 0, which actually is a consequence

of the fact (or, in some sense, the constraint) that
∑

i pi = 1. This large-sample distribution
provides a good approximation when n is so large that Ei ≥ 5 for all i (I did not spell out
this requirement in class).

The story now becomes: we test

H0 : the distributioin is {pi}
HA : the distribution is not {pi}.

(As I said above, to avoid making the expression too messy, I did not give any symbols to
the true distribution and did not add a subscript ‘0’ to the symbols of the hypothesised dis-
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tribution. Of course it is perhaps mathematically more proper to express the two hypotheses
in terms of only mathematical symbols but then the details would be quite messy or scary.)
We reject H0 only when what we observed is very different from what we expected, i.e. reject
H0 at the α significance level whenever χ2 ≥ χ2

α. This is a one-sided test even we have a
two-sided alternative hypothesis because we take the square of each difference and hence a
very negative value becomes a very large positive value.

Sometimes, the distribution specified in the null hypothesis is just a distribution with-
out specifying the value(s) of the parameter(s), e.g. the null hypothesis says that the data
follow the binomial or the Poisson. Then we simply estimate the parameter(s) and then
calculate the probabilities and expected values according to the estimated parameter(s). If
the χ2-statistic, now measuring the difference between the observed values and the estimated
expected values, is large, we can believe that other values for the parameters (leading to dif-
ferent estimated expected values) would give us even larger χ2 value. Thus, if the χ2-statistic
calculated by using the estimated expected values is already larger than the critical value,
we would reject H0. However, because we will lose degrees of freedom when we estimate
parameters, the degrees of freedom of the χ2-distribution in such a situation is k −m − 1,
where m is the number of parameters estimated. (This extension has not been mentioned
in the textbook but is important. The choice of the symbols is not important; different
textbooks may use different symbols for our k and m.)

Note that we do not have time to illustrate everything by numerical examples in class.
We only discussed the idea behind the technical details of the test. We will do one or two
exercises in the example class and assignments for each problem, but this is definitely not
sufficient. You must read the textbook to gain a better understanding and then do some
exercises in the textbook to gain a real mastery of the above and other forthcoming testing
procedures.

The discussion on the goodness-of-fit test in this review should be read again after you
have gone through the details of the examples in Chapter 11. You may not understand
thoroughly my summary unless you understand the examples. So, please read the book
carefully and repeatedly until you really understand everything.

Next week we will see the generalisation of the hypothesis of the equality of two propor-
tions p1 = p2 in two populations to the equality of two distributions of two populations, and
then introduce a different scenario where the χ2-distribution is applicable, namely testing
hypotheses concerning σ2 and the construction of the confidence interval for σ2. Then we
will discuss a problem that we mentioned above when we discussed the two-sample t-test,
namely, the problem of testing whether two variances are equal or not.

Cheers,
Heng Peng
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