
ar
X

iv
:s

ub
m

it/
13

86
01

7 
 [

st
at

.M
E

] 
 2

4 
O

ct
 2

01
5

An adaptive-to-model test for partially parametric

single-index models ∗

Xuehu Zhu1, Xu Guo3 and Lixing Zhu1

1 Hong Kong Baptist University, Hong Kong

3 Nanjing University of Aeronautics and Astronautics, Nanjing

Abstract. Residual marked empirical process-based tests are commonly used in
regression models. However, they suffer from data sparseness in high-dimensional
space when there are many covariates. This paper has three purposes. First, for
partially parametric single-index models, we suggest a partial dimension reduction
adaptive-to-model testing procedure to extend an existing directional test into an
omnibus test. The resulting test is omnibus against general global alternative mod-
els. The procedure can automatically adapt to the null and alternative models to
fully utilise the dimension-reduction structure under the null hypothesis, and thus
greatly overcome the dimensionality problem. Second, to achieve the above goal, we
propose a ridge-type eigenvalue ratio estimate to automatically determine the num-
ber of linear combinations of the covariates under the null and alternatives. Third,
a Monte-Carlo approximation to the sampling null distribution is suggested. Unlike
existing bootstrap approximation methods, this gives an approximation as close to
the sampling null distribution as possible by fully utilising the dimension reduction
model structure under the null. Simulation studies and real data analysis are then
conducted to illustrate the performance of the new test and compare it with existing
tests.
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1 Introduction

Consider the partially parametric single-index model in the form:

Y = G(β⊤X,W, θ) + ǫ, (1.1)

where Y is the response variable, (X,W ) is the covariate vector in R
p1+p2, G(·) is a

known smooth function that depends not only on the covariate β⊤X but also on the

covariate W , β and θ are the unknown regression parameter vectors and the error

ǫ follows a continuous distribution and is independent with the covariates (X,W ).

The model (1.1) reduces to the parametric single-index model in the absence of the

covariate W and to the general parametric model in the absence of the covariate

β⊤X . This structure is often meaningful, as in many applications, p1 is large while

p2 is not. See the relevant dimension reduction literature, such as Feng et al. (2013).

However, it is less clear whether a real data set fits the above statistical formali-

sation. It is worthwhile performing suitable and efficient model checking before any

further statistical analysis. As we often have no idea about the model structure

under the alternative hypothesis, the general alternative model is considered in the

following form:

Y = g(X,W ) + ǫ, (1.2)

where g(·) donates an unknown smooth function.

Several methods for testing the parametric single-index model that removes the

covariate W from the model (1.1), and the general nonlinear model in the absence

of the covariate β⊤Xcan be found in the literature. Two prevalent classes of method

are local and global smoothing tests. A local smoothing test involves a nonpara-

metric smoothing technique in the estimation, whereas a global smoothing test only

requires a set of sample averages with respect to an index set to form an empirical
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process. For examples, Härdle and Mammen (1993) suggested a local smoothing

test based on the L2 distance between the parametric and nonparametric estimate

of the conditional expectation of Y given (X,W ) in our notation. Zheng (1996) and

Fan and Li (1996) independently developed tests based on second order conditional

moments. Dette (1999) proposed a consistent test that depended on the difference

between the variance estimate under the null and alternative hypotheses. Fan et al.

(2001) developed a generalised likelihood ratio test. For other developments, see the

Neyman threshold test (Fan and Huang 2001), a class of minimum distance tests

(Koul and Ni 2004) and the distribution distance test (Van Keilegom et al. 2008).

González-Manteiga and Crujeiras (2013) is a comprehensive review. However, local

smoothing tests have two obvious shortcomings. First, those methodologies have

the subjective constraint choice of tuning parameters such as bandwidth. Unlike

estimation, finding an optimal bandwidth choice for hypothesis testing is still an

open problem (Stute and Zhu 2005). Although practical evidence suggests that this

issue is not critical when the number p of covariates is small, a proper choice is

not easy at all when p is large, even moderate. This problem often results in poor

type I error. A more serious problem is the typical slow convergence rates of local

smoothing tests, that is O(n−1/2h−p/4) under the null hypothesis, where h is the

bandwidth tending to zero. In the present setup, p = p1 + p2. In other words, local

smoothing tests suffer severely from the curse of dimensionality.

For global smoothing tests, examples include Bierens (1990), Stute (1997), and

Khmaladze and Koul (2004). Stute et al. (1998) used bootstrap approximation to

determine the critical values of the residual-marked empirical process-based test.

Resampling approximation is particularly required when p is larger than 2 as its

limiting null distribution is intractable. Escanciano (2007) is also a relevant reference

in this class of tests. The typical convergence rate of global smoothing tests is

O(n−1/2). Thus, they have the theoretical advantages over local smoothing tests.
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However, the data sparseness in high-dimensional space means that most global

smoothing tests suffer from the dimensionality problem, even for large sample sizes

(see Escanciano, 2006). Practical evidence shows that the power of global smoothing

tests deteriorates and maintaining the significance level becomes more difficult when

the dimension p of X is large, or even moderate. This is particularly the case when

the alternative model is high-frequency.

A direct way to alleviate this problem is to project the high-dimensional covari-

ates onto one-dimensional spaces first, and a test can be an average of tests that

are based on the projections. This is a typical method called the projection-pursuit.

Huber (1985) is a comprehensive reference. Zhu and Li (1998) suggested using the

projection pursuit technique to define a test based on an unweighted integral of

expectations with respect to all one-dimensional directions. Zhu and An (1992)

has already used this idea to deal with a relevant testing problem. Lavergne and

Patilea (2008) adopted this idea and further developed a dimension-reduction non-

parametric method by exploring an optimal direction. Lavergne and Patilea (2012)

advised a smooth version of the integrated conditional moment test over all projec-

tion directions. All of these tests partly overcome the curse of dimensionality with

the use of one-dimensional projections. However, the computational burden is a

serious issue. Computing the values of the test statistics is very time-consuming,

and becomes even more serious if we further need to use bootstrap approximation

to determine critical values. Based on our very limited numerical studies, which

we do not report in this paper, the CPU consumption of such tests is more than

100 times that of computing of the method developed in the present paper, even

when p is only 4. We discussed the relevant computational issue, the integral over

all projection directions in a test statistic in Wong, et al. (1995) and suggested a

number-theoretical method to reduce the computational workload. Xia (2009) also

constructed a test that involved searching for an optimal direction, but the test had
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no way of controlling type I error.

Stute and Zhu (2002) considered a naive method to handle the curse of dimension-

ality when testing the parametric single-index model: Y = G(β⊤X) + ǫ. Stemming

from the fact that under the null hypothesis, E(Y − G(β⊤X)I(X ≤ t) = 0 for all

t ∈ Rp leads to E(Y − G(β⊤X)I(β⊤X ≤ t) = 0 for all t ∈ Rp, the test statistic is

based on the empirical process:

Rn(x) = n−1/2

n
∑

i=1

(yi −G(β̂⊤xi))I(β̂
⊤xi ≤ x),

where β̂ is, under the null hypothesis, a root-n consistent estimate of β. It has been

proven to be powerful in many cases. However, this test is a directional test rather

than an omnibus test. Thus, the general alternative of (1.2) cannot be detected.

This phenomenon can be easily illustrated by the following alternative model: Y =

β⊤
1 X+c sin(β⊤

2 X)+ǫ, where X is normally distributed N(0, Ip) with a p×p identity
matrix Ip, and β1 and β2 are two orthogonal vectors. The value c = 0 corresponds to

the null hypothesis. However, for any c, E(Y −β⊤
1 X|β⊤

1 X) = 0. In other words, this

conditional mean cannot distinguish between models under the null and alternative

hypotheses.

However, the advantage of SZ’s test (Stute and Zhu, 2002) under the null hypoth-

esis is very important particularly in high-dimensional paradigms as it fully uses the

dimension reduction structure under the null. Guo et al. (2015) recently proposed

an adaptive-to-model dimension-reduction test for the model Y = G(β⊤X, θ) + ǫ

against the general alternative model Y = g(X)+ ǫ. The main idea is to fully utilize

the dimension reduction structure about X under the null hypothesis as Stute and

Zhu (2002) did, but to adapt the alternative model such that the test is still om-

nibus. Their test is based on a local smoothing technique. The improvement over

existing local smoothing tests is significant. The test has a much faster convergence
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rate of O(n−1/2h−1/4) than the typical rate of O(n−1/2h−p/4) and can detect local

alternatives distinct from the null hypothesis at the rate of O(n−1/2h−1/4) that is

also much faster than the typical rate of O(n−1/2h−p/4) that local smoothing tests

can achieve. In other words, asymptotically, the test works as if X were univariate.

Thus, the test can significantly avoid the curse of dimensionality. The numerical

studies in their paper also indicated its advantages in cases with moderate sample

size.

In the present paper, we consider a more general alternative model as

Y = g(B⊤X,W ) + ǫ, (1.3)

where B is a p1 × q matrix with q orthogonal columns for an unknown number

q with 1 ≤ q ≤ p1 and g(·) is still an unknown smooth function. To consider

identifiability, assume that the matrix B satisfies B⊤B = Iq. This model cov-

ers many popular models in the literature, such as the single-index models with

B = β, the multi-index models with the absence of W , and partial single-index

models with the mean function g1(β
TX) + g2(W ). β is considered to be a column

of B. When q = p1 and B = Ip1, the model (1.3) is reduced to the usual alterna-

tive model (1.2). The model (1.2) can then be rewritten as (1.3). When q = p1,

g(X,W ) = g(BB⊤X,W ) ≡: g̃(B⊤X,W ), where B is any p1 × p1 orthonormal ma-

trix. This persuasively demonstrates that the model (1.2) can be treated as a special

case of (1.3). Based on this, a test can be constructed by noticing that under the

null hypothesis, E(Y −g(β⊤
1 X,W, θ)I(B

⊤X ≤ t,W ≤ ω) = 0 for all (t, ω) and under

the alternative hypothesis, it is nonzero for some vector (t, ω).

To define an empirical version of this function as the basis for constructing a test

statistic, an adaptive estimate of B is crucial for ensuring the test has the adaptive-

to-model property. That is, we wish an estimate of B to be consistent with κβ for

a constant κ under the null and to B under the alternative. Then, under the null
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hypothesis, the test can only rely on the dimension-reduced covariates (βTX,W ),

and is still omnibus to detect the general alternative (1.3). As mentioned above,

when W is absent, GWZ’s test (Guo et al., 2014) has the adaptiveness property of

the alternative model. To identify B and its structural dimension, various dimen-

sion reduction approaches such as minimum average variance estimation (MAVE,

Xia et al., 2002) and discretisation-expectation estimation (DEE, Zhu et al., 2010)

have been suggested. However, when W is present, these methods fail to work.

Furthermore, due to the existence of W , even when the dimension p1 = 1, the cor-

responding local smoothing test still has a slow convergence rate in the order of

O(n−1/2h−(p2+1)/4) where p2 is the dimension of W .

In the present paper, we consider a global smoothing test that keeps the ad-

vantage of SZ’s test, fully uses the dimension reduction structure and utilises an

adaptive-to-model strategy to get the test omnibus. The key is to adaptively iden-

tify B such that under the null, B is automatically identified to be β to make the

test dimension-reduced, and under the alternative, B itself is identified to have the

omnibus property. To this end, the partial sufficient dimension reduction approach

(Chiaromonte et al. (2002), Feng et al. (2013)) has to be applied. To achieve the

above target, we also need to identify or estimate the structural dimension q of B.

Under the null, q = 1 is automatically identified or estimated. We then suggest a

ridge-type eigenvalue ratio estimate. The details are presented in the next section.

Another issue is critical value determination. In the present setting, the limiting

null distribution is intractable, as it is for all global smoothing tests. A resampling

approximation is required. We then propose a Monte Carlo approximation that also

fully utilises the information in the hypothetical model so that the approximation

can be as close to the sampling null distribution as possible.

The rest of the paper is organised as follows. In Section 2, a dimension-reduction
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method, the partial discretization-expectation estimation, is reviewed, and is then

used to identify or estimate B. The ridge-type eigenvalue ratio is also defined and

its asymptotic properties are investigated in this section. Based on these, a test is

constructed in Section 3. The asymptotic properties under the null and local alter-

native hypotheses are also presented in this section. As the limiting null distribution

is intractable, the Monte Carlo test approximation is described in Section 4. In Sec-

tion 5, the simulation results are reported and a real data analysis is conducted for

illustration. Technical proofs are found in the online supplementary material.

2 Partial discretisation-expectation estimation and

structural dimension estimation

2.1 A brief review on partial discretisation-expectation es-

timation

As discussed above, identifying or estimating B is important for constructing an

adaptive test. To this end, sufficient dimension reduction techniques can be ap-

plied. From the sufficient dimension reduction theories, we can identify the space

spanned by B, which is equivalent to, q basis vectors of the space spanned by B

(see, Chiaromonte et al., 2002). Write B̃ as the p × q matrix consisting of these q

basis vectors. We call B̃ the basis matrix. Note that B is also a basis matrix of the

space. Thus it is easy to see that for a q × q nonsingular matrix C, B̃ = B × C⊤.

When q = 1, C is a constant and thus B̃ is a vector proportional to the vector β

under the null. In Section 3 we show that identifying B̃ is enough for the testing

problem described herein. In the following, B̃ is written as B.
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In this subsection, we focus on identifying a basis matrix B, this is equivalent to

identifying the column space spanned by B. This space is called the partial central

subspace (first introduced by Chiaromonte et al., 2002), write as S
(W )
Y |X . From their

definition, it is the intersection of all subspaces S such that

Y⊥⊥X|(PSX,W ),

where ⊥⊥ stands for ‘independent of’ and P(·) indicates a projection operator with

respect to the standard inner product. dim(S
(W )
Y |X) is called the structural dimension

of S
(W )
Y |X . In our setup, the structural dimension is 1 under the null and q under

the alternative. Chiaromonte et al. (2002) and Wen and Cook (2007) developed

estimation methods for S
(W )
Y |X when W is discrete. Li et al. (2010) proposed group-

wise dimension reduction (GDR), which can also deal with this case. Feng et al.

(2013) proposed partial discretisation-expectation estimation (PDEE) by extending

discretisation-expectation estimation (DEE) in Zhu et al. (2010). All of those esti-

mations use the root-n consistency with the partial central subspace. In this paper,

we adopt PDEE because PDEE is computationally inexpensive, and can be easily

used to determine the structural dimension q. Also, when W is absent, PDEE can

naturally reduce to DEE without any changes in the algorithm.

From Feng et al. (2013), the following are the basic estimation steps.

1. Discretise the covariate W = (W1, · · · ,Wp2) into a set of binary variables

by defining W (t) = (I{W1 ≤ t1}, · · · , I{Wp2 ≤ tp2}) where the indicator

functions I{Wi ≤ ti} take value 1 if Wi ≤ ti and 0 otherwise, for i = 1, · · · , p2.

2. Let S
(W (t))
Y |X denote the partial central subspace of Y |(X,W (t)), and M(t) be

a p1 × p1 positive semi-definite matrix satisfying Span{M(t)} = S
(W(t))
Y|X .

3. Let T = W̃ where W̃ is an independent copy of W . The target matrix is
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M = E{M(W̃ )}. B consists of the eigenvectors that are associated with the

nonzero eigenvalues of M = E{M(W̃ )}.

4. Let w1, · · · , wn be the n observations of W . Define an estimate of M as

Mn =
1

n

n
∑

i=1

Mn(wi),

where Mn(wi) is the partial sliced inverse regression matrix estimate defined

in Chiaromonte et al. (2002) where sliced inverse regression was proposed

by Li(1991). Then when q is given, an estimate Bn(q) of B consists of the

eigenvectors that are associated with the q largest eigenvalues λj ofMn. Bn(q)

can be root-n consistent to B. For more details, readers may refer to Feng et

al. (2013).

2.2 Structural dimension estimation

The structural dimension q is unknown in general. Interestingly, even when it is

given, we still want to estimate adaptively according to its values under the null and

alternative because of its importance for the adaptive-to-model construction for the

test. To estimate q, Feng et al. (2013) advised the BIC-type criterion that is an

extension of that in Zhu et al (2006). However, all practical uses show that selecting

a proper penalty is not easy. In this paper, we suggest a ridge-type eigenvalue ratio

estimate (RERE) to determine q as:

q̂ = arg min
1≤j≤p

{

λ̂2j+1 + cn

λ̂2j + cn

}

, (2.1)

where λ̂p ≤ · · · ≤ λ̂1 are the eigenvalues of the matrixMn. This method is motivated

by Xia et al. (2015). The basic idea is as follows. Let λj be the eigenvalues of the

target matrix M . When j ≤ q, the eigenvalue λj > 0 and thus, the ratio rj−1 =
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λj/λj−1 > 0; when j > q λj = 0. Therefore, rq = λq+1/λq = 0; and λj+1/λj = 0/0.

To define all ratios well, we can add a ridge in the ratio as rj = (λj+1+ cn)/(λj + cn)

for 1 ≤ j ≤ p − 1. As λ̂2j converges to λ2j at the rate of order 1/
√
n for 1 ≤ j ≤ q,

and to 0 at the rate of order 1/n for q+1 ≤ j ≤ p, then cn = log n/n can be a good

choice. The algorithm is very easy to implement and the estimation consistency can

be guaranteed. The result is stated in the following.

Theorem 2.1. Under Conditions A1 and A2 in the Appendix, the estimate q̂ of

(2.1) with cn = logn/n has the following consistency:

(i) under H0, P (q̂ = 1) → 1;

(ii) under H1, P (q̂ = q) → 1.

From our justification presented in the Appendix, the choice of cn can be in a

relatively wide range to ensure consistency under the null and alternative hypotheses.

However, to avoid the arbitrariness of its choice, we find that cn = log n/n is a

proper choice. The above identification of q is very important for ensuring that

the test statistic is adaptive to the underlying models. Finally, an estimate of B is

Bn = Bn(q̂). This estimate is used in the following test statistic construction.

11



3 A partial dimension reduction adaptive-to-model

test and its properties

3.1 Test statistic construction

The hypotheses of interest can now be restated. The null hypothesis is

H0 : E(Y |X,W ) = G(β⊤X,W, θ) for some β ∈ R
p1 , θ ∈ θ ∈ R

d,

against the alternative hypothesis: for any β and θ

H1 : E(Y |X,W ) = g(B⊤X,W ) 6= G(β⊤X,W, θ).

In this subsection, let ǫ = Y − G(β⊤X,W, θ) denote the error term under the null

hypothesis. Under H0, q = 1, and B = κβ for some constant κ, then we have:

E(ǫ|X,W ) = 0 ⇔ E(ǫ|B⊤X,W ) = 0

⇔ E(ǫI{(B⊤X,W ) ≤ (u, ω)}) = 0

for all (u, ω). UnderH1, E(Y−G(β⊤X,W, θ)|X,W ) = g(B⊤X,W )−G(β⊤X,W, θ) 6=
0, we then have:

E(Y −G(β⊤X,W, θ)|X,W ) 6= 0 ⇔ E(Y −G(β⊤X,W, θ)|B⊤X,W ) 6= 0.

Before proceeding to the test statistic construction, recall that what we can

identify is B̃ = B × C for a q × q orthogonal matrix C. Thus, we need to

make sure this non-identifiability does not affect the equivalence between E(Y −
G(β⊤X,W, θ)|B̃⊤X,W ) 6= 0 and E(Y − G(β⊤X,W, θ)|B⊤X,W ) 6= 0. This is easy
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to check. Note that B̃ = B × C⊤ with C being a non-singular matrix and thus B

and B̃ map one-to-one. Then

E(Y −G(β⊤X,W, θ)|X,W ) = E(g(B⊤X,W )−G(β⊤X,W, θ)|X,W )

= E(g̃(B̃⊤X,W )−G(β⊤X,W, θ)|X,W ),

where g̃(·, ·) = g((C−1·, ·). It is equivalent between E(Y −G(β⊤X,W, θ)|B⊤X,W ) 6=
0 and E(Y − G(β⊤X,W, θ)|B̃⊤X,W ) 6= 0. Therefore, identifying B itself is not

necessary. As mentioned, we simply write B̃ as B.

Now we are in the position to define a residual-marked empirical process. Let

Vn(u, ω) = n−1/2

n
∑

i=1

(yi −G(β⊤
n xi, wi, θn))I{(Bn(q̂)

⊤xi, wi) ≤ (u, ω)}, (3.1)

where βn and θn are the nonlinear least squares estimates respectively, and Bn(q̂)

was defined before.

Therefore, we use Vn as the basis for constructing a test statistic:

Tn =

∫

V 2
n (Bn(q̂)

⊤x, ω)dFn(Bn(q̂)
⊤x, ω), (3.2)

where Fn(·) denotes the empirical distribution based on the samples {Bn(q̂)
⊤xi, wi}ni=1.

Therefore, the null hypothesis is rejected for large values of Tn.

It is clear that this test statistic is not scale-invariant and thus usually a nor-

malizing constant is required. This constant needs to be estimated which involves

many unknowns. In this paper, a Monte Carlo test procedure is recommended which

can automatically make the test scale-invariant so that normalisation is not neces-

sary. Additionally, it can mimic the sampling null distribution better than existing

approximations such as that in Stute et al (1998). The details can be found in

Section 4.
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3.2 Limiting null distribution

To study the properties of the process Vn(·, ·) and the test statistic Tn, here we define

a process for the purpose of theoretical investigation: for u and ω,

V 0
n (u, ω) = n−1/2

n
∑

i=1

(yi −G(β⊤xi, wi, θ))I{(B⊤xi, wi) ≤ (u, ω)}. (3.3)

When E(Y 2) <∞, take the conditional variance of Y given B⊤X = u and W = ω,

σ2(u, ω) = V ar(Y |B⊤X = u,W = ω),

and put

ψ(u, ω) =

∫ ω

−∞

∫ u

−∞

σ2(v1, v2)dFB⊤X,W (v1, v2),

where FB⊤X,W (·, ·) denotes the distribution function of (B⊤X,W ). It is easy to see

that under H0

Cov{V0
n(u1, ω1),V

0
n(u2, ω2)} = ψ(u1 ∧ u2, ω1 ∧ ω2).

By Theorem 1.1 in Stute (1997), we can assert that under H0:

V 0
n −→ V∞ in distribution, (3.4)

where V∞ is a continuous Gaussian process with mean zero and covariance kernel

as follows:

K((u1, ω1), (u2, ω2)) = ψ(u1 ∧ u2, ω1 ∧ ω2).

Theorem 3.1. Under H0 and the regularity conditions A1-A4 in the Appendix, we

have the distribution

Vn −→ V∞ −G⊤V ≡ V 1
∞,
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where V∞ is the Gaussian process defined in (3.4) and the vector-valued function

G⊤ = (G1, G2, · · · , Gp+d) is defined as

Gi(u, ω) = E
[

mi(X,W, β, θ)I{(B⊤X,W ) ≤ (u, ω)}
]

,

where B = κβ and V is a (p1 + d)−dimensional normal vector with mean zero and

covariance matrix L(β, θ) which is defined in the Appendix.

Remark 3.1. From this theorem, we can see that the test statistic has the same

convergence rate of order n−1/2 to its limit as that of existing global smoothing tests.

In other words, in an asymptotic sense, there is no room for global smoothing tests

to improve their convergence rate. Local and global smoothing tests differ in this

feature, as n−1/2hp/4 can be much improved (Guo et al., 2015). However, as in

Stute and Zhu (2002), the new test can largely avoid the effect of dimensionality

to make the test more powerful when p is large or even moderate. The simulations

below illustrate this.

3.3 Power Study

First, we present the asymptotic property under the global alternative hypothesis.

Theorem 3.2. Under Conditions A1, A2, A3 and A4 and H1n with Cn = c a fixed

constant, we have in probability

n−1/2Vn(u, ω) −→ E[{g(B⊤X,W )−G(β̃⊤X,W, θ̃)}I{(B⊤X,W ) ≤ (u, ω)}]

where (β̃, θ̃) may be different from the true value (β, θ) under the null hypothesis.

Then Tn → ∞ in probability.
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To study how sensitive our new method is to the alternative hypotheses, consider

the following sequence of local alternatives:

H1n : Y = G(β⊤X,W, θ) + Cng(B
⊤X,W ) + ε, (3.5)

where Cn goes to zero.

Under the local alternatives with Cn → 0, we also need to estimate the structural

dimension q. Recall that under the global alternative in Section 2, the estimate

q̂ = q had a probability going to zero, which could be larger than 1 when B contains

more than one basis vector. However, under the above local alternatives, when Cn

goes to zero, the models converge to the hypothetical model that has one vector

β. Thus, we anticipate that q̂ also converges to 1 under the local alternatives. The

following lemma confirms this expectation.

Lemma 3.1. Under H1n in (3.5), Cn = n−1/2 and the regularity conditions in

Theorem 3.1, and the estimate q̂ in (2.1) satisfies that as n→ ∞, P (q̂ = 1) → 1.

To further study the power performance of the test, assume an additional regu-

larity Condition A5 in the Appendix.

Theorem 3.3. Under H1n and Conditions A1, A2, A4 and A5, when Cn = n−1/2,

we have in distribution

Vn(u, ω) −→ V∞(u, ω) + E(g(B⊤X,W )I{(κβ⊤X,W ) ≤ (u, ω)}) +G⊤(η − V )(u, ω)

where V∞, G and V are defined as those in Theorem 3.1 and η is a (p1+d)−dimensional

constant vector, which are defined in Appendix. Then Tn has a finite limit.

Remark 3.2. This theorem shows that under the local alternatives, the test would

also be directional, because q̂ is not a consistent estimate of q. This is caused by
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the difficulty of estimating q when the alternative is too close to the null. If the

estimation of q could be improved, it is likely that the omnibus property would still

exist under the local alternative. We discuss this further in Section 6.

4 A Monte-Carlo test procedure

As the limiting null distribution of the test statistic Tn is not tractable, the nonpara-

metric Monte Carlo test procedure is suggested to approximate the sampling null

distribution, which is similar in spirit to the wild bootstrap, see Stute et al. (1998)

and Zhu and Neuhaus (2000). However, to enhance the power of the test, we have

a modified version that fully uses the model structure under the null.

A magical algorithm is developed to determine the p−values as follows:

Step 1. Generate a sequence of i.i.d variablesU = {Ui}ni=1 from the standard normal

distribution N(0, 1). Then construct the following process:

∆n(u, ω,U) = n−1/2

n
∑

i=1

ˆ̺(xi, wi, yi, β, θ)Ui,

where ˆ̺(xi, wi, yi, β, θ) is the estimate of ̺(xi, wi, yi, β, θ) and ˆ̺ and ̺ are

defined as:

̺(xi, wi, yi, β, θ) = ǫiI{(B⊤
1 xi, wi) ≤ (u, ω)} −G⊤vi,

ˆ̺(xi, wi, yi, β, θ) = ǫ̂iI{(B⊤
1nxi, wi) ≤ (u, ω)} − Ĝ⊤v̂i,

G(u, ω) = E
[

m(X,W, β, θ)I{(B⊤
1 X,W ) ≤ (u, ω)}

]

,

Ĝ = n−1
n

∑

i=1

m(xi, wi, βn, θn)I{(B⊤
1nX,W ) ≤ (u, ω)},

vi = l(xi, wi, yi, β, θ), v̂i = l(xi, wi, yi, βn, θn),

ǫ̂i = yi −G(β⊤
n xi, wi, θn), ,
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where B1 and B1n denote the first column vectors of B and Bn(q̂), respectively.

The resulting Monte Carlo test statistic is

T̃n(U) =

∫

∆2
n(B

⊤
1nx, w,U)dFB1n

(x, w),

where FB1n
(·) denotes the empirical distribution based on the samples {B⊤

1nxi, wi}ni=1.

Step 2. Generate m sets of U, Uj , j = 1, · · · , m, and get m values of T̃n(U), say

T̃n(Uj), j = 1, · · · , m.

Step 3. The p-value is estimated by

p̂ = m−1
m
∑

j=1

I(T̃n(Uj) ≥ Tn).

Whenever p̂ ≤ α, reject H0, for a given significance level α, or the critical

value is determined as the (1− α)100% upper percentile of all Uj ’s.

As mentioned before, this test procedure is scale-invariant although Tn is not, be-

cause the resampling procedure does not need to involve test statistic normalisation

and p̂ = m−1
∑m

j=1 I(T̃n(Uj) ≥ Tn) = m−1
∑m

j=1 I(T̃n(Uj)/c ≥ Tn/c) for any c > 0.

Remark 4.1. It is worth pointing out that the algorithm is different from traditional

nonparametric Monte Carlo test procedures that use the vector B(q̂)⊤nX. More details

can be found in Zhu (2005). When we only use the vector B1n, which is associated

with the largest eigenvalue of the target matrix Mn defined in Section 2, we only

use univariate B⊤
1nX, which is β⊤X under the null asymptotically. This makes the

approximation as close to the sampling null distribution as possible.

The following theorem states the consistency of the conditional distribution ap-

proximation even under local alternatives.
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Theorem 4.1. Under the conditions in Theorem 3.1 and the null hypothesis or the

local alternative hypothesis with Cn = n−1/2, we know that for almost all sequences

{(y1, x1, w1), · · · , (yn, xn, wn), · · · }, the conditional distribution of T̃n(U) converges

to the limiting null distribution of Tn.

5 Numerical Studies

5.1 Simulations

In this subsection, we conduct simulations to examine the finite-sample performance

of the proposed test. The simulations are based on 2000 Monte Carlo test repli-

cations to compute the critical values or p values. Each experiment is then re-

peated 1000 times to compute the empirical sizes and powers at the significance

level α = 0.05. To estimate the central subspace spanned by B, we use the SIR-

based PDEE/DEE procedure according to the cases with and without the variate

W in the model. In these two cases, we call the test T PDEE
n .

We choose ZH’s test (Zheng, 1996) and SZ’s test ( Stute and Zhu, 2002) as the

representatives of local and and global smoothing tests, respectively, to compare

with our test. We choose these tests because 1). ZH’s test has the explicitly and

tractable limiting null distribution that can be used to determine the critical values;

2). like other local smoothing tests, the re-sampling version helps improve its perfor-

mance (we then also include the re-sampling version of ZH’s test); and 3) SZ’s test

is asymptotically distribution-free and powerful in many situations, but is not an

omnibus test. We also compare our test to GWZ’s test (Guo et al., 2015), because
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it is based on ZH’s test but also has the adaptive-to-model property, it can be much

more powerful. We write the proposed test, ZH’s, SZ’s and GWZ’s tests as T PDEE
n ,

TZH
n , T SZ

n and TGWZ
n , respectively.

In this section, we first design four examples to examine the performance in

four scenarios without the random variable W . The first example has the same

projection direction in both the hypothetical and alternative model. The second

example is used to check the adaptiveness of our test to omnibus testing even when

dimension reduction structure under the null is fully adopted, showing that SZ’s

test is directional and thus has much less power. The third example is used to check

the effect of dimensionality from X for local smoothing tests, and to compared

against with ZH’s and GWZ’s tests. The fourth example is used to assess the effect

of correlations among the components of X . In the first three examples, the data

(xi, wi) are generated from the multivariate standard normal distribution N(0, Ip),

independent of the standard normal errors ǫi.

Example 1. Consider the following regression model:

• Y = β⊤
0 X + a× cos(0.6πβ⊤

0 X) + 0.5× ǫ and β0 = (0, 0, 1, 1)/
√
2.

The values a = 0, 0.2, 0.4, 0.6, 0.8, 1 are used. The value a = 0 corresponds to the

null hypothesis and a 6= 0 to the alternative hypothesis. The power function is

plotted in Figure (1).

Figure (1) about here

Some findings are as follows. The power increases reasonably with larger a. The

proposed test T PDEE
n is significantly and uniformly more powerful than TZH

n and
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T SZ
n . When a is not large, T SZ

n works better than TZH
n , and when a is large, TZH

n

slightly outperforms T SZ
n in power.

Example 2. To further check the omnibus property of the proposed test to detect

general alternative models, a comparison with SZ’s test and ZH’s test is again carried

out. In this example, we generate the data from the following regression model:

• Y = β⊤
0 X + a× 0.125 exp(0.3β⊤

1 X) + 0.5× ǫ;

where β0 = (1, 1, 0, 0)/
√
2 and β1 = (0, 0, 1, 1)/

√
2. The values a = 0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1 are used. In this model, B = (β⊤
0 , β

⊤
1 )

⊤ and β⊤
0 X is orthogo-

nal to the functions under the alternatives. We can see that SZ’s test cannot detect

such alternatives. The results are reported in Figure 2.

Figure (2) about here

The results clearly show that SZ’s test T SZ
n and ZH’s test T SZ

n are not very sensitive

to the alternatives. In particular, when the sample size is small (n = 100), SZ’s test

T SZ
n has almost no power.
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Example 3. To gain further insights into our test, we consider the effect of the

dimensionality of X . When the number of dimensions is large, ZH’s test does not

maintain the significance level or power performance, due to slow convergence. Thus,

the wild bootstrap is applied to approximate the sampling null distribution. The

re-sampling time is 2000 in this simulation study. The bootstrap version is written

as TZHB
n . GWZ’s test is also compared.

Consider the models:

• Y = β⊤
0 X + a× {0.3(β⊤

1 X)3 + 0.3(β⊤
1 X)2}+ 0.5× ǫ;

where β0 = (1, 1, 1, 1, 0, 0, 0, 0)/2 and β1 = (0, 0, 0, 0, 1, 1, 1, 1)/2. Then the dimen-

sion p = 8. The results are listed in Table 1.

Table (1) about here

From Table 1, we can see that TZH
n does not maintain the significance level well,

but its bootstrap version TZHB
n and TGWZ

n can, and T PDEE
n works better uniformly.

The dimension reduction adaptive-to-model test TGWZ
n has a clear advantage over its

counterpart TZH
n in maintaining the significance level and gaining power. However,

T PDEE
n still works better uniformly. This seems to suggest that the global smoothing

test performs better than the local smoothing test when both are constructed via

the dimension reduction technique. Compared with the results in Figures 1 and 2

with p = 4, the dimension p has little effect for T PDEE
n . However, it has a very

significant effect for TZHB
n and TZH

n . When the number of dimensions is higher, the

performance of TZH
n and TZHB

n is worse. We do not include the simulation results

to save space.

Example 4. To further assess the performance of the test T PDEE
n , we consider
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the effect of the correlated covariate X and the distribution of the error term ǫ.

Consider the following model:

• y = β⊤
0 X + a× exp(−(β⊤

0 X)2/2)/2 + 0.5× ǫ;

where X follows a normal distribution N(0,Σ) with the covariance matrix Σij =

I(i = j) + ρ|i−j|I(i 6= j) for ρ = 0.5, i, j = 1, 2, · · · , p, β0 = (1, 1,−1,−1)/2 and ǫ

follows the student’s t-distribution with 4 degrees of freedom.

Table (2) about here

The results are presented in Table 2. Comparing the results in this table with

those in Figures 1 and 2, it is clear that with the correlated covariate X , we arrive

at similar conclusions to those in Examples 1 and 2. T PDEE
n easily maintains the

significance level. We also find that when the structural dimension q = 1 under

the alternative hypothesis, the power performance of TGWZ
n is very similar to that

of T PDEE
n . Comparing Example 3 in Table 1 with Example 4 in Table 2, we can

see that the lower structural dimension increases TGWZ
n ’s empirical power. This

suggests that the structural dimension q still has a negative effect on TGWZ
n , although

theoretically, TGWZ
n can detect alternatives distinct from the null at the same rate as

if the dimension of X were one. However, the power of T PDEE
n does not deteriorate

when the the structural dimension is increased. Further, T PDEE
n can control type

I error very well and is significantly more powerful than ZH’s and SZ’s tests. It is

evident that T PDEE
n is robust to the error term.

In summary, the global smoothing-based dimension reduction adaptive-to-model

test inherits the advantages of global smoothing tests and has the adaptive-to-model

property when the dimension reduction structure is adopted.
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Now we consider the parallel models in Examples 1-4 when the covariate W is

included. However, we present only the results for T PDEE
n because based on the

results in the above examples and comparisons, the performance of the competitors

is even worse when there are q1 more dimensions in the model (meaning that q1

more dimensions are added when W is q1-dimensional).

Example 5. The four models are:

Case 1). Y = β⊤
0 X +W + a× cos(0.6πβ⊤

0 X) + 0.5× ǫ;

Case 2). Y = β⊤
0 X + sin(W ) + a× (0.5(β⊤

1 X)2 + 2 sin(W )) + 0.5× ǫ;

Case 3). Y = β⊤
0 X + cos(W ) + a× {0.3(β⊤

1 X)3 + 0.3(β⊤
1 X)2}+ 0.5× ǫ;

Case 4). y = β⊤
0 X + sin(W ) + a× exp(−(β⊤

0 X)2/2)×W + 0.5ǫ.

All of the settings are the same as the respective settings in Examples 1-4 except for

the additionalW following the normal distribution N(0, 1). The results are reported

in Table 3.

Tables (3) about here

The reported results clearly indicate that whenW is presented, T PDEE
n still works

well in maintaining the significance level and detecting general alternatives.

5.2 Real Data Analysis

In this subsection, for illustration we perform the regression modelling of the well-

known Boston Housing Data, initially studied by Harrison and Rubinfeld (1978)..
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The data set contains 506 observations and 14 variables, as follows: the median value

of owner-occupied homes in $1000’s (MEDV), per capita crime rate by town (CRIM),

proportion of residential land zoned for lots over 25,000 sq.ft. (ZN),proportion of

non-retail business acres per town (INDUS), Charles River dummy variable (1 if

tract bounds river; 0 otherwise) (CHAS), nitric oxides concentration (parts per 10

million) (NOX), average number of rooms per dwelling (RM), proportion of owner-

occupied units built prior to 1940 (AGE), weighted distances to five Boston em-

ployment centres (DIS), index of accessibility to radial highways (RAD), full-value

property-tax rate per 10, 000 (TAX), pupil-teacher ratio by town (PTRATIO), the

proportion of black people by town (B) and lower status of the population (LSTAT).

As suggested by Feng et al. (2013), we take the logarithm of (MEDV) as the

predictor, the predictor CRIM as W and the other 11 predictors as X , except

CHAS, because it has little influence on the housing price as advised by Wang et

al. (2010), and is thus excluded from this data analysis. In this data analysis,

we standardise the predictors for ease of explanation. From the plot in Feng et al

(2013), a simple linear model is considered to be the hypothetical model. The SIR-

based PDEE procedure is applied to determine the partial central subspace S
(W )
Y |X .

The structural dimension q̂ = 2 of the partial central subspace is determined by

RERE in Section 2. A total of 2000 Monte Carlo test replications are implemented

to compute the p value, which is about zero. Hence, it is reasonable to reject the null

hypothesis. Moreover, q̂ is estimated to be 2. Thus, partial multi-index modelling

is required although the plot seems to suggest a linear model.
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6 Discussions

In this paper, we propose an adaptive-to-model dimension reduction test based on

a residual marked empirical process for partially parametric single-index models.

The test can fully utilise the dimension reduction structure to reduce dimensional-

ity problems, while remaining an omnibus test. Comparisons with existing local and

global smoothing tests suggest that 1). model-adaptation enhances the power perfor-

mance, also maintaining the significance level; and 2). the global smoothing-based

adaptive-to-model test outperforms the local smoothing-based adaptive-to-model

test. Thus, a global smoothing test is worthy of recommendation. This method

can be readily applied to other models and problems when a dimension reduction

structure is presented. The research is on-going.

In the hypothetical and alternative model, the independence between the error

and the covariates is assumed. This condition is fairly strong. The condition can be

weakened to handle the testing problem for the following hypothetical and alterna-

tive models:

Y = G(β⊤X,W, θ) + δ(β⊤X,W )ǫ,

Y = g(B⊤X,W ) + δ(B⊤X,W )ǫ.

Here, all of the settings are the same as those considered in the present paper, except

that the function δ(·) is an unknown smooth function. Bn(q̂), estimated by the SIR-

based PDEE/DEE procedure is still a root-n consistent estimate of B. Thus, the

proposed test can still be feasible.

Further, we still find a theoretical shortcoming in the omnibus property of the

proposed test as discussed before. That is, under the local alternatives that converge

to the null at a certain rate, the proposed test, unlike existing omnibus tests, cannot
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be powerful, because under the local alternatives with Cn = 1/
√
n, the method can

only estimate q to be 1. Thus, the estimate B̂ converges to β, and when the other

directions in B are orthogonal to β and the function has some special structure, our

test may not have good power. However, this does not mean that our test cannot

detect any local alternative models. When the convergence rate Cn becomes slower,

the RERE can still estimate B well by choosing a suitable ridge value cn and then

the alternatives can be detected. Research is ongoing to derive a more powerful test

under local alternatives.
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Figure 1: The empirical size and power curves of T PDEE
n , T SZ

n and TZH
n in Example 1.

Table 1: Empirical sizes and powers of T PDEE
n , TZHB

n , TZH
n and TGWZ

n for Example 3

with p = 8.

a TPDEE
n TZHB

n TZH
n TGWZ

n

n 50 100 200 50 100 200 50 100 200 50 100 200

0 0.0560 0.0570 0.0460 0.0400 0.0450 0.0580 0.0240 0.0270 0.0430 0.0350 0.0610 0.0510

0.2 0.2410 0.2530 0.3820 0.0480 0.0630 0.0810 0.0260 0.0390 0.0600 0.0760 0.1100 0.1830

0.4 0.4220 0.5660 0.8460 0.0650 0.1140 0.1700 0.0460 0.0810 0.1430 0.1220 0.2750 0.4710

0.6 0.5450 0.7460 0.9650 0.0980 0.1810 0.3860 0.0690 0.1670 0.3590 0.2120 0.4460 0.7680

0.8 0.6360 0.8750 0.9870 0.1230 0.2670 0.5380 0.1070 0.2730 0.5780 0.2840 0.6070 0.9230

1.0 0.7230 0.9290 0.9930 0.1600 0.3510 0.7220 0.1330 0.3820 0.7330 0.3920 0.7440 0.9720
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n , T SZ

n and TZH
n in Example 2.
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Table 2: Empirical sizes and powers of T PDEE
n , T SZ

n , TZH
n and TGWZ

n for Example 4

with p = 4 and correlated covariates.

a TPDEE
n TSZ

n TZH
n TGWZ

n

n 50 100 200 50 100 200 50 100 200 50 100 200

0 0.0620 0.0570 0.0520 0.0310 0.0390 0.0500 0.0380 0.0390 0.0410 0.0510 0.0530 0.0450

0.2 0.1020 0.1670 0.2070 0.0520 0.0600 0.1390 0.0550 0.0690 0.0820 0.0810 0.1110 0.1670

0.4 0.2350 0.4160 0.5870 0.0920 0.1560 0.4060 0.0880 0.1490 0.2720 0.1530 0.2980 0.5220

0.6 0.4310 0.6600 0.8850 0.1560 0.3780 0.7260 0.2150 0.3740 0.5950 0.2980 0.6110 0.8520

0.8 0.5820 0.8540 0.9780 0.2680 0.5420 0.9180 0.3690 0.5860 0.8850 0.5410 0.8280 0.9690

1.0 0.6960 0.9510 0.9960 0.2920 0.7300 0.9800 0.5300 0.7830 0.9640 0.7040 0.9610 0.9990
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Table 3: Sizes and powers of T PDEE
n for Example 5.

a n=50 n=100 n=200 n=400

Case 1 with p = 4 0 0.0680 0.0590 0.0560 0.0500

and q = 1 0.2 0.1720 0.1720 0.2940 0.6420

0.4 0.2620 0.5120 0.8740 1.0000

0.6 0.5080 0.8950 1.0000 1.0000

0.8 0.6520 0.9640 1.0000 1.0000

1 0.7020 0.9840 1.0000 1.0000

Case 2 with p = 4 0 0.0580 0.0550 0.0530 0.0480

and q = 2 0.2 0.0690 0.0960 0.1390 0.3760

0.4 0.1100 0.2460 0.6910 0.9970

0.6 0.2120 0.5730 0.9850 1.0000

0.8 0.3040 0.8660 1.0000 1.0000

1 0.4210 0.9380 1.0000 1.0000

Case 3 with p = 8 0 0.0630 0.0560 0.0550 0.0500

and q = 2 0.2 0.1330 0.1820 0.2960 0.5500

0.4 0.2450 0.4150 0.7190 0.9520

0.6 0.3570 0.5970 0.9110 0.9980

0.8 0.4210 0.7240 0.9510 1.0000

1 0.5010 0.8020 0.9780 1.0000

Case 4 with p = 4 0 0.0600 0.0450 0.0470 0.0510

and q = 1 0.2 0.1020 0.1540 0.2700 0.4960

0.4 0.2170 0.4270 0.7440 0.9820

0.6 0.4050 0.7240 0.9730 1.0000

0.8 0.5410 0.8970 0.9990 1.0000

1.0 0.6460 0.9560 0.9990 1.0000
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