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Abstract

This paper provides some useful tests for fitting a parametric single-index regression

model when covariates are measured with error and validation data is available. We

propose two tests whose consistency rates do not depend on the dimension of the

covariate vector when an adaptive-to-model strategy is applied. One of these tests has

a bias term that becomes arbitrarily large with increasing sample size but its asymptotic

variance is smaller, and the other is asymptotically unbiased with larger asymptotic

variance. Compared with the existing local smoothing tests, the new tests behave

like a classical local smoothing test with only one covariate, and still are omnibus

against general alternatives. This avoids the difficulty associated with the curse of

dimensionality. Further, a systematic study is conducted to give an insight on the

effect of the values of the ratio between the sample size and the size of validation data

on the asymptotic behavior of these tests. Simulations are conducted to examine the

performance in several finite sample scenarios.

Key words: Dimension reduction; error in variable model; model check; adaptive test.

1 Introduction

Consider the nonparametric regression model with measurement error where the response

variable Y , a p-dimensional unobservable predicting covariate X and its observable cohort

vector W are related to each other by the relations

Y = µ(X) + ε, W = X + U. (1.1)

Here p is assumed to be known, and the variables ε, U, and X are assumed to be mutually

independent with E(ε) = 0 = E(U). Hence µ(x) = E(Y |X = x) is the usual regression

function. This is the so called nonparametric errors in variables (EIVs) regression model. The

monographs of Fuller (1987), Cheng and Van Ness (1999), and Carroll, Ruppert, Stefansky

and Crainiceanu (2006) contain a vast number of real data examples where this model is

naturally applicable.

1The corresponding author. Email: lzhu@hkbu.edu.hk. The research described here was supported by

a grant from the Research Council of Hong Kong, and a grant from Hong Kong Baptist University, Hong

Kong. This is a part of the PHD thesis of the second author.
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The problem of interest here is to fit a parametric single-index regression model to the

regression function, i.e., for a known real valued link function g we wish to test the hypothesis

H0 : µ(x) = g(β>x), for all x ∈ Rp and for some β ∈ Rp, versus

H1 : H0 is not true.

Throughout this paper, a> denotes transpose of the vector a ∈ Rp. The model is called

parametric single index although it is also often called generalized linear model. This is

because it is in effect slightly different from the generalized linear model that has its special

definition in the literature. A motivation for considering the above testing problem is that in

practice model checking is necessary to prevent possible wrong conclusions when an improper

model is used. Moreover, efficient and accurate inference is possible in a parametric model

than in a nonparametric or semiparametric model.

Hart (1997) described numerous tests for lack-of-fit of a parametric regression model in

the classical regression set up where X is observable. Since the mid 1990’s, there has been an

explosion of activities in this area as is summarized in the recent review by Gonzlez-Manteiga

and Crujeiras (2013).

It is well known that the naive application of the inference procedures valid for the classi-

cal regression set up, where one replaces X by W , often yields inefficient inference procedures

for the EIV models, see, e.g. Fuller (1987) and Carroll et al. (2006). An alternative approach

adopted in the literature is that of calibration, where the original regression relationship is

transferred to the regression E(Y |W ) relationship between the response Y and the cohort

W . Zhu, Cui and Ng (2004) established a sufficient and necessary condition for the linearity

of E[Y |W ] with respect to W when g(β>x) = α+ β>x. A score-type lack-of-fitness test was

proposed based on this fact. This testing procedure has been extended to polynomial EIVs

models by Cheng and Kukush (2004) and Zhu, Song and Cui (2003) independently, without

the normality restriction on the covariates. Hall and Ma (2007) proposed a test based on

deconvolution methods assuming that the distribution of the covariate errors is known. Zhu

and Cui (2005) proposed a test for fitting a general linear model α + β>h(x), where h is a

vector of known functions. Song (2008) proposed a test for fitting β>h(x) to µ(x), without

requiring the knowledge of the density of X. He used the deconvolution kernel density es-

timator. Koul and Song (2009) developed an analog of the minimum distance tests of Koul

and Ni (2004) to fit a parametric form to the regression function for the Berkson measure-

ment error models. Koul and Song (2010) developed tests for fitting a parametric function

to the nonparametric part in a partial linear regression model under a similar condition.

These latter five references assume that density of the measurement error U is known. All

of these authors employ the calibrated methodology and test for fitting the parameter form

of the regression function E[Y |W ] implied by H0.

There is no valid test in the literature for fitting a parametric model under general

conditions where the distributions of both X and U may not be known. Some of the main
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reasons for this are the difficulties associated with the estimation of the calibrated regression

function and some of the other underlying functions involved in the construction of a test

statistic. However, it is possible to circumvent some of these difficulties when there are

validation data available. Stute, Xue and Zhu (2007) used validation data and empirical

likelihood methodology to develop confidence regions for some underlying parameters. Song

(2009) developed a test for general EIVs models with the assistance of validation data without

assuming any knowledge of the distributions ofX or U , under somewhat restrictive conditions

on the kernel function and bandwidth. Dai, Sun and Wang (2010) constructed a test with

validation data for the same model as in Zhu and Cui (2005). They used specific models

and relaxed some conditions in Song (2009). Xu and Zhu (2014) considered a nonparametric

test for partial linear EIVs models with validation data. All of these tests are based on local

smoothing methodology.

In the classical regression setup, it is known that a common property of lack-of-fit tests

for fitting a parametric regression model based on nonparametric smoothing methodology is

that the rate of consistency of the test statistics is 1/
√
nhp/2. That is, the null distribution

of a suitably centered and scaled test statistic multiplied by
√
nhp/2 has a weak limit, and

these tests can detect local alternatives distinct from the null only at this rate. When p

is even 2 or larger, this rate can be very slow. Consequently, for moderate sample sizes,

local smoothing tests cannot maintain the significance level well and have low power even

for p = 2 or 3. See, e.g., Zheng (1996), Koul and Ni (2002), and several other cited references

for this phenomena. It is expected that the same fact will continue to hold for various local

smoothing tests in the EIVs setup.

The main goal of the present paper is to propose tests of dimension reduction nature

when validation data is available, which do not suffer from the above slow rate of consis-

tency. Specifically, the tests do not suffer severely from the curse of dimensionality and can

well maintain the significance level with good power performance for moderate finite sample

sizes. Towards this goal we proceed as follows. First, we discuss sufficient dimension reduc-

tion (SDR) technique as illustrated in Cook (1998), Li and Yin (2007), and Carroll and Li

(1992). The goal is to have a technique such that the dimension of X can be reduced to

one-dimensional projection β>X under the null hypothesis, where β is just the projection

direction in the model (1.1) and to B>X automatically under the alternative, where B is a

p × q orthonormal matrix with q ≤ p to be specified. Second, based on dimension reduc-

tion, we can then construct a test with the consistency rate of 1/
√
nh1/2 (or 1/(nh1/2) when

a quadratic form is used) when the size N of validation data is proportional to or larger

than the sample size n. When N is much smaller than n, the consistency rate can be slower.

Therefore, the third issue is to investigate the relationship between the asymptotic behaviour

of the tests and the size of validation data set. In Section 3, a systematic study is performed

to analyze the three different scenarios: N/n → λ, as min(n,N) → ∞, where λ = 0, ∞, or

0 < λ < ∞. Another interesting issue is raised during the construction procedure. When
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validation data are used to define the nonparametric kernel estimate of E(Y |W ) such that

the residuals can be derived, the resulting test would have a bias term going to infinity as

n→∞. It motivates us to consider a bias correction.

To efficiently employ sufficient dimension reduction theory (SDR) of Cook (1998) or CMS

of Cook and Li (2002), we consider the alternatives H̃1 : µ(x) = G(B>x), for all x ∈ Rp,

and for some p× q orthonormal matrix B with an unknown q ≤ p and for some real valued

function G. When there are no measurement errors in covariates, Guo, Wang and Zhu (2015)

proposed a dimension-reduction model-adaptive approach to circumvent the dimensionality

problem. To implement this methodology one needs to estimate the matrix B. There are

a number of proposals available in the literature for this purpose. Examples include sliced

inverse regression (SIR) of Li (1991), sliced average variance estimation (SAVE) of Cook and

Weisberg (1991), contour regression (CR) of Li et al. (2005), directional regression (DR) of

Li and Wang (2007), discretization-expectation estimation (DEE) of Zhu et al. (2010a), and

the average partial mean estimation (APME) of Zhu et al. (2010b).

In this paper, we construct an adaptive-to-model test in the current set up. The proposed

test is based on the Zheng’s test (1996). To this end, we consider a different kind of calibration

where instead of conditioning on W we condition on β>W under the null hypothesis and

on B>W under the alternatives, and then constructs a test for this testing problem. Thus,

our strategy is sketched as follows: 1). Use the data (w1, y1), · · · , (wn, yn) to estimate β

under the null hypothesis and automatically the matrix B by a q × q orthogonal matrix C

under the alternative; 2). Use the validation data to estimate the conditional expectation

E[g(β>X)|β>W ]. 3). Compute the test statistic using these regression function estimates.

As mentioned above, the test statistic is asymptotically biased. It is because of the

dependence among the residuals when we use all the validation data to obtain the estimators

in Step 2. To reduce the bias, we propose a bias correction method to construct another

test. In the simulation studies, we will compare their performance.

The paper is organized as follows: Section 2 contains a brief description of the test statistic

construction. Since the estimation the matrix B plays a key role in having the dimension

reduction property of the test, we review a widely used dimension reduction method in this

section. The needed assumptions are also stated in this section. The asymptotic properties

of the test statistic under the null and alternative hypotheses are described in Section 3.

Particularly, a systematic study is conducted on the asymptotic behaviors of the tests under

the three scenarios where the ratio N/n of the validation data N and the sample size n

is small, moderate and large. Section 4 presents the simulation results. The proofs are

postponed to Appendix.

Before closing this section, we describe some notation used in the sequel. The sample

is denoted by {(yi, wi), i = 1, · · · , n} and the validation data is dented by {(w̃s, x̃s), s =

1, · · · , N}. The two data sets are assumed to independent of each other. Further, in various

expressions below, i and j often represent the indices of primary data, while s and t those
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of validation data. Throughout this paper, →p denotes the convergence in probability and

”→D” stands for the convergence in distribution. All limits are taken as n∧N →∞, unless

specified otherwise. The normal distribution with mean a and variance b is denoted by

N(a, b).

2 Methodology development

2.1 Test construction: a dimension-reduction adaptive-to-model

strategy

In this subsection, we describe the details of test statistics construction. It consists of three

components as follows.

1). Model adaptation. To proceed further, let r(w, β) = E[g(β>X)|W = w], w ∈ Rp, denote

the new regression function under the null hypothesis. In order to avoid the above mentioned

high dimensionality problem of nonparametric estimators of r(·, ·) due to the dimension of

W , we adopt the following dimension reduction adaptive-to-model strategy (DREAM). Re-

call that W = X + U . Note that under H0, the regression function g(β>X) depends on X

only through the linear combination β>X. It is then natural to consider the situation where

the calibrated regression function E(Y |W ) depends on W only through a linear combina-

tion of the components of W , i.e., when E(Y |W ) = E[g(β>X)|W ] = E[g(β>X)|β>W ] :=

r(β>W,β). Similarly, under the alternative, we assume that E(Y |W ) = E(Y |B>W ) =

E(G(B>X)|B>W ). Thus the transferred hypotheses become as follows:

H0 : P{E(Y |W ) = r(β>W,β)} = 1, for some β ∈ Rp, (2.1)

versus the transferred alternative hypothesis:

H1 : P{E(Y |W ) = E(Y |B>W ) 6= r(β>W,β)} = 1, for all β ∈ Rp . (2.2)

Generally the two hypotheses H0 and H0 are not exactly equivalent. But, as in Song (2008),

when the family densities fβ>U(β>w− ·) is a complete family over the parameter β>w ∈ R,

the equivalence can hold.

2). Test statistic construction. Let e = Y −r(β>W,β). To unify the null and alternatives,

let B = βc under H0 where c is a constant, hence E[e|β>W ] = E[e|B>W ] = 0. Moreover,

following Zheng (1996),

E[eE[e|β>W ]f(β>W )] = E[E2(e|β>W )f(β>W )] = E[E2(e|B>W )f(B>W )] = 0,

and under H1, E[E2(e|B>W )f(B>W )] > 0. To obtain residuals for the construction of the

test statistics, we assume the availability of validation data (ws, xs), s = 1, · · · , N , which

is used to estimate the function r. Note that r is an unknown function of β>W . In order
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to construct an estimator r(β>W,β), let M(·) be a kernel function, vN be a bandwidth

sequence, and set MvN (·) = v−1
N M(·/vN). Then an estimator of r(β>W,β) is

r̂(β̂>w, β̂) =

∑N
s=1MvN (β̂>w − β̂>w̃s)g(β̂>x̃s)∑N

s=1MvN (β̂>w − β̂>w̃s)
, (2.3)

where β̂ is a consistent estimate of β based on primary data. Define the residuals

ei = yi − r(β>wi, β), êi = yi − r̂(β̂>wi, β̂), i = 1, · · · , n. (2.4)

To estimate the conditional expectation of the error e, given B>W , we also need an esti-

mator B̂(q̂) of B that is consistent to β/‖β‖ under the null, and to B under the alternative.

This model adaptation property of B̂(q̂) can enable the test statistic to adapt to model and

then to alleviate the curse of dimensionality. This estimator will be specified later. For the

moment assume the existence of such an estimator.

To proceed further, let K be another kernel function and h ≡ hn another bandwidth.

Then an estimator of the product E[e|B>W ]f(B>W ) at B̂>wi is given by

Ê[ei|B̂(q̂)>wi]f̂(B̂(q̂)>wi) =
1

n− 1

n∑
j 6=i

Kh(B̂(q̂)>wj − B̂(q̂)>wi)êj.

The analog of the Zheng’s test statistic in the current set up is based on an estimator of

E[eE[e|W ]f(W )], given by

Ṽn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

êiKh(B̂(q̂)>(wi − wj))êj. (2.5)

3). Bias correction. From the technical details in Appendix, we can see that the test statistic

in (2.5) has non-negligible asymptotic bias and thus its limiting null distribution has a mean

tending to infinity unless n/(Nh1/2) → 0, which makes the bias term vanish. The main

reason is the dependence between the residuals êi and êj for i 6= j when all validation data

are used to estimate the function r. There are two ways to correct for this bias. One is to

center the test statistic at a suitable estimator of this bias. This is a traditional method, and

has been used. Alternately, we propose a block-wise estimation approach to asymptotically

eliminate the bias as follows. Assume N is a positive even integer. We halve the whole

validation data set, use the two halves to construct two estimators of the regression function

r, which results in the two sets of residuals as follows. Let

r̂(1)(β̂
>w, β̂) =

∑N/2
s=1 MvN (β̂>w − β̂>w̃s)g(β̂>x̃s)∑N/2

s=1 MvN (β̂>w − β̂>w̃s)
, (2.6)

r̂(2)(β̂
>w, β̂) =

∑N
s=N/2+1MvN (β̂>w − β̂>w̃s)g(β̂>x̃s)∑N

s=N/2+1MvN (β̂>w − β̂>w̃s)
,

êi(1) := yi − r̂(1)(β̂
>wi, β̂), êi(2) = yi − r̂(2)(β̂

>wi, β̂), i = 1, · · · , n.
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Use these residuals to define the test statistic

Vn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

êi(1)Kh(B̂(q̂)>wi − B̂(q̂)>wj)êj(2) (2.7)

to perform the test. We shall prove that the asymptotic bias of Vn vanishes, but its asymp-

totic variance gets larger than that of Ṽn. Note that Ṽn and Vn are non-standardized, the

standardizing constants will be specified in Section 3. Here, we mention a significant fea-

ture of both of these statistics, which is that their asymptotic behavior is like that of a test

statistic with one-dimensional covariate X, i.e., their consistency rate is 1/
√
nh1/2, which in

turn greatly alleviates the dimensionality issue.

From the above construction, it is obvious that estimating adaptively the matrix B under

the null and alternative hypothesis plays a crucial role for dimension reduction. The next

subsection is devoted to this issue.

2.2 Estimation of B and β

To achieve the adaptation property of the estimators of B and β mentioned above, the key

is to derive an estimator of B up to an q × q orthonormal matrix C without depending on

the assumed models under the null and alternative hypotheses. With measurement errors,

Carroll and Li (1992) extended sliced inverse regression (SIR, Li 1991) to errors-in-variables

regression models. Lue (2004) extended the principal Hessian directions (pHd, Li 1992)

method to the surrogate problem. Li and Yin (2007) established a general invariance law

between the surrogate and the original dimension reduction spaces when X and U are jointly

multivariate normal. If X or U is not normally distributed, they suggested an approximation

based on the results of Hall and Li (1993). See also Zhang, Zhu and Zhu (2014).

As the discretization-expectation estimation method (DEE) of Zhu et al. (2010a) is simple

to implement without selecting the number of slices, we adopt it to errors-in-variables models

when SIR is used. Write SY |X as the central subspace that is the intersection of all column

spaces spanned by the columns of B that makes Y conditionally independent of X, given

B>X, i.e., Y⊥⊥X|B>X. This means that identifying SY |X is equivalent to identifying a base

matrix B̃ that is equal to BC> for a q × q orthogonal matrix C. Note that the function

G is unknown in the alternative. We can rewrite G(B>X) as G̃(B̃>X). In other words,

identifying B̃ is enough for model identification. Without notational confusion, we write

B̃ = B throughout the rest of this paper.

To extend the DEE method to the setting with measurement errors, we first give a

very brief review. Assume that Cov(X) is the identity matrix. As is known, SIR is fully

dependent on the reverse regression function E(X|Y ) such that we can consider the eigen-

decomposition of its covariance matrix Cov(E(X|Y )). The eigen vectors associated with

nonzero eigen values of this matrix form the base matrix B. SIR-based DEE uses the matrix
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Λ = E{Cov(E(X|Ỹ (T )))} as the target matrix, where Ỹ (t) = I(Y ≤ t), t ∈ R and T is

an independent copy of Y . Because the measurement error U is independent of Y , and

thus, when X is replaced by W , at the population level, nothing is changed about eigen-

decomposition and eigen vectors. We use surrogate predictors Cov(X,W )Σ−1
W W , which

forms the least squares prediction of X when W is given. Carroll and Li (1992) pointed

out that sliced inverse regression (SIR) with the surrogate predictors can produce consistent

estimators of SY |X . In other words, all steps of estimation are exactly the same as those in

the without measurement errors set up. The reader can refer to Zhu et al. (2010a) for more

details.

When we use data to construct an estimate Λn of Λ, we can then obtain an estimate B̂(q̂)

of B, which consists of the q̂ eigenvectors of Λn with non-zero eigenvalues, where q̂ is defined

as follows, using the BIC type criterion proposed by Zhu et al. (2006). Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p
be the eigen values of the matrix Λn in descending order. An estimate q̂ of q is given by

q̂ = arg max
l=1,··· ,p

{
n

2
×
∑l

i=1{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

− 2×Dn ×
l(l + 1)

2p

}
, (2.8)

where Dn is a sequence of constants not depending on the data. Here we take Dn = n1/2.

The following consistency results can be obtained from Zhu et al. (2010a).

Proposition 2.1 Suppose the assumptions in Zhu et al. (2010a) hold and N/n→ λ. Then

the following hold.

(1). Under H0, P (q̂ = 1)→ 1, and B is a vector proportional to β. Moreover,

B̂(q̂)−B = Op(1/
√
n), 0 < λ ≤ ∞, (2.9)

= Op(1/
√
N), λ = 0.

(2). Under H1, P (q̂ = q)→ 1, B is a p× q orthonormal matrix and B̂(q̂) satisfies (2.9).

There are various estimators of β for EIVs models available in the literature. Here we

shall focus on the estimators proposed by Lee and Sepanski (1995) for linear and nonlinear

EIVs regression models. Their estimator under the null hypothesis is

β̂ = arg min
β

(Y −D(D>v Dv)
−1Dvg(Xvβ))>(Y −D(D>v Dv)

−1Dvg(Xvβ))

where Xv is the N × p matrix whose sth row is x̃Ts , s = 1, · · · , N , Y is a n × 1 vector,

and g(Xvβ) represents N × 1 vector [g(β>x̃1), · · · , g(β>x̃N)]>. The matrices D and Dv are

design matrices according to g(·). More precisely, D is the n × k matrix whose i-th row

denoted by w̄
′
i, is a vector consisting of polynomials of wi, while Dv is the corresponding

matrix of validation data, whose s-th row w̄s is a vector consisting of polynomials of w̃s.

For linear model, w̄i = wi and w̄s = w̃s. For nonlinear model, we let w̄i(w̄s) be the vector
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consisting of a constant and the first two order polynomials of wi(w̃s). Lee and Sepanski

(1995) assume that lim
√
n/N exists. They show that if this limit is non-negative and finite

then β̂ is root-n consistent for β, and if lim
√
n/N = ∞, then β̂ is a root-N consistent for

β. More precisely, we have the following proposition.

Proposition 2.2 Suppose the assumptions for Proposition 2.2 in Lee and Sepanski (1995)

hold.

(1). Suppose in addition H0 holds and N/n→ λ. Then for 0 < λ ≤ ∞,
√
n(β̂−β) = Op(1),

while for λ = 0,
√
N(β̂ − β) = Op(1).

(2). In addition, suppose the following sequence of local alternatives holds, where Cn → 0.

H1n : µ(x) = g(β>x) + CnG(x).

Then

β̂ − β0 = Cn
{
E[g′(β>X)XW̄>]E−1[W̄W̄>]E[g′(β>X)W̄X>]

}−1

×E[g′(β>X)XW̄>]E−1[W̄W̄>]E[W̄G(X)](1 + op(1))

+Op(1/
√
n) +Op(1/

√
N).

where W̄ is a vector consist of polynomials of W and g′(t) is the derivative of g(t) with

respect to t.

3 Asymptotic distributions

3.1 Limiting null distribution

In this section, we will establish the asymptotic null distribution of the proposed test statistics

Ṽn in (2.5) and Vn in (2.7). Define

Z = B>W, σ2(Z) = E[e2|Z], ∆(Z) = E[G(B>X)|Z], (3.1)

η = g(β>X)− r(β>W,β), ξ2(Z) = E[η2|Z],

where e is defined in (2.4). Write Z as Z̃, when W is replaced by validation data W̃ .

To proceed further we now state the assumptions needed here.

Assumptions:

(f). The support C of Z is a compact subset of the support of Z̃ and bounded away from

the boundary of the support of Z̃. The density f of Z has bounded partial derivatives up

to order ` ≥ 1 and satisfies

0 < inf
z∈C

f(z) ≤ sup
z∈C

f(z) <∞.
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(g). g(β>x) is a measurable function of x for each β and is differentiable in β up to order

`+ 1, and E
∥∥∂g(β>

0 X)

∂β

∥∥2
<∞.

(r). The function r(β>w, β) has bounded partial derivatives with respect to βTw up to order

`+ 1, and E[r2(β>W,β)] <∞, β ∈ Rp.

(G). E[∆2(Z)] <∞, E[(G(B>X)−∆(Z))4] <∞, and ∆(z) has bounded partial derivatives

up to order `.

(W). max1≤k≤pE[W 2
(k)|Z] <∞, W(k) represents the k-th coordinate of W , k = 1, · · · , p.

(e). E[(σ2(Z))2] < ∞, E[(ξ2(Z))2] < ∞, and σ2(z) and ξ2(z) are uniformly continuous

functions.

(K). K is a spherically symmetric and continuous kernel function with bounded support and

of order `, having all derivatives bounded.

(M). M is a symmetric and continuous kernel function with bounded support and of order

`, having all derivatives bounded.

(h1). h→ 0, vN → 0, vN/h→ 0.

(h2). h→ 0, vN → 0, h4/v5
N → 0.

(h3). nh2 →∞, Nv2
N →∞, nv2`

N → 0 and nhvN/N → 0.

(h4). nh5/2 →∞, Nv2
N →∞, nv2`

N → 0 and nhvN/N → 0.

(h5). nh→∞, Nh2 →∞, Nv
1/2
N /(nh1/2)→ 0 and Nv

1/2+2`
N → 0.

(h6). nhq →∞, NvN →∞.

The positive integer ` in all of the above assumptions is the same as in the assumption

(f). For the consistency of β̂ and B̂(q̂), some additional conditions are also needed. The

reader can refer to Lee and Sepanski (1995) and Zhu et al. (2010a) for more details.

Remark 3.1 Conditions (g), (r), (W), (e) are very common for the asymptotic normality

of the proposed test statistics. The lower bound assumption on f is typically designed for

the nonparametric estimation of the corresponding regression function r(β>W,β) and the

conditional mean E[e|Z]. This is a commonly used condition. In assumption (h6), nhq →∞
is to ensure the consistency in quadratic mean of kernel density estimator under some global

alternative. If vN/h → 0, some convolution of kernel functions can be approximated by

kernel function. If N/n→∞ or a finite constant, this condition is easily satisfied. We choose

vN = O((N/2)−2/5) in the simulation studies later. But when N/n → 0, the condition is

changed to h/vN → 0.

To proceed further, we need some more notation as follows:

zi = B>wi, gi = g(β>xi), ri = r(β>wi, β), ηi = gi − ri. (3.2)

10



Write z̃s, g̃s, r̃s and η̃s for the entities in (3.2) when wi is replaced by validation data w̃s in

there. When β and B are respectively replaced by their estimators β̂ and B̂(q̂) in the above

definitions, write the respective ẑi, ĝi, r̂i and η̂i for zi, gi, ri and ηi, and similarly write the

respective ˆ̃zs, ˆ̃gi, ˆ̃ri and ˆ̃ηi for z̃i, g̃i, r̃i and η̃i.

To state the next theorem we need to define

µ = K(0)E[ξ2(z)]/(Nh), τ1 = 2

∫
K2(u)du

∫
(σ2(z))2f 2(z)dz, (3.3)

τ2 =

∫
K2(u)du

∫
σ2(z)ξ2(z)f 2(z)dz, τ3 = 2

∫
K2(u)du

∫
(ξ2(z))2f 2(z)dz.

where σ2(·) and ξ2(·) are defined in (3.1) and f is the density of Z = B>W . Consistent

estimates of Σi, i = 1, 2, 3 under H0 are given by

τ̂1 =
2

n(n− 1)

n∑
i=1

n∑
j 6=i

1

hq̂
K2(

ẑi − ẑj
h

)ê2
i ê

2
j , τ̂2 =

1

nN

n∑
i=1

N∑
s=1

1

hq̂
K2(

ẑi − ˆ̃zs
h

)ê2
i
ˆ̃η2
s(3.4)

τ̂3 =
2

N(N − 1)

N∑
s=1

N∑
s′ 6=s

1

hq̂
K2(

ˆ̃zs − ˆ̃zs′

h
)ˆ̃η2
s
ˆ̃η2
s′ .

We are now ready to state

Theorem 3.1 Suppose H0 and the conditions (f), (g), (r), (W), (e), (K), (M), (h1) and

(h3) hold, and that N/n→ λ, 0 < λ ≤ ∞. Then nh1/2
(
Ṽn − µ

)
→D N(0, τ̃), where

τ̃ = τ1 +
2

λ
τ2 +

1

λ2
τ3, 0 < λ <∞,

= τ1, λ =∞.

Here, consistent estimators of µ and τ under H0 are given by

µ̂ =
1

N2h
K(0)

N∑
s=1

ˆ̃η2
s , ˆ̃τ = τ̂1 +

2

λ
τ̂2 +

1

λ2
τ̂3, 0 < λ <∞,

with τ̂i’s as in (3.4). The Ṽn test rejects H0 whenever Ṽn > ˆ̃τ 1/2(nh1/2)−1zα + µ̂, where zα is

the upper 100(1− α)% quantile of the standard normal distribution.

The above theorem shows that the asymptotic variance of Ṽn consists of the three parts

when 0 < λ <∞. The part τ1 reflects the variation in the regression model, τ3 is the variation

caused by the measurement error while the part τ2 is the intersection of the variation due to

the regression model and measurement error.

The next result gives the asymptotic null distribution of the Vn statistic of (2.7). As can

be seen from this result, Vn does not have any asymptotic bias.
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Theorem 3.2 Under the conditions of Theorem 3.1, nh1/2Vn →D N(0, τ), where

τ = τ1 +
4

λ
τ2 +

2

λ2
τ3, 0 < λ <∞,

= τ1, λ =∞,

where τi, i = 1, 2, 3, are as in (3.3).

To studentize Vn, we use the following consistent estimate of τ in the case 0 < λ <∞.

τ̂ = 2
n(n−1)

∑n
i=1

∑n
j 6=i

1
hq̂
K2(

ẑi−ẑj
h

)ê2
i(1)ê

2
j(2) + 4

λnN

∑n
i=1

∑N
s=N/2+1

1
hq̂
K2( ẑi−

ˆ̃zs
h

)ê2
i(1)

ˆ̃η2
s

+ 4
λnN

∑n
i=1

∑N/2
t=1

1
hq̂
K2( ẑi−

ˆ̃zt
h

)ê2
i(2)

ˆ̃η2
t + 16

λ2N2

∑N/2
t=1

∑N
s=N/2+1

1
hq̂
K2(

ˆ̃zs−ˆ̃zt
h

)ˆ̃η2
s
ˆ̃η2
t ,

where s and t are indices of the two sets of validation data respectively, η̂t or η̂s is estimated

by the other half of validation data. That is, ˆ̃ηt = g(β̂>x̃t) − r̂(2)(β̂
>w̃t, β̂), t = 1, · · · , N/2

and ˆ̃ηs = g(β̂>x̃s) − r̂(1)(β̂
>w̃s, β̂), s = N/2 + 1, · · · , N, where r̂(1) and r̂(2) are defined in

(2.6). The standardized test statistic is

Tn = τ̂−1/2nh1/2Vn, 0 < λ <∞,
= τ̂

−1/2
1 nh1/2Vn, λ =∞,

where τ̂1 is as in (3.4). According to the Slusky theorem, Tn is asymptotically standard

normal. At the significance level α, the null hypothesis is rejected when Tn > zα. For large

λ, the terms about τ2 and τ3 vanish in the asymptotic variance, and thus, the estimated

variance τ̂ is replaced by τ̂1.

Remark 3.2 A significant feature of this test is that we only need to use the standardizing

sequence nh1/2, which is the same as the one used in the classical local smoothing tests when

X is one-dimensional. This shows that the test statistic has a much faster convergence rate

to its limit compared to some of the classical tests that have the rate of order nhp/2. This

greatly assists in maintaining the significance level of this test in finite samples when its

asymptotic null distribution is used to determine the critical values for its implementation.

When N/n→ λ = 0, the standardizing constant will be different because of the plug-in

estimate r̂(·) of the function r(·), as is evidenced by the following theorem.

Theorem 3.3 Suppose H0 and the above conditions (f), (g), (r), (W), (e), (K), (M), (h2),

(h5) hold and that N/n → 0. Then Nv
1/2
N {Ṽn − ν} →D N(0, τ̃), Nv

1/2
N Vn →D N(0, τ),

where ν = ‖β‖(vNN)−1
∫
M2(u)duE[ξ2(Z)], τ := 2τ̃ , and

τ̃ = 2‖β‖
∫ (∫

M(u)M(u+ v)du
)2

dv

∫
(ξ2(z))2f 2(z)dz.
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3.2 Asymptotic Power

In this section, we assume N/n → λ, λ a positive constant and investigate the asymp-

totic properties of the test statistic Vn under global and local alternatives. This is because

the asymptotic properties can be much more easily derived than those for Ṽn. Consider a

sequence of alternatives

H1n : µ(x) = g(β>x) + CnG(B>x), x ∈ Rp, (3.5)

where G(·) satisfies E(G2(B>X)) <∞ and β is a column of B. When Cn is a fixed constant,

the alternative is a global alternative and when Cn = n−1/2h−1/4 tends to zero, H1n specify

the local alternatives of interest here. Note that the asymptotic properties of the estimates

B̂(q̂) and β̂ will affect the behavior of the test statistic Vn. The asymptotic results of β̂ have

been illustrated in Proposition 2.2. Thus, we discuss the result about the consistency of q̂

here. Under the local alternatives, it is no longer consistent for the dimension q.

Theorem 3.4 Suppose the conditions in Zhu et. al (2010a) hold. Under H1n of (3.5) with

Cn = n−1/2h−1/4 → 0, P (q̂ = 1)→ 1.

However, this inconsistency does not hurt the power performance of the test. We will see

below in a finite sample simulation study that the test can be much more powerful than the

classical local smoothing tests in the literature.

Theorem 3.5 Under the alternatives of (3.5), the following results are hold:

(i)Suppose (f), (g), (r), (G), (W), (e), (K), (M), (h1) and (h6) hold. Under the global

alternative with fixed Cn,

Vn/τ̂ → V > 0. (3.6)

(ii) Suppose (f), (g), (r), (G), (W), (e), (K), (M), (h1) and (h4) hold. Then, under the

local alternatives H1n with Cn = n−1/2h−1/4, nh1/2Vn →D N(∆, τ), where τ is given in

Theorem 3.2 and ∆ = E
[
{∆(Z)− E[g′(β>0 X)X>|Z]H(β0)}2f(Z)

]
.

Remark 3.3 The result (3.6) implies the consistency of the Tn test gainst the class of the

above fixed alternative. It also implies that under the global alternatives, the test statistic

can diverge to infinity at a much faster rate than the existing local smoothing tests in the

literature can achieve such as Zheng’s test (1996), which has the consistency rate of the order

1/(nhp/2). The test can also detect the local alternatives distinct from the null at the rate

of order 1/
√
nh1/2 while the classical ones can only detect those alternatives converging to

the null at the rate of order 1/
√
nhp/2.
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4 Numerical studies

This section presents four simulation studies to examine the performance of the proposed

test (Tn). To compare with existing tests, we consider Zheng’s (1996) test (TZhn ) adapted to

the errors-in-variables settings and Song’s (2009) test (T Sn ) as the competitors. The adapted

Zheng’s test is the same as our test except that B>W is replaced by the original W . This is a

typical local smoothing test. Song’s test is a score type test and is designed for EIVs models

with validation data. Consider the linear regression models under the null hypothesis. In

the simulation study 1 below, the matrix B is equal to β and thus, the model is a parametric

single index. The dimension of X is respectively p = 2 and 8. Note that our test fully

uses the information under the null hypothesis that only relates to a single index β. In

addition, we run simulation studies of the test T̃n based on the statistic Ṽn of Theorem 3.1

when 0 < λ < ∞, and illustrate its weakness. The purpose of Study 2 is to confirm that

the proposed test Tn is not a directional test by assuming B = (β1, β2) with q = 2 under the

alternative hypothesis. Study 3 is designed to examine the finite sample performance when

N < n and N > n. Study 4 considers four nonlinear models. All simulations are based on

2000 replications.

Recall that the tests Tn and TZhn are based on the estimates of the quantities that are zero

under the null and positive under the alternative. Because of the asymptotic normality, the

rejection regions of Ṽn, Tn and TZhn are one-sided: {Ṽn > ˆ̃τ 1/2(nh1/2)−11.65+ µ̂}, {Tn > 1.65}
and {TZhn > 1.65} at the 0.05 level of significance. The reported size and power are computed

by #{Tn > 1.65}/2000. For T Sn , the rejection region is two sided and the reported size and

power are computed by #{|T Sn | > 1.96}/2000. Throughout the simulation studies, X is

taken to be multivariate normal with mean zero and covariance matrices Σ1 = Ip×p and

Σ2 = (0.3|i−j|)p×p. The regression model error ε follows standard normal distribution, while

the measurement error U ∼ N(0, 0.5). The kernel function is K(u) = 15
16

(1− u2)2I(|u| ≤ 1)

which is a second-order symmetric kernel and M(u) = K(u).

Bandwidth selection. As the tests involve bandwidth selection in the kernel estimation,

we run a simulation to empirically select the bandwidths for the three tests in the comparison.

Because the significance level maintainance is important, we then select bandwidths such

that the tests can have empirical sizes close to the significance level and retain the use under

other models. To this end, we use a simple model to select them and to check whether they

can be used in general. In our test, there are two bandwidths. As is well known, the optimal

bandwidth in hypothesis testing is still an outstanding problem, but the optimal rate of the

bandwidth in kernel estimation is n−1/(4+q) where n is the sample size. We then adopt its

rate with a search for the constant c1 in h = c1n
−1/(4+q̂). Similarly, for the kernel estimator of

the function r(β>W,β), we choose the window width vN = c2(N/2)−2/5, because we halved

the validation data set of size N . For T̃n, vN is c2N
−2/5. To select proper bandwidths, we

tried different bandwidths to investigate their impact on the empirical size. To reduce the
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computational burden, we consider c1 = c2 = c to see whether such selections can offer

bandwidths for general use. The selection is based on hypothetical models as the primary

target is to maintain the significance level. Thus, we compute the empirical size at every

equal gird point c = (i − 1)/10 for i = 1, · · · 21. In Figure 1, we report the empirical sizes

associated with different bandwidths when the regression model is µ(x) = β>x and p = 2, 8,

n = 100, 200, N = 4× n, and the covariance matrix of X is Σ1. We can see that the test is

not very sensitive to the bandwidth and a value of c = 1.6 may be a good choice for both Tn
and T̃n. For the adapted Zheng’s test, there are also two bandwidths to be selected. As the

optimal rate for the kernel estimation is h = c1n
−1/(4+p), we then also consider c1 = c2 = c.

We found that to maintain the significance level, the bandwidths must be with larger c.

The initial selection provides us an idea to choose a good bandwidth within the equal grid

points as c = 2.5 + (i − 1)/10 for i = 1, · · · 21. The results are also reported in Figure 1.

As for Song’s score test, only one bandwidth is required. We also found a larger bandwidth

is required. Set the bandwidth as vN = cN−1/(4+p) and search for the proper c within the

equal grid points as c = 1 + (i− 1)/10 for i = 1, · · · 21. The reported curves are in Figure 1.

Figure 1. about here

We can see that the empirical sizes of Tn are not sensitively affected by the bandwidths

selected. The curves of empirical size under p = 2 and p = 8 are almost coincident. While

the empirical size of T̃n is slightly effected by dimensionality, but it is still more robust than

that of TZhn and T Sn . A value of c = 1.6 is worthy of recommendation for both, Tn and T̃n.

However, the empirical sizes of TZhn and T Sn associated with the bandwidths are not as robust

as that of Tn. The empirical sizes show the efficient bandwidth changes as p increase. When

p is small, a small h can keep the theoretical size. As p increase, a larger h is necessary.

This phenomenon is particularly serious for TZhn . For the bandwidths of TZhn , c = 3.9 is

appropriate. Finally, c = 2.2 seems to be proper for T Sn .

Study 1. The data are generated from the following model:

H11 : µ(x) = β>x+ a (β>x)2,

H12 : µ(x) = β>x+ a exp(−(β>x)2/2),

H13 : µ(x) = β>x+ 2a cos(0.6πβ>x).

The case of a = 0 corresponds to the null hypothesis and a 6= 0 to the alternatives. In other

words, both the hypothetical and alternative models have a single index B = cβ. Models

under H11 and H12 represent low frequency alternatives while H13 is an example of high

frequency alternative. In H11 and H12, the alternative parts (β>x)2 and exp(−(β>x)2/2

always exist for any nonzero a. While for H13, the alternative part cos(0.6πβ>x) appears

and disappears periodically for a 6= 0, which makes the bandwidth selection process even

more challenging. Because a large bandwidth selected to maintain significance level may
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make the test obtuse to high frequency alternatives. The dimension p equals 2 and 8 such

that we can check the impact from the dimensionality. Let β = (1, 1, · · · , 1)>/
√
p. The

number of validation data is N = 4n. The simulation results are presented in Tables 1, 2

and 3.

Tables 1-3 about here

From these tables we see that when p = 2, T Sn performs very well. This is expected

when the dimension is low or moderate, because the consistency rate of this test is 1/
√
n.

Also, when p is small, TZhn is comparable to Tn as both are local smoothing tests. When

the dimension increases, TZhn and T Sn are however severely impacted by the dimensionality.

The test TZhn behaves much worse. Especially, when p = 8, it breaks down for n = 100 and

regains its power as n increase. The test T Sn is also affected by the dimensionality because

the residuals contain nonparametric estimation by local smoothing technique. Its powers

decrease both for small and large sample size. On the other hand, the dimension-reduction

adaptive-to-model test Tn does not suffer from the curse of dimensionality in the limited

simulation studies presented here. When p is large, Tn performs better than T Sn . The finite

sample power of the T Sn test is poor against the alternatives H13 for both the cases p = 2 and

p = 8. This may be due to the fact that T Sn is a directional test. We illustrate this problem

in the next study.

The comparison between Tn and T̃n is another purpose of this study. We find that the

empirical power of T̃n is slightly higher than that of Tn, but the size of T̃n also tends to be

slightly larger, even when n = 200 and p = 2. Although T̃n has bias, but each residual in T̃n
is estimated by all validation data which is more precise with smaller variance than that of

Tn derived by half validation dat. We can then conclude, based on this limited simulation,

the test T̃n is slightly more liberal than the bias-corrected test Tn, but also slightly more

powerful. These two tests are competitive. Therefore, in the following simulation studies,

we only report the results about Tn to save space.

Study 2. In this study, we aim to design a simulation study to check that the dimension-

reduction model-adaptive test Tn is not a directional test, while Song’s test T Sn is. The data

are generated from the following model:

H14 : µ(x) = β>1 x+ a(β>2 x)2, H15 : µ(x) = 2β>1 x+ a(2β>2 x)3.

Here also, a = 0 corresponds to the null hypothesis and a 6= 0 to the alternatives. The matrix

B = (β1, β2) and then the structural dimension q under the alternative is 2. Let p = 4,

β1 = (1, 1, 0, 0)>/2 and β2 = (0, 0, 1, 1)>/2. The number of validation data is N = 4 × n.

The simulation results are presented in Table 4. From these results, we first observe that

T Sn has good performance under H14, which coincides with that in Study 1. However, the

poor performance under H15 shows that T Sn is a directional test as this alternative cannot be

detected by it at all. At population level, we can see that the conditional expectation of the
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residual is equal to zero under this alternative. In this case, Tn still works well. This lends

support to the claim that Tn is an omnibus test.

Tables 4 about here

Study 3. In this study, we aim to explore the impact of the estimation of r(·) on the

performance of the proposed tests. Small λ = lim(N/n) means that there are not many

validation data available and large λ means the estimator r̂(·) is very close to the true

function r(·). For this purpose, consider N/n = 0.1, 0.5, 4, 8. We only choose these ratios

because if λ is either too small or too large, we need to have too large sample size or too large

size of validation data. These are practically not possible. From Theorem 3.3, we know that

when λ is small, we can have a test with simpler limiting variance. Write the related test as

T
(1)
n . From Theorem 3.2, λ =∞ case, we can also have a test for large N/n. Write it as T

(2)
n .

To examine whether these two variants of the test Tn work or not, we generate data from

the model H11 in Study 1. When the size of validation data is such that N/n = 0.1, 0.5,

T
(1)
n is used, and when N/n = 4, 8, T

(2)
n is applied. As T

(1)
n is a test with very different

convergence rate, we then also need to choose bandwidths suitable for it. Similarly as the

above, we also search for the bandwidths at the rates vN = c1(N/2)−1/3 and h = c2n
−1/(2+q̂).

Let c1 = c2 = c. We found that c = 2 is a good choice. For T
(2)
n , only the asymptotic

variance changes, we then still use the same bandwidths as before. When λ = 0.1, 0.5, we

then use larger sample size of validation data N = 100, 200, otherwise, N is too small to

make the tests well performed. The simulation results are presented in Table 5.

Table 5 about here

From Table 5, we have the following two observations. First, for λ = 0.1, Tn is more

conservative with lower power than T
(1)
n . This seems to say, Tn is less sensitive to the

alternative model than T
(1)
n . This phenomenon would come from the improper selection of

bandwidths for Tn because Conditions (h1) and (h2) assure that the consistency of Tn and

T
(1)
n require different ratios of h and vN . Thus, when N/n is very small, T

(1)
n seems to be

a better choice than Tn. But when λ is closed to 1, T
(1)
n cannot maintain the significance

level well. Secondly, T
(2)
n has very slightly higher empirical size and power than Tn. Overall,

the performances of T
(2)
n is very similar to that of Tn. Therefore, when the size of validation

data N is reasonably large, and the ratio N/n is large, T
(2)
n would be applicable. Also, from

the simulations we see that although T
(1)
n can be used, it does not maintain the finite sample

significance level as well as the Tn test does. Thus, when the ratio N/n is not too small, we

recommend the test Tn, rather than T
(1)
n , for practical use.

Study 4. In this study, a nonlinear single-index null model is considered. We try four

alternatives with different structural dimension as follows:

H16 : Y = (β>X)3 + a|β>X|+ ε
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H17 : Y = (β>X)3 + aX2
3 + ε

H18 : Y = (β>X)3 + a(X2/4 + |X2
3 |+ cos(πX4)) + ε

H19 : Y = (β>X)3 + a(X2/2 +X2
3 + cos(πX4) +X5 exp(X6/2) +X8X7) + ε

Let p = 4 for H16, H17, H18 and p = 8 for H19. β = [1, 0, · · · , 0]>. Σ = Σ1, σu = 0.5. a is

designed to be 0, 0.2, 0.4, 0.6, 0.8, 1.0. In these cases, q is always 1 for the null but different

for alternatives. For H16, q = 1 for any nonzero a. The structure dimension under H17 is 2,

and under H18, p = q = 4. For H19, p = q = 8. The test Tn uses the same bandwidths as

chosen for linear model above. For TZhn , we adjust bandwidths to keep its performance. Set

c = 2.7 for H16, H17, H18 and c = 3 for H19. The results are presented in Figure 2.

Figure 2. about here

We have the following observations. First, the model-adaptive method Tn has greater

empirical power than TZhn for all chosen alternatives. UnderH18 andH19, though convergence

rate of the two teats are same, Tn is still more powerful than TZhn . Because Tn is constructed

by nh1/2Vn/
√

Σ = h(1−q/2) × nhq/2Vn/
√

Σ. Secondly, the power of TZhn decreases quickly as

p increases while that of Tn does not.
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5 Appendix. Proofs

This section is organized as follows. In Section 5.1, Proposition 2.2 is proved. The proof of

Theorem 3.4 appears in Section 5.2. Based on the asymptotic behavior of β̂ and B̂ under

the local alternatives, the proof of Theorem 3.5 is included in Section 5.3. As Theorem 3.2

is a special case of Theorem 3.5 when Cn = 0, its proof is omitted. In Section 5.4, we only

sketch the proof of Theorem 3.1 as it is similar to that of Theorem 3.5. Section 5.5 shows a

sketch of the proof for Theorem 3.3.

5.1 Proof of Proposition 2.2

The claim (1) has been proved in Lee and Sepanski (1995). We now prove the claim (2).

Recall some notation: X is n × p matrix whose ith row is x>i , i = 1, · · · , n, Xv is the

N × p matrix whose sth row is x̃>s , s = 1, · · · , N , and Y is a n × 1 vector, while g(Xvβ)

represents the N × 1 vector and equals to [g(β>x̃1), · · · , g(β>x̃N)]>. The matrix D is the

n× k matrix whose i-th row w̄>i is a 1× k vector consist of polynomials of wi. The matrix

Dv is the corresponding matrix of validation data, whose s-th row w̄>s is a vector consist of

polynomials of w̃s. For linear model, w̄i = wi and w̄s = w̃s. For nonlinear model, we let w̄i
be a vector consisting of a constant and the first two order polynomials of wi.

Let

Qn(β) =
1

n

(
Y −D(D>v Dv)

−1D>v g(Xvβ)
)>(

Y −D(D>v Dv)
−1D>v g(Xvβ)

)
.

The estimator β̂ satisfies the first order condition: ∂Qn(β̂)/∂β = 0. By Taylor expansion

and the mean value theorem:[∂g>(Xvβ0)

∂β
Dv

]
(D>v Dv)

−1D>(Y −D(D>v Dv)
−1D>v g(Xvβ0))

=
{[∂2g>(Xvβ̄)

∂β∂β>
Dv

]
(D>v Dv)

−1D>(Y −D(D>v Dv)
−1D>v g(Xvβ̄))

−
[∂g>(Xvβ̄)

∂β
Dv

]
(D>v Dv)

−1(D>D)(D>v Dv)
−1[

∂g>(Xvβ̄)

∂β
Dv]
}

(β0 − β̂)

where β̄ is a vector satisfying ‖β̄ − β‖ ≤ ‖β̂ − β0‖, and

[
∂2g>(Xvβ̄)

∂β∂β>
Dv] = [

∂2g>(Xvβ̄)

∂β∂β1

Dv, · · · ,
∂2g>(Xvβ̄)

∂β∂βp
Dv].

Let g′, g′′ denote the first and second derivatives of g, respectively. By the LLNs,

1

N

∂g>(Xvβ)

∂β
Dv =

1

N

N∑
s=1

g′(β>x̃s)x̃sw̄
>
s →p E[g′(β>X)XW̄>],

1

N

∂2g>(Xvβ̄)

∂β∂βl
Dv →p E[g′′(β>X)X(l)XW̄

>],
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and

1

n
D>(Y −D(D>v Dv)

−1D>v g(Xvβ̄))

= CnE[W̄G(X)] + (E[W̄g(β>0 X)]− E(W̄W̄>)γ0) + op(1)

= op(1),

where γ0 = E−1(W̄W̄>)E[W̄g(β>0 X)]. Hence

β̂ − β0 =

{
[
∂2g>(Xvβ̄)

∂β∂β>
Dv](D

>
v Dv)

−1D>(Y −D(D>v Dv)
−1D>v g(Xvβ̄))

−[
∂g>(Xvβ̄)

∂β
Dv](D

>
v Dv)

−1(D>D)(D>v Dv)
−1[

∂g>(Xvβ̄)

∂β
Dv]

}−1

×[
∂g>(Xvβ0)

∂β
Dv](D

>
v Dv)

−1D>(Y −D(D>v Dv)
−1D>v g(Xvβ0))

=
{
E[g′(β>X)XW̄>]E−1[W̄W̄>]E[g′(β>X)W̄X>] +Op(Cn)

}−1

×
{
E[g′(β>X)XW̄>]E−1[W̄W̄>]

} 1

n
D>(Y −D(D>v Dv)

−1D>v g(Xvβ)).

On the other hand,

1

n
D>(Y −D(D>v Dv)

−1D>v g(Xvβ))

=
1

n
D>CnG(X) +

1

n
D>(g(Xβ) + ε−D(D>v Dv)

−1D>v g(Xvβ))

=
Cn
n

n∑
i=1

w̃iG(xi) +
1

n
D>(g(Xβ) + ε−DE−1[W̄W̄>]E[W̄>g(β>X)])

−
(

1

n
D>D

)[
1

N
D>v Dv

]−1
1

N
(D>v g(Xvβ)−D>v DvE

−1[W̄>W̄ ]E[W̄>g(β>X)])

= CnE[W̄G(x)] +Op(1/
√
n) +Op(1/

√
N).

This completes the proof of part (2) of Proposition 2.2.

5.2 Proof of Theorem 3.4

Denote ζ = Cov(X,W )Σ−1
W W . In the discretization step, we construct new samples (ζi, I(yi ≤

yj)). For each yj, we estimate Λ(yj) which spans SI(Y≤yj)|ζ by using SIR and denote the es-

timate by Λn(yj). In the expectation step, we estimate Λ = E[Λ(t)], which spans SY |ζ , by

Λn,n = n−1
∑n

j=1 Λn(yj). Let λ1 > λ2 > · · · > λq > λq+1 = 0 = · · · = λp be the descending

sequence of eigenvalues of the matrix Λ and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the descending sequence

of eigenvalues of the matrix Λn,n. Recall the Dn in q̂ of (2.8) was selected as
√
n. Define the

objective function in (2.8) as

G(l) =
n

2
×
∑l

i=1{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

− 2× n1/2 × l(l + 1)

2p
.
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Now we prove that for any l > 1, P (G(1) > G(l))→ 1, i.e., P (q̂ = 1)→ 1.

G(1)−G(l) = n1/2 × l(l + 1)− 2

p
− n

2
×
∑l

i=2{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

If Λn,n − Λ = Op(Cn), then λ̂i − λi = Op(Cn). By the second order Taylor Expansion,

we have log(λ̂i + 1) − λ̂i = −λ̂2
i + op(λ̂

2
i ). Thus,

∑l
i=2{log(λ̂i + 1) − λ̂i} = Op(C

2
n) and∑p

i=1{log(λ̂i + 1)− λ̂i} converge to a negative constant in probability. Since nC2
n/n

1/2 → 0

and l(l + 1) > 2, P (G(1) > G(l))→ 1.

Now we check the condition of Λn,n−Λ = Op(Cn). First, we investigate the convergence

rate of Λn(t)− Λ(t) for any fixed t. We have

Λ(t) = Σ−1
ζ Var(E[ζ|Ỹ (t)])p(1− p) = Σ−1

X ΣWΣ−1
X Var(E[ζ|Ỹ (t)])p(1− p).

It is easy to see that

Var(E[ζ|Ỹ (t)]) = (u1 − u0)(u1 − u0)>p(1− p)

where p = P (Y ≤ t) = E(I(Y ≤ t)), ui = E[ζ|Ỹ (t) = i], i = 0, 1. Further, u1 − u0 can be

rewritten as

u1 − u0 = {E[ζI(Y ≤ t)]− E[ζ]E[I(Y ≤ t)]} /(p(1− p)).

We can use the matrix

Λ(t) = Σ−1
X ΣWΣ−1

X [E{(ζ − E(ζ))I(Y ≤ t)}] [E{(ζ − E(ζ))I(Y ≤ t)}]>

to identify the central subspace we want. Denote m(t) = E[(ζ−E(ζ))I(Y ≤ t)]. The sample

version of m(t) is

m̂(t) =
1

n

n∑
i=1

(ζi − ζ̄)I(yi ≤ t),

where ζi = Ĉov(X,W )Σ̂−1
W wi and ζ̄ = (1/n)

∑n
i=1 ζi. Let Ya be the response under the local

alternative, then

m̂(t)−m(t) =
1

n

n∑
i=1

(ζi − ζ̄)I(yi ≤ t)− E{(ζ − E(ζ))I(Y ≤ t)}

=
1

n

n∑
i=1

(ζi − ζ̄)I(yi ≤ t)− E{(ζ − E(ζ))I(Ya ≤ t)}

+E{(ζ − E(ζ))I(Ya ≤ t)} − E{(ζ − E(ζ))I(Y ≤ t)}.

The convergence rate of the first term in the right hand side is Op(
√
n). For simplicity, we

assume E(ζ) = 0. The second term is

E[ζI(Ya ≤ t)]− E[ζI(Y ≤ t)] = E {ζ[P (Ya ≤ t|ζ)− P (Y ≤ t|ζ)]}
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Since ζ = ΣXΣ−1
W W ,

P (Ya ≤ t|ζ)− P (Y ≤ t|ζ)

= P (Ya ≤ t|W )− P (Y ≤ t|W ) = FY |W (t− CnE[G(B>X)|B>W ])− FY |W (t)

= −CnE[G(B>X)|B>W ]fY |W (t) +Op(C
2
n).

Thus, we have E{(ζ − E(ζ))I(Ya ≤ t)} − E{(ζ − E(ζ))I(Y ≤ t)} = Op(Cn). Altogether,

Λn(t)−Λ(t) = Op(Cn), for each t ∈ R. Finally, similar to the proof for Theorem 3.2 of Li et

al. (2008) the condition Λn,n − Λ = Op(Cn) holds.

5.3 Proof of Theorem 3.5

In this subsection, we first prove (ii) which is the large sample property of Vn under the local

alternatives and then give a sketch of the proof of (i). For the local alternatives in (3.5),

according to Theorem 3.4, q̂ = 1 with a probability going to 1. Thus, we can only work on

the event that q̂ = 1. Note that B̂(q̂) converges to β/‖β‖ in probability rather than the

p × q matrix B that is the dimension reduction base matrix of the central mean subspace.

In other words, B̂ is not a consistent estimate of B. However, in this proof, we still use B

to write the limit of B̂ for notation simplicity. By Proposition 2.2, we have

β̂ − β = CnH(β)(1 + op(1)). (5.1)

where

H(β) =
{
E[g′(β>X)XW̄>]E−1[W̄W̄>]E[g′(β>X)W̄X>]

}−1

×E[g′(β>X)XW̄>]E−1[W̄W̄>]E[W̄G(B>X)].

Let Gi = G(zi) and ∆i = ∆(zi), where zi = B>wi, G is as in (3.5), and ∆ as in (3.1). Recall

the notation from (2.3) and (3.2). Rewrite

êi = gi + CnGi + εi − r̂i = ri − r̂i + CnGi + ei.

Recalling ẑi = B̂>wi, we obtain the following decomposition for Vn.

Vn =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)(ei + CnGi)(ej + CnGj) (5.2)

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)(ei + CnGi)(rj − r̂j(2))

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)(ri − r̂i(1))(ej + CnGj)

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)(ri − r̂i(1))(rj − r̂j(2))

=: Vn1 + Vn2 + Vn3 + Vn4, say.
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We now deal with Vni’s in the following steps.

Step 5.1 nh1/2Vn1 →D N(ν1, τ1), where τ1 is as in (3.3) and

ν1 = E[∆2(Z)f(Z)]. (5.3)

Proof: It follows from (5.2) that

Vn1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)eiej + 2Cn
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)eiGj (5.4)

+C2
n

1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)GiGj

=: I1 + 2CnI2 + C2
nI3.

Step 5.1.1. Deal with I1. Rewrite I1 = I1,1 + I1,2, where

I1,1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiej,

I1,2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Kh(ẑi − ẑj)−Kh(zi − zj))eiej.

Following Lemma 3.3a of Zheng (1996) we obtain nh1/2I1,1 →D N(0, τ1), where

τ1 = 2

∫
(σ2(z))2f 2(z)dz

∫
K2(u)du.

The Taylor expansion yields that

I1,2 =
(B̂ −B)>

h

1

n(n− 1)

n∑
i=1

n∑
j 6=i

K ′(
zi − zj
h

)
wi − wj

h
eiej(1 + op(1)).

Let

I∗1,2 =
1

(n− 1)n

n∑
i=1

n∑
j 6=i

K ′(
zi − zj
h

)
wi − wj

h
eiej.

Similarly as I1,1, I∗1,2 is a degenerate U-statistic with kernel

Hn((yi, wi), (yj, wj)) = K ′(
zi − zj
h

)
wi − wj

h
eiej.

Combining ‖B̂ − B‖2 = Op(Cn) and nh5/2 → ∞, we obtain nh1/2I12 = op(1). Hence

nh1/2I1 →D N(0, τ1).
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Step 5.1.2. Next, consider I2. Rewrite I2 = I2,1 + I2,2, where

I2,1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiGj,

I22 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Kh(ẑi − ẑj)−Kh(zi − zj))eiGj.

By computing the second order moment, we know I2,1 = Op(1/
√
n). As to I2,2,

I2,2 =
B̂ −B
h

1

n(n− 1)

n∑
i=1

n∑
j 6=i

K ′(
zi − zj
h

)
wi − wj

h
eiGj(1 + op(1)).

Let

I∗2,2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

K ′(
zi − zj
h

)
wi − wj

h
eiGj.

Since the kernel function K(·) is symmetric, I∗2,2 can be rewritten as a non-degenerate U-

statistic. Thus I∗2,2 = Op(1/
√
n). Combining the convergence rates of I2,1 and I2,2, we know

that nh1/2CnI2 = op(1).

Step 5.1.3. Consider I3. It is easy to see that I3 →p E[∆2(Z)f(Z)], where Z = B>W .

Summarizing the above results for I1, I2 and I3, we have that if Cn = n−1/2h−1/4,

nh1/2Vn1 →D N(ν1, τ1), thereby completing the proof of Step 5.1.

Step 5.2 nh1/2Vn2 →D N (ν2, 2λ
−1τ2) , where τ2 is defined in (3.3) and

ν2 = −E{∆(Z)E[g′(β>X)X>|Z]f(Z)}H(β0). (5.5)

Proof: Rewrite Vn2 as

Vn2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)ei(rj − r̂j(2)) (5.6)

+
Cn

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(ẑi − ẑj)Gi(rj − r̂j(2))

=: Vn2,1 + CnVn2,2, say.

Step 5.2.1. Deal with the term Vn2,1. It can be decomposed as

Vn2,1 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)ei(rj − r̂j(2))

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Kh(ẑi − ẑj)−Kh(zi − zj))ei(rj − r̂j(2)).
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Recalling the definition of the estimator of r(2)(β
>w, β) in (2.3), we have

rj − r̂j(2) =
2

N

N∑
s=N/2+1

MvN (β̂>wj − β̂>w̃s)(rj − ˆ̃gs)/
2

N

N∑
s=N/2+1

MvN (β̂>wj − β̂>w̃s), (5.7)

where ˆ̃gs is defined in (3.2). In order to analyze rj − r̂j(2) further, we need the following

entities. Let

f̄N(2)(x) =
2

N

N∑
s=N/2+1

MvN (x− β>w̃s), ˆ̄fN(2)(x) =
2

N

N∑
s=N/2+1

MvN (x− β̂>w̃s), (5.8)

Q1(2)(β
>wj) =

2

N

N∑
s=N/2+1

MvN (β>wj − β>w̃s)(rj − r̃s), (5.9)

Q2(2)(β
>wj) =

2

N

N∑
s=N/2+1

MvN (β>wj − β>w̃s)(r̃s − g̃s),

Q3(2)(β
>wj) =

2

N

N∑
s=N/2+1

MvN (β>wj − β>w̃s)(g̃s − ˆ̃gs).

The kernel function MvN (β̂>wj − β̂>w̃s) in the numerator of (5.7) can be rewritten as

MvN (β>wj − β>ws) + [MvN (β̂>wj − β̂>ws)−MvN (β>wj − β>ws)],

and the denominator can be decomposed as

1

f̄N(2)(β>wj)
+ [

1

ˆ̄fN(2)(β̂>wj)
− 1

f̄N(2)(β>wj)
].

Further, write

rj − ˆ̃gs = [rj − r̃s] + [r̃s − g̃s] + [g̃s − ˆ̃gs].

Combining the above decompositions into (5.7), rj − r̂j(2) can be decomposed into 12 terms,

and then Vn2,1 can be decomposed into 24 terms. We only consider the following three

terms that make non-negligible contribution. The remaining terms can be shown to be

asymptotically negligible, in probability. Accordingly, consider

I4 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiQ1(2)(β
>wj)/f̄N(2)(β

>wj), (5.10)

I5 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiQ2(2)(β
>wj)/f̄N(2)(β

>wj),

I6 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)eiQ3(2)(β
>wj)/f̄N(2)(β

>wj)
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where f̄N(2)(β
>wj) is defined in (5.8), and Q1(2)(·), Q2(2)(·), Q3(2)(·) are in (5.9). Let f̄ denote

the density of β>W .

We first prove that nh1/2I4 = op(1). Rewrite I4 = n−1
∑n

j=1 I41(zj)× I42(β>wj), where

I41(zj) =
1

(n− 1)

n∑
i 6=j

Kh(zi − zj)ei, I42(β>wj) =
Q1(2)(β

>wj)

f̄N(2)(β>wj)
.

Thus, the application of Cauchy - Schwarz inequality yields that |I4| ≤
√

(1/n)
∑n

j=1 I
2
41(zj)×√

(1/n)
∑n

j=1 I
2
42(β>wj). We only need to bound the conditional expectations E[I2

41(zj)] and

E[I2
42(β>wj)] when zj, β

>wj are given. For I41(zj),

E[I2
41(zj)] = 1

(n−1)2
E[(
∑n

i 6=jKh(zi − zj)ei)2] = 1
(n−1)h2

E[K2(
zi−zj
h

)e2
i ] = O( 1

nh
).

For I42, we can obtain that given β>wj,

|I42(β>wj)| ≤
∣∣∣∣Q1(2)(β

>wj)

f̄(β>wj)

∣∣∣∣ sup
β>wj

∣∣∣∣ f̄(β>wj)

f̄N(2)(β>wj)

∣∣∣∣ .
Since

sup
β>wj

|f̄N(2)(β
>wj)− f̄(β>wj)| = op(1), sup

β>wj

∣∣∣∣ f̄N(2)(β
>wj)

f̄(β>wj)
− 1

∣∣∣∣ = op(1),

and f̄(β
>wj) is uniformly bounded below, we only need to bound Q2

1(2)(β
>wj) in the numer-

ators. But

E[Q2
1(2)(β

>wj)] =
N(N − 2)

N2v2
N

E[M(
β>wj − β>w̃s

vN
)(rj − r̃s)M(

β>wj − β>w̃s′
vN

)(rj − r̃s′ )]

+
2

Nv2
N

E[M2(
β>wj − β>w̃s

vN
)(rj − r̃s)2]

≤C1v
2`
N +N−1C2vN ,

where C1 and C2 are two constants. The last inequality is obtained by Conditions (f),(r)

and (M). Thus E[I2
42(β>wj)] is bounded from the above by C1v

2`
N +C2vN/N , in probability.

Summarizing the results of E[I2
41] and E[I2

42], we have |nh1/2I4| ≤ nh1/2Op(
1√
nh

√
v2`
N + vN

N
) =

op(1).

Consider I5. Rewrite it as I5 = I51 + I52, where

I51 = E[I5|η̃s, z̃s, zi, ei], I52 = (I5 − E[I5|η̃s, z̃s, zi, ei]). (5.11)

Note that

I51 =
2

nN

n∑
j=1

N∑
s=N/2+1

eiη̃s

∫
1

h
K(

zi − zj
h

)
1

vN
M(

β>wj − β>w̃s
vN

)d(β>wj)
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=
2

nN

n∑
j=1

N∑
s=N/2+1

eiη̃s

∫
1

h
K(

zi − z̃s − vNu/‖β‖
h

)
1

vN
M(u)d(β>w̃s + vNu).

The second equation holds because zj = B>wj = β>wj/‖β‖. Further,∫
1

h
K(

zi − z̃s − vNu/‖β‖
h

)M(u)du =
1

h
K(

zi − z̃s
h

) +
1

h
K

′′
(
zi − z̃s
h

)
v2
N‖β‖2

h2
.

Thus, I51 = 2
nN

∑n
i=1

∑N
s=N/2+1 eiη̃sKh(zi − z̃s)(1 + op(1)). By Central Limit Theorem we

have √
nN

2
h1/2I5,1 →D N(0,

∫
K2(u)du

∫
σ2(z)ξ2(z)f 2(z)dz),

where σ2(Z) and ξ2(Z) are defined in (3.1). By some elementary calculations, we can derive

that E[(I52)2] = Op(1/(n
2NhvN)). Chebyshev’s inequality yields that nh1/2I52 = op(1).

Hence

nh1/2I5 →D N
(

0, 2λ−1

∫
K2(u)du

∫
σ2(z)ξ2(z)f 2(z)dz

)
. (5.12)

Now consider I6. Recall the definition of Q3(2) in (5.9) and the definition of g̃ below (3.2).

Taylor expansion of the function g̃ yields that I6 = I∗6 (β − β̂)(1 + op(1)), where

I∗6 =
2

Nn(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)ei
f̄N(2)(β>wj)

N∑
s=N/2+1

MvN (β>wj − β>w̃s)g′(β>x̃s)x̃>s

=:
1

n(n− 1)

n∑
i=1

n∑
i 6=j

Kh(zi − zj)eiI62(β>wj), say.

It is easy to see that for any given β>wj, E[I62(β>wj)] = E[g′(β>x)x>|β>wj] by noticing

that x̃ has the same distribution as that of x. By Lemma 2 of Guo et al. (2015),

1

n(n− 1)

n∑
i=1

n∑
i 6=j

Kh(zi − zj)eiE[g′(β>x)x>|β>wj] = Op(
1√
n

).

Similarly, as in the proof for I4, we can also derive that as N → ∞, supβ>w |I62(β>w) −
E[I62(β>w)]| ≤ O(v2

N + log(N)/
√
NvN) and then

1

n(n− 1)

n∑
i=1

n∑
i 6=j

Kh(zi − zj)ei(I62(β>wj)− E[g′(β>x)x>|β>wj]) = op(
1√
n

).

Hence nh1/2I6 = op(1).

Combining the above results for I4, I5 and I6 with the fact that the remaining 21 terms

tend to zero, in probability, we obtain that nh1/2Vn2,1 →D N(0, 2λ−1τ2), where τ2 is in (3.3).
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Step 5.2.2. Next, consider the second term Vn2,2 of the decomposition (5.6). Rewrite

Vn2,2 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Gi(rj − r̂j(2))

+
1

n(n− 1)

n∑
i=1

n∑
j 6=i

(Kh(ẑi − ẑj)−Kh(zi − zj))Gi(rj − r̂j(2)).

Similarly as the decomposition in (5.7), Vn2,2 can also be decomposed into 24 terms. Again,

we only give the detail about how to treat the three leading terms. Again, the remaining 21

terms tend to zero, in probability. The three leading terms are:

I7 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ1(2)(β
>wj)/f̄N(2)(β

>wj),

I8 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ2(2)(β
>wj)/f̄N(2)(β

>wj),

I9 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ3(2)(β
>wj)/f̄N(2)(β

>wj),

where Q1(2)(β
>wj), Q2(2)(β

>wj), Q3(2)(β
>wj) and f̄N(2)(β

>wj) are defined in (5.9) and (5.8).

Recall that Cn = n−1/2h−1/4 and E[Q2
1(2)(β

>wj)] ≤ C1v
2`
N +C2vN/N , which was proved when

we handled I4. By the Cauchy–Schwarz inequality,

|nh1/2CnI7| ≤ Op

(
n1/2h1/4

√
C1v2`

N + C2vN/N
)

= op(1).

To deal with I8, decompose I8 = I81 + I82, with

I81 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ2(2)(β
>wj)/f̄(β>wj),

I82 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)GiQ2(2)(β
>wj)[

1

f̄N(2)(β>wj)
− 1

f̄(β>wj)
],

where f̄(β>w) is the density of β>w. By some elementary calculations, one can verify that

E[I2
81] = Op(1/N). This implies nh1/2CnI81 = op(1) by recalling the definition of Cn.

Next, consider I82. By the Cauchy–Schwarz inequality, I2
82 is bounded above by a product

of
∑n

j=1 I
2
821(zj)/n and

∑n
j=1 I

2
822(wj)/n, where

I821(zj) =
1

n

∑
i 6=j

Kh(zi − zj)Gi, I822(wj) = Q2(2)(β
>wj)[

1

f̄N(2)(β>wj)
− 1

f̄(β>wj)
].

Now we bound E[I2
821(zj)] and E[I2

822(wj)]. Clearly, conditional on zj, E[I2
821(zj)] = O(1),

which in turn implies that E
{∑n

j=1 I
2
821(zj)/n

}
= O(1).
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Next, note that

1

n

n∑
j=1

I2
822(wj) ≤

1

n

n∑
j=1

Q2
2(2)(β

>wj) sup
w
| 1

f̄N(2)(β>w)
− 1

f̄(β>w)
|2

≤ Op(v
2
N + log(N)/

√
NvN)

1

n

n∑
j=1

Q2
2(2)(β

>wj).

The second inequality is from the fact that f̄(β>w) is bounded below and supw |f̄N(2)(β
>w)−

f̄(β>w)| = Op(v
2
N+log(N)/

√
NvN). ByE[(r̃s−g̃s)|β>w̃s] = 0, E[Q2

2(2)(β
>wj)] ≤ O(1/(NvN))

for any fixed β>wj. In other words, E
{∑n

j=1Q
2
2(2)(β

>wj)/n
}
≤ O(1/(NvN)). By the

Markov inequality,
∑n

j=1 I
2
822(wj)/n is bounded by Op(1/NvN)Op(v

2
N + log(N)/

√
NvN) =

op(1/(nh
1/2Cn)2). Combining these results, we obtain that∣∣nh1/2CnI82

∣∣ ≤ nh1/2Cnop(1/(nh
1/2Cn)) = op(1).

The above results about I81 and I82 in turn yield that nh1/2CnI8 = op(1).

Now we analyze I9. Recall the definitions that Gi = G(B>xi) and ∆i = E[G(B>X)|Z =

zi]. Write I9 = I91 + I92, where

I91 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)∆iQ3(2)(β
>wj)/f̄N(2)(β

>wj)

I92 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)(Gi −∆i)Q3(2)(β
>wj)/f̄N(2)(β

>wj).

For I92, E[Gi −∆i|Zi] = 0. Thus, nh1/2I92 = op(1), at the same rate as I6. So nh1/2CnI92 =

op(1).

Next, we deal with I91. Similar to I8, rewrite I91 = I911 + I912, where

I911 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)∆iQ3(2)(β
>wj)/f̄(β>wj),

I912 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)∆iQ3(2)(β
>wj)[

1

f̄N(2)(β>wj)
− 1

f̄(β>wj)
].

Similar to the proof of I82, we have nh1/2I912 = op(1), because E[Q2
3(2)(β

>wj)] = Op(C
2
n).

Next, consider I911. Define

I∗911 := E[I911|zi, z̃s, x̃s] =
2

nN

n∑
i=1

N∑
s=N/2+1

Kh(zi − z̃s)∆i(g̃s − ˆ̃gs).
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By the first order Taylor expansion,

I∗911 =
2

nN

n∑
i=1

N∑
s=N/2+1

Kh(zi − z̃s)∆ig
′(β>0 x̃s)x̃

>
s (β0 − β̂)(1 + op(1))

Combining the result of (5.1),

nh1/2CnI
∗
911 →p ν2 = −E{∆(Z)E[g′(β>0 X)X>|Z]f(Z)}H(β0).

By computing the second moment of I911 − I∗911 and using the Markov inequality, one can

verify nh1/2Cn(I911 − I∗911) = op(1). Hence nh1/2CnI9 → ν2. These results about I7, I8 and

I9 imply that nh1/2CnVn2,2 →p ν2. Hence Step 5.2 is finished.

Step 5.3 nh1/2Vn3 →D N (ν2, 2λ
−1τ2) , where ν2 and τ2 are as in (5.5) and (3.3).

Proof: The proof is similar to that pertaining to Vn2 in STEP 5.2. The only difference is

that instead of the representation (5.7) we now use

ri − r̂i(1) =
2

N

N/2∑
t=1

MvN (β̂>wi − β̂>w̃t)(ri − ˆ̃gt)/
2

N

N/2∑
t=1

MvN (β̂>wi − β̂>w̃t). (5.13)

Further the definitions in (5.8) and (5.9) are changed into

f̄N(1)(x) =
2

N

N/2∑
t=1

MvN (x− β>w̃t), ˆ̄fN(1)(x) =
2

N

N/2∑
t=1

MvN (x− β̂>w̃t), (5.14)

and

Q1(1)(β
>wi) =

2

N

N/2∑
t=1

MvN (β>wi − β>w̃t)(ri − r̃t), (5.15)

Q2(1)(β
>wi) =

2

N

N/2∑
t=1

MvN (β>wi − β>w̃t)(r̃t − g̃t),

Q3(1)(β
>wi) =

2

N

N/2∑
t=1

MvN (β>wi − β>w̃t)(g̃t − ˆ̃gt).

We omit the details here.

Step 5.4 nh1/2Vn4 →D N(ν3, 2λ
−2τ3), where τ3 is as in (3.3) and

ν3 = H>(β0)E{E[g′(β>0 X)X|Z]E[g′(β>0 X)>X>|Z]f(Z)}H(β0). (5.16)
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Proof: By the same decompositions in (5.7) and (5.13), Vn4 can be decomposed to 9 dominant

terms, and seven of those are of order op(1/nh
1/2). We investigate the other two terms as

follows:

I10 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Q2(1)(β
>wi)Q2(2)(β

>wj)/f̄N(1)(β
>wi)f̄N(2)(β

>wj),

I11 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Q3(1)(β
>wi)Q3(2)(β

>wj)/f̄N(1)(β
>wi)f̄N(2)(β

>wj).

Similar to the proof of I5, we have Nh1/2I10 →D N(0, 2τ3), where τ3 is defined in (3.3).

Similarly as I91, I11 can be rewritten as

I11 =
4

N2

N/2∑
t=1

N∑
s=N/2+1

Kh(z̃t − z̃s)(g̃s − ˆ̃gs)(g̃t − ˆ̃gt)(1 + op(1))

= (β0 − β̂)>

 4

N2

N/2∑
s=1

N∑
t=N/2+1

Kh(z̃t − z̃s)g′(β>0 x̃s)g′(β>0 x̃t)x̃sx̃>t

 (β0 − β̂).

Combining the result of (5.1), nh1/2I11 converges to ν3 in probability. Hence Step 5.4 is

completed.

Altogether, Steps 5.1– 5.4 conclude the proof of (ii) in Theorem 3.5.

Next, we give a sketch of the proof of (i), which describes the asymptotic power perfor-

mance of the test under the global alternative with fixed Cn ≡ C. Let

β̃ = arg min
β
E
{
Y − W̄E−1[W̄W̄>]E[W̄g(β>X)]

}2

which is different from the true parameter β0. Here W̄ is a vector consisting of polynomials

of W . Then, for fixed Cn ≡ C,

ê = e+ C(G(B>W )− E[G(B>W )|β̃>W ]) + CE[G(B>W )|β̃>W ]

+(E[g(β>0 X)|β̃>W ]− E[g(β̃>X)|β̃>W ]) + (E[g(β̃>X)|β̃>W ]− E[g(β̂>X)|β̂>W ]).

We can obtain that Vn tends, in probability, to a positive constant since the third term

in the right hand side of the above equation is not 0. Similarly, we can also prove that

τ̂ converges to a positive constant. We then have that Vn/τ̂ converges in probability to a

positive constant. That is, the test statistic nh1/2Vn goes to infinity at the rate of order

nh1/2. The proof is finished.

5.4 Proof of Theorem 3.1

As the arguments used for proving Theorem 3.5 with Cn = 0, the results ‖B̂ − B‖ =

Op(1/
√
n) and β̂ − β = Op(1/

√
n) are applicable for proving this theorem, we then omit
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most of the details, but focus on the bias term. The terms f̄N(j)(x), Qk(j)(·), k = 1, 2, 3 and

j = 1, 2 in the proof of Theorem 3.5 are replaced by

f̄N(x) =
1

N

N∑
s=1

MvN (x− β>w̃s), ˆ̄fN(x) =
1

N

N∑
s=1

MvN (x− β̂>w̃s) (5.17)

and

Q1(β>wi) =
1

N

N∑
s=1

MvN (β>wi − β>w̃s)(ri − r̃s), (5.18)

Q2(β>wi) =
1

N

N∑
s=1

MvN (β>wi − β>w̃s)(r̃s − g̃s),

Q3(β>wi) =
1

N

N∑
s=1

MvN (β>wi − β>w̃s)(g̃s − ˆ̃gs).

Using the same decomposition as in the proof of Step 5.4, we also have a term similar to I10

with the conditional expectation as

I10 =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Q2(β>wi)Q2(β>wj)/f̄N(β>wi)f̄N(β>wj)

and

E[I10|η̃s, z̃s, η̃t, z̃t] =
1

N2

N∑
s=1

N∑
t=1

1

h
K(

z̃s − z̃t
h

)η̃sη̃t(1 + op(1)).

Separate the summands with s 6= t and s = t to write the leading term in the above

expression as the sum of the following two terms.

I∗101 =
1

N2

N∑
s=1

N∑
t6=s

1

h
K(

z̃s − z̃t
h

)η̃sη̃t, I∗102 =
1

N2

N∑
s=1

1

h
K(0)η̃2

s .

Since K is symmetric, I∗101 can be written as an U-statistic with the kernel

Hn((z̃s, η̃s), (z̃t, η̃t)) =
1

h
K(

z̃s − z̃t
h

)η̃sη̃t.

Further,

E[Hn((z̃s, η̃s), (z̃t, η̃t))|(z̃s, η̃s)] =
1

h
η̃sE{K(

z̃s − z̃t
h

)× E[η̃t|z̃t]} = 0.

Thus the U-statistic I∗101 is degenerate. By Central Limit Theorem for degenerate U-statistic

(see, Hall 1984),

Nh1/2I∗101 →D N(0, 2

∫
K2(u)du

∫
(ξ2(z))2f 2(z)dz).

Hence nh1/2I∗101 →D N(0, λ−2τ3), where τ3 is defined in (3.3). Further, the fact that

NhEI∗102 = K(0)E[ξ2(Z)] implies that nh1/2EI∗102 → ∞, which results in the asymptotic

bias in Ṽn.
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5.5 Proof of Theorem 3.3

When N/n → 0, β̂ and B̂ are
√
N consistent estimates of β and B, respectively. Again as

the decompositions used in the proof of Theorem 3.5 are applicable for proving this theorem,

we give only a sketch of the proof of (i) here. Put Cn = 0 in the proof of Theorem 3.5. We

only consider I1, Vn2,1, and I10. As (Nv
1/2
N )/(nh1/2) → 0, Nv

1/2
N I1,1 in Step 5.1 is op(1). In

addition, Nh2 → ∞ leads to Nv
1/2
N I1,2 = op(1). Thus Nv

1/2
N I1 = op(1). For Vn2,1, following

the proof of Step 5.2, we obtain that Nv
1/2
N I4 = op(1), Nv

1/2
N I5 = op(1), Nv

1/2
N I6 = op(1).

These imply that Nv
1/2
N Vn2 = op(1). Recalling the notation in (3.1), (3.2), (5.17) and (5.18),

I10 can be written as

I10 =
1

n(n− 1)N2

n∑
i=1

n∑
j 6=i

Kh(zi − zj)Q2(β>wi)Q2(β>wj)/f̄N(β>wi)f̄N(β>wj).

Again define its conditional expectation as

I∗10 = E[I10|z̃s, η̃s, z̃t, η̃t]

=
1

N2

N∑
s=1

N∑
t=1

η̃sη̃t

∫ ∫
1

h
K(

zi − zj
h

)
1

vN
M(

β>wi − β>w̃s
vN

)

× 1

vN
M(

β>wj − β>w̃t
vN

)d(β>wi)d(β>wj).

Note that β>w = ‖β‖z. Thus,∫ ∫
1

h
K(

zi − zj
h

)
1

vN
M(

β>wi − β>w̃s
vN

)
1

vN
M(

β>wj − β>wt
vN

)d(β>wi)d(β>wj)

=

∫ ∫
1

h
K(

zi − zj
h

)
‖β‖
vN

M(
zi − z̃s
vN/‖β‖

)
‖β‖
vN

M(
zj − z̃t
vN/‖β‖

)dzidzj

=

∫ ∫
1

h
K(u)

‖β‖
vN

M(
hu+ zj − z̃s
vN/‖β‖

)
‖β‖
vN

M(
zj − z̃t
vN/‖β‖

)d(zj + uh)dzj

=

∫
‖β‖
vN

M(
zj − z̃s
vN/‖β‖

)
‖β‖
vN

M(
zj − z̃t
vN/‖β‖

)dzj

+

∫
‖β‖
vN

M
′′
(
zj − z̃s
vN/‖β‖

)
‖β‖2h2

v2
N

‖β‖
vN

M(
zj − z̃t
vN/‖β‖

)dzj.
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Let ṽN = vN/‖β‖. Then we have

I∗10 =
1

N2

N∑
s=1

N∑
t=1

η̃sη̃t

∫
1

ṽN
M(

zj − z̃s
ṽN

)
1

ṽN
M(

zj − z̃t
ṽN

)dzj

=
1

N2

N∑
s=1

N∑
t6=s

η̃sη̃t

∫
1

ṽN
M(

zj − z̃s
ṽN

)
1

ṽN
M(

zj − z̃t
ṽN

)dzj

+
1

N2

N∑
s=1

η̃2
s

∫
1

ṽN
M(

zj − z̃s
vN

)
1

ṽN
M(

zj − z̃s
ṽN

)dzj

+
1

N2

N∑
s=1

N∑
t6=s

η̃sη̃t

∫
1

ṽN
M

′′
(
zj − z̃s
ṽN

)
h2

ṽ2
N

1

ṽN
M(

zj − z̃t
ṽN

)dzj

+
1

N2

N∑
s=1

η̃2
s

∫
1

ṽN
M

′′
(
zj − z̃s
ṽN

)
h2

ṽ2
N

1

ṽN
M(

zj − z̃s
ṽN

)dzj

= : I101 + I102 + I103 + I104.

Rewrite I101 as

2
N∑
s=2

N∑
t<s

η̃sη̃t
1

N2

∫
1

ṽN
M(

zj − z̃s
ṽN

)
1

ṽN
M(

zj − z̃t
ṽN

)dzj.

By Theorem 1 of Hall (1984), Nv
1/2
N I101 →D N(0, τ̃), where

τ̃ = 2‖β‖
∫ (∫

M(u)M(u+ v)du)2dv

∫
(ξ2(z)

)2

f 2(z)dz, ξ2(z) = E[η2|Z = z].

We also have in probability

NṽNI102 →p E[

∫
1

ṽN
M(

zj − z̃s
ṽN

)M(
zj − z̃s
ṽN

)dzj η̃
2
s ] =

∫
M2(u)duE[ξ2(z)].

Further it can be proved that

E[I2
103] = Op(

h4

ṽ4
N

1

N2ṽN
) = op(

1

N2vN
),

E[I2
104] = Op(

h4

ṽ4
N

1

N2ṽ2
N

) +Op(
h4

ṽ4
N

1

N3ṽ3
N

) = op(
1

N2vN
).

Then the Markov inequality implies that both I103 and I104 converge in probability to zero

at the faster rate than 1/(Nv
1/2
N ). We have Nv

1/2
N {I∗10 − ν} →D N(0, τ̃). We can further

prove that

E[(I10 − I∗10)2] = Op(
1

N2nvN
) = op(

1

N2vN
).

Hence Nv
1/2
N {I10 − ν} →D N(0, τ̃). This completes the proof of Theorem 3.3.
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Figure 1: Plots for the empirical size curve against different values of c in the bandwidths

h = cn−1/(4+q), vN = c(N/2)−2/5. For model Y = β>X + ε, the solid lines are with p = 2,

q = 1 and the dash-dotted lines are with p = 8, q = 1.
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Table 1. Empirical sizes and powers of Tn, T bn, TZhn and T Sn of H0 vs. H11 in Study 1.

H11 a p=2 p=8 p=2 p=8

λ = 4 Σ = Σ1 Σ = Σ1 Σ = Σ2 Σ = Σ2

n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

Tn 0 0.0455 0.0430 0.0420 0.0410 0.0495 0.0525 0.0505 0.0535

0.1 0.0700 0.0860 0.0715 0.0835 0.0720 0.1155 0.0825 0.1580

0.2 0.1275 0.2190 0.1185 0.2145 0.1970 0.4005 0.2720 0.6260

0.3 0.2360 0.4985 0.2185 0.4865 0.4245 0.7840 0.5630 0.9510

0.4 0.4265 0.8050 0.3940 0.7840 0.6695 0.9670 0.8180 0.9965

0.5 0.6315 0.9570 0.5670 0.9295 0.8385 0.9975 0.9305 1.0000

T̃n 0 0.0485 0.0520 0.0440 0.0525 0.0440 0.0510 0.0485 0.0460

0.1 0.0645 0.0760 0.0505 0.0865 0.0790 0.1300 0.1070 0.1615

0.2 0.1130 0.2335 0.1230 0.2210 0.2010 0.4135 0.2720 0.6240

0.3 0.2530 0.5205 0.2245 0.4975 0.4110 0.7900 0.5845 0.9500

0.4 0.4365 0.8055 0.3800 0.7980 0.6945 0.9720 0.8125 0.9930

0.5 0.6475 0.9495 0.5715 0.9360 0.8545 0.9995 0.9280 1.0000

TZh
n 0 0.0360 0.0335 0.0285 0.0410 0.0400 0.0385 0.0350 0.0405

0.1 0.0525 0.0940 0.0420 0.0525 0.0735 0.1060 0.0615 0.0925

0.2 0.1410 0.2475 0.0690 0.1045 0.2295 0.4280 0.1405 0.2710

0.3 0.3015 0.5780 0.1165 0.2230 0.4970 0.8385 0.2740 0.5715

0.4 0.5200 0.8395 0.1770 0.3740 0.7655 0.9800 0.4675 0.8270

0.5 0.7105 0.9690 0.2875 0.5500 0.9065 0.9985 0.6190 0.9420

TS
n 0 0.0495 0.0570 0.0440 0.0340 0.0655 0.0595 0.0430 0.0425

0.1 0.1460 0.2060 0.0785 0.1125 0.2010 0.3020 0.1450 0.2250

0.2 0.3615 0.6110 0.2030 0.3400 0.4895 0.8150 0.4015 0.7160

0.3 0.6235 0.9145 0.3665 0.6625 0.8045 0.9860 0.7030 0.9650

0.4 0.8580 0.9870 0.5555 0.8820 0.9610 0.9990 0.8895 0.9975

0.5 0.9550 0.9999 0.7305 0.9705 0.9895 1.0000 0.9715 1.0000
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Table 2. Empirical sizes and powers of Tn, T̃n, TZhn and T Sn of H0 vs. H12 in Study 1.

H12 a p=2 p=8 p=2 p=8

λ = 4 Σ = Σ1 Σ = Σ1 Σ = Σ2 Σ = Σ2

n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

Tn 0 0.0480 0.0555 0.0410 0.0440 0.0525 0.0465 0.0475 0.0410

0.1 0.0520 0.1020 0.0595 0.0885 0.0625 0.0990 0.0495 0.0675

0.2 0.1315 0.2350 0.1258 0.2140 0.1340 0.2080 0.1075 0.1835

0.3 0.2465 0.4935 0.2245 0.4545 0.2375 0.4580 0.1875 0.3755

0.4 0.4260 0.7585 0.3660 0.7250 0.3970 0.7020 0.2980 0.6045

0.5 0.6310 0.9220 0.5685 0.9105 0.5815 0.8840 0.4665 0.8155

T̃n 0 0.0445 0.0490 0.0500 0.0515 0.0555 0.0480 0.0475 0.0410

0.1 0.0705 0.0825 0.0625 0.0790 0.0635 0.0855 0.0695 0.0820

0.2 0.1375 0.2280 0.1130 0.2245 0.1425 0.2235 0.1055 0.1880

0.3 0.2805 0.4830 0.2280 0.4630 0.2545 0.4335 0.1995 0.3615

0.4 0.4415 0.7750 0.3700 0.7410 0.4165 0.7050 0.3120 0.6335

0.5 0.6315 0.9250 0.5875 0.9165 0.5705 0.8935 0.4650 0.8275

TZh
n 0 0.0330 0.0425 0.0300 0.0400 0.0390 0.0495 0.0420 0.0405

0.1 0.0670 0.0995 0.0400 0.0500 0.0585 0.0930 0.0445 0.0640

0.2 0.1535 0.2520 0.0615 0.1065 0.1425 0.2340 0.0655 0.0975

0.3 0.3005 0.5330 0.1215 0.2320 0.2620 0.4795 0.0990 0.1845

0.4 0.5000 0.7975 0.2040 0.3825 0.4590 0.7525 0.1630 0.3225

0.5 0.7060 0.9445 0.3060 0.5900 0.6620 0.9115 0.2500 0.4865

TS
n 0 0.0530 0.0510 0.0460 0.0365 0.0505 0.0475 0.0450 0.0365

0.1 0.0100 0.1390 0.0715 0.0805 0.0855 0.1335 0.0580 0.0805

0.2 0.2135 0.3790 0.1470 0.2305 0.1985 0.3290 0.1240 0.1765

0.3 0.4385 0.6930 0.2625 0.4995 0.3695 0.6185 0.2005 0.3680

0.4 0.6710 0.9050 0.4420 0.7505 0.5720 0.8685 0.3130 0.5885

0.5 0.8375 0.9825 0.6265 0.9170 0.7670 0.9645 0.4890 0.8050
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Table 3. Empirical sizes and powers of Tn, T̃n, TZhn and T Sn of H0 vs. H13 in Study 1.

H13 a p=2 p=8 p=2 p=8

λ = 4 Σ = Σ1 Σ = Σ1 Σ = Σ2 Σ = Σ2

n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

Tn 0 0.0415 0.0505 0.0565 0.0455 0.0500 0.0420 0.0460 0.0495

0.1 0.0770 0.0900 0.0725 0.0860 0.0665 0.0735 0.0595 0.0705

0.2 0.1370 0.2470 0.1125 0.2115 0.1165 0.1885 0.0865 0.1550

0.3 0.2530 0.4430 0.2105 0.4130 0.2235 0.3920 0.1390 0.2980

0.4 0.3980 0.6965 0.3480 0.6470 0.3185 0.6220 0.1980 0.4410

0.5 0.5395 0.8715 0.4515 0.8205 0.4425 0.7815 0.2810 0.6075

T̃n 0 0.0455 0.0530 0.0585 0.0455 0.0475 0.0565 0.0500 0.0485

0.1 0.0605 0.0910 0.0665 0.0805 0.0765 0.0965 0.0590 0.0725

0.2 0.1360 0.2420 0.1100 0.2240 0.1100 0.1980 0.0880 0.1570

0.3 0.2680 0.4595 0.2090 0.4440 0.2120 0.4065 0.1335 0.2905

0.4 0.3750 0.6920 0.3365 0.6405 0.3375 0.6135 0.1910 0.4665

0.5 0.5520 0.8730 0.4400 0.8375 0.4605 0.7775 0.2685 0.5910

TZh
n 0 0.0350 0.0450 0.0250 0.0450 0.0365 0.0505 0.0355 0.0415

0.1 0.0560 0.0875 0.0350 0.0410 0.0510 0.0610 0.0365 0.0445

0.2 0.1130 0.2250 0.0525 0.0875 0.0985 0.1650 0.0400 0.0600

0.3 0.2215 0.4460 0.0795 0.1380 0.1705 0.3570 0.0580 0.0860

0.4 0.3700 0.6760 0.1135 0.2265 0.3120 0.5650 0.0665 0.1295

0.5 0.5075 0.8410 0.1610 0.3225 0.4010 0.7330 0.0780 0.1650

TS
n 0 0.0570 0.0410 0.0405 0.0420 0.0560 0.0565 0.0440 0.0400

0.1 0.0560 0.0695 0.0505 0.0390 0.0500 0.0650 0.0555 0.0300

0.2 0.0945 0.1305 0.0750 0.0945 0.0640 0.0840 0.0610 0.0380

0.3 0.1455 0.2065 0.1150 0.1550 0.0870 0.0990 0.0520 0.0615

0.4 0.2030 0.3225 0.1550 0.2560 0.1120 0.1400 0.0625 0.0665

0.5 0.2540 0.4255 0.1895 0.3600 0.1350 0.1840 0.0660 0.0600
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Table 4. Empirical sizes and powers of Tn and T Sn of H0 vs. H14 and H15 in Study 2.

a H14 H15

λ = 4 Σ = Σ1 Σ = Σ2 Σ = Σ1 Σ = Σ2

n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

Tn 0 0.0525 0.0470 0.0460 0.0485 0.0440 0.0450 0.0395 0.0460

0.1 0.0530 0.0720 0.0650 0.0805 0.0455 0.0430 0.0515 0.0710

0.2 0.0780 0.1245 0.1130 0.1720 0.0700 0.0700 0.1175 0.2020

0.3 0.1390 0.2385 0.1905 0.3865 0.0905 0.1455 0.1890 0.3920

0.4 0.2065 0.3660 0.2885 0.5860 0.1175 0.2490 0.2285 0.5200

0.5 0.3060 0.5560 0.4405 0.7890 0.1485 0.3130 0.2690 0.6105

TS
n 0 0.0525 0.0605 0.0605 0.0540 0.0450 0.0515 0.0540 0.0535

0.1 0.0830 0.0970 0.0915 0.1155 0.0620 0.0545 0.0525 0.0490

0.2 0.1375 0.2190 0.1755 0.3390 0.0575 0.0555 0.0450 0.0525

0.3 0.2310 0.4245 0.3575 0.6170 0.0485 0.0465 0.0590 0.0570

0.4 0.3615 0.6375 0.5205 0.8340 0.0530 0.0540 0.0550 0.0590

0.5 0.5020 0.8040 0.6935 0.9410 0.0590 0.0515 0.0505 0.0410
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Figure 2: Plots of power curves over a under H16−H19 in Study 4. The solid lines are for

Tn and the dash-dotted lines are for TZhn .
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Table 5. Empirical sizes and powers of Tn and T
(1)
n (with small λ), T

(2)
n (with large λ) of H0

vs. H11 in Study 3.

H11 p=2 p=8 p=2 p=8

λ = 0.1 λ = 0.1 λ = 0.5 λ = 0.5

a N=100 N=200 N=100 N=200 N=100 N=200 N=100 N=200

Tn 0 0.0160 0.0255 0.0080 0.0120 0.0330 0.0420 0.0235 0.0295

0.1 0.0380 0.0865 0.0280 0.0535 0.0535 0.0725 0.0425 0.0685

0.2 0.1710 0.4420 0.1305 0.4305 0.1245 0.2400 0.0970 0.2265

0.3 0.4695 0.8920 0.4465 0.8835 0.2720 0.6005 0.2370 0.5905

0.4 0.7775 0.9935 0.7980 0.9930 0.4955 0.8990 0.4445 0.8765

0.5 0.9465 1.0000 0.9360 1.0000 0.7270 0.9860 0.6390 0.9805

T
(1)
n 0 0.0610 0.0555 0.0400 0.0475 0.1690 0.1720 0.1190 0.1490

0.1 0.1135 0.1745 0.0885 0.1635 0.2175 0.2470 0.1745 0.2600

0.2 0.3705 0.6415 0.3095 0.6200 0.3470 0.5370 0.3135 0.5295

0.3 0.7100 0.9680 0.6550 0.9595 0.5695 0.8410 0.5100 0.8165

0.4 0.9255 0.9995 0.9145 0.9995 0.7765 0.9715 0.7300 0.9605

0.5 0.9865 1.0000 0.9860 1.0000 0.9115 0.9975 0.8625 0.9985

λ = 4 λ = 4 λ = 8 λ = 8

a n=100 n=200 n=100 n=200 n=100 n=200 n=100 n=200

Tn 0 0.0525 0.0545 0.0480 0.0405 0.0485 0.0385 0.0430 0.0545

0.1 0.0590 0.0960 0.0530 0.0925 0.0705 0.0850 0.0615 0.0780

0.2 0.1270 0.2335 0.1110 0.2290 0.1325 0.2560 0.1340 0.2530

0.3 0.2645 0.5715 0.2525 0.5445 0.3045 0.5815 0.2550 0.5605

0.4 0.4390 0.8310 0.4175 0.8260 0.5030 0.8675 0.4445 0.8350

0.5 0.6705 0.9700 0.6295 0.9665 0.6885 0.9690 0.6620 0.9690

T
(2)
n 0 0.0610 0.0620 0.0575 0.0495 0.0530 0.0420 0.0445 0.0575

0.1 0.0660 0.1075 0.0685 0.1085 0.0755 0.0890 0.0690 0.0840

0.2 0.1410 0.2560 0.1310 0.2505 0.1450 0.2670 0.1430 0.2685

0.3 0.2910 0.5985 0.2845 0.5775 0.3145 0.5960 0.2735 0.5760

0.4 0.4720 0.8510 0.4490 0.8445 0.5175 0.8760 0.4620 0.8415

0.5 0.6880 0.9735 0.6580 0.9720 0.6950 0.9700 0.6745 0.9715
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