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Abstract

A longstanding problem of existing empirical process-based tests for regressions is

that when the number of covariates is greater than one, they either have no tractable

limiting null distributions or are not omnibus. To attack this problem, we in this

paper propose a projection-based adaptive-to-model approach. When the hypothetical

model is parametric single-index, the method can fully utilize the dimension reduction

model structure under the null hypothesis as if the covariate were one-dimensional such

that the martingale transformation-based test can be asymptotically distribution-free.

Further, the test can automatically adapt to the underlying model structure such

that the test can be omnibus and thus detect alternative models distinct from the

hypothetical model at the fastest possible rate in hypothesis testing. The method is

examined through simulation studied and is illustrated by a real data analysis.
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1 Introduction

Even when the dimension of covariates is moderate, dimensionality still causes data

structure not to be visualized and thus makes regression modelling difficult. Therefore,

in regression analysis, dimension reduction model structure is often used to approximate

underlying models. A typical example is the parametric single-index regression model:

Y = g(β>0 X, θ0) + ε, (1.1)

where Y is the response variable with the covariates X ∈ Rp , g(·) is a known smooth

function, β0 ∈ Rp and θ0 ∈ Rd are the unknown regression parameter vectors, ε is the

error term with E(ε|X) = 0 and the notation > denotes transposition.

It is necessary to check the mis-specification of the regression function such that further

regression analysis can be proceeded. Thus, the saturated alternative model is considered:

Y = G(X) + ε, (1.2)

where G(·) denotes an unknown smooth function. There are several methods available to

test the null hypothesis of model (1.1), which can be used for more general hypothetical

parametric models. As this paper focuses on dimension-reduction issue, we only briefly

mention existing locally and globally smoothing tests and then give a more detailed com-

ment on existing methods that are used to handle the curse of dimensionality. Locally

smoothing tests include Härdle and Mammen (1993), Zheng (1996), Fan and Li ( 1996),

Dette (1999), Fan and Huang (2001), Koul and Ni (2004) and Van Keilegom et al.(2008).

In low-dimensional cases, this type of tests can be sensitive to high-frequent alternative

models. However, these tests rely on nonparametric regression estimation and thus suffer

severely from the curse of dimensionality. This is because nonparametric regression esti-

mation is very inefficient in high-dimensional scenarios. Guo et al. (2015) had detailed

comments. Globally smoothing tests are nonparametric estimation free and particularly
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sensitive to low frequency alternative models and have better asymptotic behaviours. This

is because they are the averages over empirical processes. Examples include Stute (1997),

Stute et. al. (1998a), Stute et. al. (1998b), Zhu (2003), Khmadladze and Koul (2004), S-

tute, Xu and Zhu (2008). For more references, see the review paper by González-Manteiga

and Crujeiras (2013). However, when the dimension is greater than 1, they are usually

not asymptotically distribution-free and thus require Monte Carlo approximations such as

the wild bootstrap to determine critical values. Stute et al. (1998a) is a typical reference

for this type of tests.

To attack this longstanding problem, there are several efforts in the literature to al-

leviate the curse of dimensionality. Guo, et al. (2015), as a first attempt in this field,

suggested a model adaptive test that can avoid the dimensionality problem largely, but

still requires nonparametric estimation. Thus, the test has slower convergence rate than

1/
√
n and theoretically, cannot detect the alternatives only distinct from the null at this

fastest possible rate in hypothesis testing. A commonly used and efficient idea is to con-

struct tests that are based on projected covariates in lower dimensional space. Most of

existing methods are inspired by the projection pursuit technique that was first proposed

by Friedman and Stuetzle (1981), since it is essential to find one or a few directions a-

long which the departures from hypothetical models can be easily detected. Escanciano

(2006) and Lavergne and Patilea (2008, 2012) proposed tests that are based on projected

covariates. Two earlier and relevant references are Zhu and An (1992) and Zhu and Li

(1998). Zhu (2003) and Stute, Xu and Zhu (2008) used residual processes to construct

tests that can also be regarded as dimension reduction type. These tests usually need to

resort to Monte Carlo approximations to determine critical values (e.g. Escanciano 2006;

and Lavergne and Patilea 2008) though some of them are even asymptotically distribution-

free such as Lavergne and Patilea (2012). This is either because of intractability of the

null distribution or because of computational instability and complexity caused by the

computation over all projected covariates at all directions. A relevant reference about the
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computation issue is Wong et al. (1995). Xia (2009) also proposed a projection-based test

that however has no way to control type I error.

More specifically, existing projection-based tests that involve residual-marked empirical

processes are either the supremum or integral over all projected covariates {a>X : a ∈

Rp with ‖a‖ = 1} to form Kolmogonov-Smirnov type or Crämer-von Mises type statistics.

It is worthwhile to note that test statistics naturally involve all projections under both

the null and alternative hypothesis. Although it is reasonable and the omnibus property

can also be guaranteed, the limiting null distributions are often intractable. In contrast,

Stute and Zhu (2002) simply used one projection β>0 X and thus the test behaves like the

one with one-dimensional covariate. For model (1.1) letting ε = Y − g(β>0 X, θ0), we have

that under the null hypothesis,

E(ε|X) = 0⇒ E[Y − g(β>0 X, θ0)]I(β>0 X ≤ u) = 0 for all u ∈ R,

the residual marked empirical process defined by Stute and Zhu (2002) is

Rn(u) = n−1/2
n∑
i=1

[Yi − g(β>nXi, θn)]I(β>nXi ≤ u), (1.3)

where {(X1, Y1), · · · (Xn, Yn)} denote an i.i.d. sample from the distribution of (X,Y ), βn

and θn are, under the null hypothesis, root-n consistent estimators of β and θ, respec-

tively. The martingale transformation can lead to an asymptotically distribution-free test

(Stute et al. 1998a). However, the test obviously fails to be omnibus (see the comment in

Escanciano 2006) because the construction only uses the model structure under the null

hypothesis. Guo et al. (2015) gave an example to explicitly illustrate this phenomenon.

The purpose of this paper is to construct a globally smoothing test that inherits the

asymptotically distribution-free and dimension reduction properties of Stute and Zhu’s

(2002) test under the null hypothesis and the omnibus property of general projection-

based tests under the alternative hypothesis such as Escanciano (2006) and Lavergne and
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Patilea (2008). To simultaneously achieve these two goals, we suggest an adaptive-to-

model martingale transformation approach that can make the test automatically adapt to

the underlying model structure under the respective null and alternative hypothesis.

To accommodate more general alternatives, we consider the following model:

Y = G(B>X) + ε, (1.4)

where G is an unknown smooth function, B is a p× q matrix with q orthogonal columns

for an unknown q with 1 ≤ q ≤ p and E(ε|X) = 0. When q = 1 and B = κβ0 for some

constant κ, model (1.4) becomes a semiparametric single-index model with the same index

parameter as that in model (1.1). When q = p, model (1.4) reduces to model (1.2) since

G(·) is unknown and G(X) = G(BB>X) ≡: G̃(B>X).

This paper is organised as follows. Basic test construction is described in Section 2.

As sufficient dimension reduction technique is crucial to implement the adaptive-to-model

strategy for test construction, we also give a short review in this section. In Section 3, we

first present the asymptotic properties of the residual marked empirical process under the

null hypothesis. The martingale transformation-based innovative process is then discussed.

After that, we investigate the properties of the process and its innovative process under

the alternative hypothesis. In Section 4, the test statistic is presented and simulation

results for small to moderate sample size are reported and a real data analysis is used

as an illustration of application. Appendix contains technical proofs of the theoretical

results.
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2 Projection-based adaptive-to-model empirical process

2.1 Basic construction

The null hypothesis now can be restated as

H0 : E(Y |X) = g(β>0 X, θ0) for some β0 ∈ Rp, θ0 ∈ Θ ⊂ Rd

and the alternative hypothesis is that for any β ∈ Rp , θ ∈ Rd and a p× q matrix B

H1 : E(Y |X) = G(B>X) 6= g(β>X, θ),

where G is unknown. Without loss of generality, assume β0 is a linear combination of the

columns of B. Recall ε = Y − g(β>0 X, θ0). Under the null hypothesis, q = 1 and B = κβ0

for some constant κ, then we have E(ε|β>0 X) = E(ε|B>X) = 0. Under the alternative

hypothesis E(ε|B>X) = G(B>X)− g(β>0 X, θ0) 6= 0. Thus, under the null hypothesis,

E[(Y − g(β0
>X, θ0))I(β>0 X ≤ u)] = 0. (2.1)

According to Lemma 1 of Escanciaco (2006), Lemma 2.1 of Lavergne and Patilea (2008)

or a similar result in Zhu and Li (1998) that can be traced back to Zhu and An (1992), we

have that, under the alternative hypothesis, for an α ∈ Rq whose first element is positive

and ‖α‖ = 1

E[(Y − g(β0
>X, θ0))I(α>B>X ≤ u)] 6= 0. (2.2)

Note that under the null and alternative hypothesis, we use respective β>0 X and α>B>X.

It is clear that we cannot define two estimates separately according to null and alternative

hypothesis as we do not know the underlying model, while need an estimate B̂n of B that

can adapt the underlying model: under the null B̂n converges to a vector proportional to β0

and under the alternative, to B. If this can be achieved, we can use the empirical version of

the left hand side of (2.2) to be the basis of a test statistic. Let {(X1, Y1), . . . , (Xn, Yn)} be
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a sample with the same distribution as (X,Y ). Thereby we propose an adaptive-to-model

residual marked empirical process for checking model (1.1) as follows:

Vn(u, α̂) = n−1/2
n∑
i=1

[Yi − g(β>nXi, θn)]I(α̂>B̂>nXi ≤ u), (2.3)

Vn(u) = sup
‖α̂‖=1,a1≥0

Vn(u, α̂) (2.4)

where α̂> = (a1, . . . , aq̂) ∈ Rq̂, B̂n is a sufficient dimension reduction estimator of B with

an estimated structural dimension q̂ of q, βn and θn are respectively ordinary least squares

estimators of β0 and θ.

It is clear that in order to have the model adaptation property of the process such that

under the null hypothesis, sup‖α̂‖=1,a1≥0 Vn(u, α̂) is equal to n−1/2
∑n

i=1[Yi− g(β>nXi, θn)]

I(β>nXi ≤ u) Stute and Zhu (2002) defined, we must have that under the null hypothesis,

q̂ and B̂ converge to 1 and κβ0, respectively. Thus, we discuss their estimations.

2.2 A review on discretization-expectation estimation

To identify and estimate the number q and the matrix B, we use a method of sufficient

dimension reduction (SDR). There are several proposals available in the literature. Ex-

amples include sliced inverse regression (SIR,Li 1991), sliced average variance estimation

(SAVE, Cook and Weisberg 1991), minimum average variance estimation (MAVE, Xia

et.al. 2002), directional regression (DR, Li and Wang, 2007), likelihood acquired direc-

tions (LAD, Cook and Forzani, 2009) and average partial mean estimation (APME, Zhu et

al. 2010b). In this section we briefly review discretization-expectation estimation (DEE,

Zhu, et al. 2010b). Since G is unknown, for any q× q orthogonal matrix C, G(B>X) can

be rewritten as G̃(C>B>X). This means B is not identifiable in model (1.4). Thus, SDR

methodologies show that we can only identify q base vectors in the central mean subspace

SE(Y |X) spanned by B (see Cook (1998)), or precisely BC for a q× q orthonormal matrix
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C. This can be achieved through identifying SE(Y |X). In the SDR theory, SE(Y |X) is de-

fined to be the intersection of all subspaces span(A) such that Y⊥⊥E(Y |X)|A>X where ⊥⊥

means statistical independence and span(A) means the subspace spanned by the columns

of A. The dimension of SE(Y |X) is called the structural dimension, denoted as dE(Y |X).

Therefore, under the null hypothesis(1.1), SE(Y |X) = span(β0/‖β0‖) and dE(Y |X) = 1;

while under the alternative (1.4), SE(Y |X) = span(B) and dE(Y |X) = q. Similarly, the

central subspace (Cook (1998)) denoted by SY |X is defined to be the intersection of all

subspaces span(A) such that Y⊥⊥X|A>X. It is easy to see that SE(Y |X) ⊂ SY |X . For

simplicity, we assume SE(Y |X) = SY |X . A special case is that η⊥⊥X in model (1.4).

The basic procedure of DEE is given below.

1. Define the discrete response variable Z(t) = I{Y ≤ t} where the indicator function

I{Y ≤ t} take value 1 if Y ≤ t and 0 otherwise.

2. Let SZ(t)|X denote the central subspace of Z(t)|X and M(t) be a p × p positive

semi-definite matrix such that Span{M(t)} = SZ(t)|X.

3. Let Ỹ be an independent copy of Y and M = E{M(Ỹ )}. Theorem 1 in Zhu et al.

(2010) asserts that Span(M) = SY|X and B consists of the eigenvectors corresponding

to the nonzero eigenvalues of M .

4. The estimator of the target matrix M is given by

Mn =
1

n

n∑
i=1

Mn(yi),

where Mn(yi) is the estimator of the matrix M(yi) obtained by a chosen sufficient

dimension reduction method such as SIR (Li 1991). Then an estimator Bn(q) of B

consists of the eigenvectors associated with the largest q eigenvalues of Mn when q

is given.
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According to Theorems 2 and 3 in Zhu et al. (2010), Bn(q) could achieve root-n consistence

to B. For more details the readers can refer to Zhu et al. (2010).

2.3 Structural dimension estimation

As argued in Section 2.2, a consistency estimator of the structure dimension q is re-

quired. Zhu et al.(2010a) suggested the BIC-type criterion to determine q, which is a

modification of the method in Zhu et al. (2006). Here, we suggest a minimum ridge-

type eigenvalue ratio estimate (MRER) to determine the structure dimension q. Let

λ̂p ≤ · · · ≤ λ̂1 denote the eigenvalues of the estimated matrix Mn of M . Note that

q = dimSY |X = rank(M). Then the true structure dimension q can be estimated by

q̂ = arg min
1≤i≤p

{
i :
λ̂2
i+1 + c

λ̂2
i + c

}
. (2.5)

The algorithm of MRER is easy to implement. The following theorem shows that the

consistency of MRER is adaptive to the underlying model.

Lemma 1 Under the regularity conditions assumed by Zhu et al. (2010a), the estimator

q̂ of (2.5) with c = log n/n satisfies that, as n→∞,

(i) under H0, Pr(q̂ = 1)→ 1,

(ii) under H1, Pr(q̂ = q)→ 1.

A justification of this lemma can be found in the Appendix.
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3 Main results

3.1 Basic properties of the process

First, we consider the following process

V 0
n (u, α) = n−1/2

n∑
i=1

[Yi − g(β>0 Xi, θ0)]I(α>B>Xi ≤ u),

where α = (a1, a2, . . . , aq)
>, a1 ≥ 0 and ‖α‖ = 1. Denote σ2(v, α) = V ar(Y |α>B>X = v)

and ψ(u, α) = E[V ar(Y |α>B>X)I(α>B>X ≤ u)]. Under the null hypothesis, q = 1, α =

1 and B = κβ0. Thus, we rewrite it as

σ2(v) ≡: σ2(v, 1) = V ar(Y |κβ>0 X = v),

ψ(u) ≡: ψ(u, 1) = E[V ar(Y |κβ>0 X)I(κβ>0 X ≤ u)],

V 0
n (u) ≡: V 0

n (u, 1) = n−1/2
n∑
i=1

[Yi − g(β>0 Xi, θ0)]I(κβ>0 Xi ≤ u).

Obviously, ψ(u) =
∫ u
−∞ σ

2(v)dFκβ0(dv) where Fκβ0 denotes the distribution of κβ>0 X.

Under the null hypothesis, Theorem 1.1 in Stute (1997) implies that

V 0
n (u) −→ V∞(u) in distribution (3.1)

in the Skorohod space D[−∞,∞) where V∞ is a continuous Gaussian process with mean

zero and covariance kernel K(u1, u2) = ψ(u1 ∧ u2).

To study the process Vn(u, α̂) proposed in (2.3), we give some regularity conditions on

the function g(β>X, θ) and the parameters in the following.

A1 Under H0, we suppose that (βn, θn) has a linear expansion

√
n

(
βn − β0

θn − θ0

)
=

1√
n

n∑
i=1

l(xi, yi, β0, θ0) + op(1),

where l is a vector-valued function satisfying that
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I E(l(X,Y, β0, θ0)) = 0;

II L(β0, θ0) = E(l(X,Y, β0, θ0)l>(X,Y, β0, θ0)) is positive definite.

It is easy to see that the ordinary least squares estimator satisfies condition (A1).

A2 The function g(β>x, θ) is continuously differentiable with respect to (β, θ) in some

neighbourhood of (β0, θ0). The first-order partial derivatives

m(x, β, θ) =
∂g(β>x, θ)

∂(β, θ)
= (m1(x, β, θ), · · · ,mp+d(x, β, θ))

>

satisfies that there exists a µ−integrable function K0(x) such that

|mj(x, β, θ)| ≤ K0(x) for all (β, θ) and 1 ≤ j ≤ p+ d.

where µ denotes the distribution of X.

A3 Let H(u, β) = E[V ar(Y |X)I(κβ>X ≤ u)] and we assume that H(u, β) is uniformly

continuous in u at β0.

Theorem 3.1. Under H0 and Conditions A1-A2, we have in distribution

Vn(u) −→ V∞(u)−M(u)>V ≡: V 1
∞(u)

where V∞(u) has the same Gaussian process as given by (3.1), the vector-valued function

M> = (M1,M2, · · · ,Mp+d) is defined as

Mi(u) = E(mi(X,β0, θ0)I(κβ>0 X ≤ u))

and V is a p + d−dimensional normal vector with zero means and covariance matrix

L(β0, θ0).

Theorem 3.1 is almost the same as Theorem 1 in Stute and Zhu(2002) except for the

definition of M . In other words, under the null hypothesis, our process can have almost the

same limiting property as that in Stute and Zhu(2002). Thus, a martingale transformation
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can be implemented. However, we also need to check whether it can be done under the

alternative hypothesis. We then discuss the adaptive-to-model martingale transformation

below.

3.2 Adaptive-to-model martingale transformation

To have the model adaptation property of the process, our idea is that under the null

hypothesis, the process is only with β>0 X (or proportional to it as κβ>0 X), and under the

alternatives, the process is automatically with α>B>X such that the transformation is

still implementable and the transformed process can capture the information of alternative

models.

First, motivate our method from the transformation under the null hypothesis. Recall

M a vector-valued function on R and

ψ(u) =

∫ u

−∞
σ2(v)dFκβ0(dv)

a nonnegative increasing function with ψ(−∞) = 0. Let a = ∂M
∂ψ stand for the Radon-

Nikodym derivative of G w.r.t. ψ, assuming that it exists. Let

A(u) =

∫ ∞
u

a(v)a>(v)ψ(dv) =

∫ ∞
u

a(v)a>(v)σ2(v)dFκβ0(dv)

be a (d+ p)× (d+ p) matrix. Finally, we define the innovation process transformation as

(Tf)(z) = f(z)−
∫ z

−∞
a>(u)A−1(u)

[∫ ∞
u

a(v)f(dv)

]
ψ(du). (3.2)

Here we suppose that A(u) is non-singular and the process f should be either bounded

variation or Brownian motion.

Using the same arguments in the proofs of lemma 3.1 and 3.2 in Nikabadze and S-

tute(1997), we have the following two vital facts:

12



(i) T (G>V ) ≡ 0,

(ii) TV∞ = V∞ in distribution.

Thus TV∞ is a centered Gaussian process with a covariance kernel K(u1, u2) = ψ(u1∧u2)

which can be considered as the martingale part in the Doob-Meyer decomposition of V 1
∞.

See Stute et al. (1998b).

Note that T relies on some unknown quantities and thus needs to be replaced by its

empirical version. To this end, let g1(t, θ) = ∂g(t,θ)
∂t and g2(t, θ) = ∂g(t,θ)

∂θ , then

m(x, β0, θ0) = (g1(β>0 X, θ0)X>, g2(β>0 X, θ0))>.

Recall that M(u) = E(m(X,β0, θ0)I(κβ>0 X ≤ u)), then we obtain

M(u) =

(
E[g1(β>0 X, θ0)XI(κβ>0 X ≤ u)]
E[g2(β>0 X, θ0)>I(κβ>0 X ≤ u)]

)
=

( ∫ u
−∞ g1(v/κ, θ0)r(v)Fκβ0(dv)∫ u
−∞ g2(v/κ, θ0)>Fκβ0(dv)

)
,

where r(v) = E(X|κβ>0 X = v). It is easy to see that

a =
∂M

∂ψ
=

(
g1(v/κ, θ0)r(v)/σ2(v)
g2(v/κ, θ0)>/σ2(v)

)
,

and

A(u) =

∫ −∞
u

a(v)M>(dv) =

( ∫ −∞
u g1(v/κ, θ0)r(v)/σ2(v)M>(dv)∫ −∞
u g2(v/κ, θ0)>/σ2(v)M>(dv)

)
.

In a general nonparametric framework, there are no assumptions on r and σ except for

smoothness, thus both the functions need to be estimated by some curve estimators. Here

we adopt a standard Nadaraya-Watson estimator for r

rn(v) =

∑n
i=1XiK(v−α̂

>B̂>nXi

h )∑n
i=1K(v−α̂

>B̂>nXi

h )
.

For σ2, note that σ2(u) = E(ε2|κβ0X = u) which can be replaced by

σ2
n(u) =

∑n
i=1 ε̂

2
iK(u−α̂

>B̂>nXi

h )∑n
i=1K(u−α̂

>B̂>nXi

h )
,
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where K(·) is a univariate kernel function and h is a bandwidth. It is worth mentioning

that we use α̂>B̂>nX rather than β>nX where βn is the nonlinear least squares estimate

of β0 that was used by Stute and Zhu (2002). As q̂ and B̂ have the model adaptation

property, in the following, we can derive the model adaptation property of the transformed

process.

Now we can respectively obtain the empirical versions an,Mn and An of a,M and A:

an(v) =

(
g1(v/κn, θn)rn(v)/σ2

n(v)
g2(v/κn, θn)>/σ2

n(v)

)
,

Mn(u) =

(
1
n

∑n
i=1 g1(β>nXi, θn)XiI(α̂>B̂>nXi ≤ u)

1
n

∑n
i=1 g2(β>nXi, θn)>I(α̂>B̂>nXi ≤ u)

)
,

An(u) =
1

n

n∑
i=1

I(α̂>B̂>nXi ≥ u)

(
g1(α̂>B̂>nXi/κn, θn)rn(α̂>B̂>nXi)/σ

2
n(α̂>B̂>nXi)

g2(α̂>B̂>nXi/κn, θn)>/σ2
n(α̂>B̂>nXi)

)
×(g1(β>nXi, θn)X>i , g2(β>nXi, θn)).

Replace a,Mand A in (3.2) by their empirical versions, we obtain the empirical version of

TV :

(TnVn)(u, α̂) = Vn(u, α̂)−
∫ u

−∞
an(v)>A−1

n (v)

∫ ∞
v

an(z)Vn(dz)σ2
n(v)Fα̂(dv)

=
1

n1/2

n∑
i=1

[Yi − g(β>nXi, θn)]I(α̂>B̂>nXi ≤ u)− 1

n3/2

n∑
i,j=1

I(α̂>B̂>nXi ≤ u)

×[g1(α̂>B̂>nXi/κn, θn)rn(α̂>B̂>nXi)
>, g2(α̂>B̂>nXi/κn, θn)]

×A−1
n (α̂>B̂>nXi)I(α̂>B̂>nXj ≥ α̂>B̂>nXi)(Yj − g(β>nXj , θn))

×
(
g1(α̂>B̂>nXi/κn, θn)rn(α̂>B̂>nXi)/σ

2
n(α̂>B̂>nXi)

g2(α̂>B̂>nXi/κn, θn)>/σ2
n(α̂>B̂>nXi)

)
where κn is the estimator of κ and Fα̂ is the empirical distribution function of α̂>B̂>nXi, 1 ≤

i ≤ n.

Theorems 3.2 and 3.3 below show that the resulting transformed process is adaptive

to the underlying model.
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Theorem 3.2. Let σ2
n(u) be a consistent estimator of σ2 which is bounded away from

zero. Under the regularity conditions of Theorem (3.1) and H0, we have in distribution

sup
‖α̂‖=1,a1>0

TnVn(u, α̂) −→ V∞(u) in disitribution in the space D[−∞,∞).

The result meets our expectation. Because of model adaptation, the supremum under

the null is actually over only one direction and the transformed process is a standard

Gaussian process as proved by Stute and Zhu (2002).

When the distribution of X is elliptically contoured, particularly spherically contoured

such as normal distributions, the formulation of the transformation can be much sim-

pler and thus the computation can be much easier. Without loss of generality, consid-

er spherically contoured distributions. Suppose the regression function g does not rely

on the parameter θ. Let g′(β>0 x) be the derivative of g(·) about β>0 x. Thus we have

m(x, β0) = g′(β>0 x)x and

M(u) = E[g′(β>0 X)XI(κβ>0 X ≤ u)] =

∫ u

−∞
g′(v/κ)r(v)dFκβ0(dv).

Therefore a = ∂M
∂ψ = g′(v/κ)r(v)

σ2(v)
and A(u) =

∫ −∞
u a(v)M>(dv) =

∫ −∞
u

g′(v/κ)r(v)
σ2(v)

M>(dv).

Let Γ be any orthogonal matrix with the first row β>0 /‖β0‖, thus the first component

of ΓX is β>0 X/‖β0‖. Since the conditional distribution of the other components of ΓX

given the first is still spherical, these conditional expectations are zero. Therefore,

M(u) = Γ>Eg′(β>0 X)ΓXI(κβ>0 X ≤ u)

=
β0

‖β0‖2
Eg′(β>0 X)β>0 XI(κβ>0 X ≤ u)

=
β0

‖β0‖2

∫ u

−∞
[g′(v/κ)v/κ]Fκβ0(dv).

Thus we obtain

a(v) =
β0

‖β0‖2
g′(v/κ)v/κ

σ2(v)
,

A(u) =
β0β

>
0

‖β0‖4

∫ ∞
u

[g′(v/κ)v/κ]2

σ2(v)
Fκβ0(dv).
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The matrix A(x) is singular with rank 1. To derive relevant asymptotic results as those

in Theorem 3.2, denote

h(v) = Eg′(β>0 X)β>0 XI(κβ>0 X ≤ v) and V1 =
β>0 V

‖β0‖2
.

Therefore M>(u)V = h(u)V1 and the conclusion of Theorem 3.1 would be rewritten as

Vn −→ V∞ − hV1 in distribution

The new a and A now become real-valued:

a =
∂h

∂ψ
and A(u) =

∫ ∞
u

a2(v)σ2(v)Fκβ0(dv).

Similarly, we can also obtain the empirical analogues An and Tn of A and T respectively.

Therefore Theorem 3.2 can be applied with these new functions in the results.

It is noteworthy to point out that convergence in D[−∞,∞) means convergence in

D[−∞, u] for any finite u. Since the transformation involves the inverses of A(u), Our

test statistic would yield instabilities in the distributional behaviors for large values of u.

Thus all the processes should be constrained in proper subsets of the real line. In practice,

we would consider TnVn on a given quantile of κnβ
>
nXi, 1 ≤ i ≤ n. See Stute and Zhu

(2002). Now we give the result to show that the transformed process can automatically

adapt to the alternative models such that a constructed test can detect them.

3.3 The properties under the alternative hypothesis

Consider the following sequence of alternatives converging to the null hypothesis

H1n : Yn = g(β>0 X, θ0) + CnG(B>X) + η (3.3)

where E(η|X) = 0, and β0 is the linear combination of the columns of B. When Cn is

a fixed constant, the model is under global alternative equivalent to model (1.4). If it
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tends to zero, the models are under local alternatives. We give the asymptotic property

of the estimator q̂ of the structure dimension q under the local alternatives. The following

lemma shows that when Cn goes to zero quickly, q̂ is not equal to q, while to 1. In other

words, q̂ is an inconsistent estimate of q.

Lemma 2 Under the local alternative H1n and the same conditions in Lemma 1 with

Cn = 1/
√
n, the estimator q̂ of (2.5) with c = log n/n satisfies that P (q̂ = 1) → 1, as

n→∞.

To derive the asymptotic properties of sup‖α̂‖=1,a1>0 TnVn(u, α̂), under the local alter-

native H1n, we need an additional condition:

A3

√
n

(
βn − β0

θn − θ0

)
= γ +

1√
n

n∑
i=1

l(xi, yi, β0, θ0) + op(1),

where γ is some constant vector and the vector-valued function l is the same as given in

(A1). Under H1n with Cn = 1√
n

, condition (A3) is satisfied for the nonlinear least squares

estimate. See Lemma 3 in Guo et al.(2015).

Now we derive the limits of sup‖α̂‖=1,a1≥0TnVn(x, α̂) under the global alternative and

local alternatives.

Theorem 3.3. Under the regularity conditions A1-A3, we have

(i) under the global alternative H1 that is equivalent to H1n with fixed Cn,

1√
n

sup
‖α̂‖=1,a1≥0

TnVn(u, α̂)→ L(u);

where L(u) is some nonzero process. That is, sup‖α̂‖=1,a1≥0 TnVn(u, α̂) diverges to infinity

at the rate of 1/
√
n.

(ii) under the local alternatives H1n with Cn = 1/
√
n,

sup
‖α̂‖=1,a1≥0

TnVn(u, α̂)→ V∞(u) +

∫ u

−∞
{H0(v)− a(v)>A−1(v)[W1(v) +W2(v)]σ2(v)}Fκβ0(dv)
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where H0(v) = E[G(B>X)|κβ>0 X = v],W1(v) =
∫∞
v a(z)H0(z)Fκβ0(dz) and W2(v) have

a normal distribution with mean zero and variance

σ2
2(v) =

∫ ∞
v

σ2(u)a(u)a(u)>Fκβ0(du).

Based on Theorems 3.2 and 3.3, we can derive the asymptotic properties of functionals

of sup‖α̂‖=1,a1≥0 TnVn(u, α̂) over all u. The resulting test statistic is defined in the next

section.

4 Numerical studies

4.1 Test statistics in practical use

The test statistic is a functional of TnVn. In this paper, we consider the Crämer−von

Mises statistic of the form

CW 2
n =

∫ x0

−∞
sup

‖α̂‖=1,a1≥0
(TnVn(u, α̂))2Fn(d u), (4.1)

where Fn is the empirical distribution function of βn
‖βn‖Xi, 1 ≤ i ≤ n. Note that we take

κn = 1/‖βn‖ here. Using Theorem 3.2 and the continuous mapping theorem we obtain

that, under the null hypothesis

CW 2
n −→

∫ x0

−∞
B2(ψ(u))Fκβ0(du) in disitribution.

where B(u) is a standard Brownian motion. To obtain a distribution-free limit for our

test, note that

1

ψ(x0)2

∫ x0

−∞
B2(ψ(u))σ2(u)Fκβ0(du) =

∫ 1

0
B(u)2du in disitribution,

thus we consider

W 2
n =

1

ψn(x0)2

∫ x0

−∞
sup

‖α̂‖=1,a1>0
(TnVn(u, α̂))2σ2

nFn(d u),
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where ψn(u) = 1
n

∑n
i=1(Yi − g(β>nXi))

2I( βn
‖βn‖Xi ≤ u) is the estimator of ψ(u) and σ2

n

can be any consistent estimator of the conditional variance σ2 defined in subsection 3.1.

Therefore we have

W 2
n −→

∫ 1

0
B2(u)du in disitribution.

If the regression model is homoscedastic, then σ2 is a constant and we can estimate it

by

σ2
n =

1

n

n∑
i=1

[Yi − g(β>nXi, θn)]2.

Under the null hypothesis ψ(x0) = σ2Fκβ(x0) and it can be estimated by σ2
nFn(x0), thus

W 2
n becomes

W 2
n =

1

σ2
nF

2
n(x0)

∫ x0

−∞
sup

‖α̂‖=1,a1≥0
(TnVn(u, α̂))2Fn(d u).

For ease of comparison,we give four examples in the following. For x0, as Stute and

Zhu (2002) did, we choose the 99% quantile of Fn in the numerical examples.

4.2 Numerical examples

In this subsection we conduct some simulations to show the performance of the dis-

tributional approximations for small to moderate sample size. We make a comparison

with Guo et al.(2015)’s dimension reduction model-adaptive test TGWZ
n that is based on

SIR-based DEE, Stute et al.(1998a)’s test TSGPn that determines critical values by the

wild bootstrap. We design four representative examples. The first is to confirm that

the proposed test that can be regarded as an extension of Stue and Zhu’s (2002) test is

omnibus. The second includes both high-frequency and low-frequency model such as we

can compare with an adaptive-to-model test that is based on locally smoothing approach.
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The third includes models with higher structural dimension and the fourth is also used

to check the influence of dimensionality. The significant level is set to be α = 0.05, and

the reported results are the average of 2000 replications. In all models, the value of a = 0

corresponds to the null hypothesis and a 6= 0 to the alternatives.

Example 1. The data are generated from the model

Y =
1

4
exp(2β>1 X) + aβ>2 X + ε;

Here we consider two cases: p = 3, β1 = (1, 0, 0)>, β2 = (0, 1, 0)> and p = 4, β1 =

(1, 1, 0, 0)>/
√

2, β2 = (0, 0, 1, 1)>/
√

2. In both cases, n = 50, 100, X follows the standard

multivariate normal distribution N(0, Ip) and ε is from N(0, 1). Note that under the

alternatives, we have E(Y − exp(5
4β
>
1 X)|β>1 X) = 0. The results in Figure 1 obviously

show that TSZn fails to work while W 2
n performs very well.

Figure 1 about here

Now we consider the comparison between local and global smoothing tests and between

the adaptive-to-model method and the classical method.

Example 2. Consider

H11 : Y = β>0 X + a cos(
π

2
β>0 X) + ε;

H12 : Y = β>0 X +
1

4
a exp(β>0 X) + ε;

H13 : Y = β>0 X +
1

2
a(β>0 X)2 + ε.

where p = 8, β0 = (1, 1, . . . , 1)/
√
p, X = (X1, X2, . . . , Xp)

> which is independent with

ε. The central mean subspaces SE(Y |X) has the structural dimension 1 which means

B = β0 under both the null and alternative hypothesis. The predictors xi, i = 1, . . . , n are

i.i.d. from two distributions: multivariate normal distributions N(0, Ip) and N(0,Σ) with
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Σ = (1/2|i−j|)p×p so as to check the influence of correlation between the covariates. The

errors εi’s are drawn independently from N(0, 1). The first is a high-frequency model and

the others are low-frequent.

The empirical sizes and powers of the three tests are presented in Tables 1 and 2. We

can see that both TGWZ
n and W 2

n control the size very well even for the small size of

n = 50. TSGPn seems slightly more conservative with higher empirical size than 0.05. For

the first model, TGWZ
n has relatively higher power than W 2

n and TSGPn have, especially in

the correlated case with covariance matrix Σ. For the models H12 and H13, both W 2
n and

TSGPn are more powerful. These results further confirm that locally smoothing method

performs better for high frequency models and globally smoothing method works better

for low frequency models. The comparison also shows that W 2
n is more robust against

the underlying correlation structure of the predictors than TSGPn in both significance level

maintainance and power performance.

Table 1− 2 about here

To further investigate the performance of the proposed test, we consider the following

model whose structural dimension q is greater than 1 under the alternatives. In this sim-

ulation, we show the the advantage of our test in alleviating the dimensionality problem

when compared to a locally smoothing test proposed by Zheng (1996) which can be re-

garded as one of the representative locally smoothing methods.

Example 3. The data are generated from the model

H31 : Y = β>1 X + a(β>2 X)2 + ε;

H32 : Y = β>1 X + a exp{−(β>2 X)2}+ ε;
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where β1 = (1, . . . , 1︸ ︷︷ ︸
p/2

, 0, . . . , 0)>/
√
p/2 and β2 = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

p/2

)/
√
p/2. In this exam-

ple, the predictors xi, i = 1, . . . , n are i.i.d from multivariate normal distribution N(0, Ip)

and N(0,Σ) and εi’s are from the standard univariate normal distribution N(0, 1). In

each case we have two cases with p = 2 and p = 8 respectively.

The simulation results are presented in Tables 3 and 4. When p = 2, we can see that

Zheng(1996)’s test TZHn can maintain the significance level occasionally, but usually, the

empirical sizes are lower than 0.05. In contrast, W 2
n works much better even for n = 50.

For the empirical power, both TZHn and W 2
n have high power. But the power of W 2

n grows

slightly faster as a increases. When the dimension p is 8, the situation becomes very

different. The empirical size of TZHn is far away from the significance level and its power

becomes much lower than that in the p = 2 case. Nevertheless, our test W 2
n is much less

unaffected by the dimensionality increasing than TZHn . These phenomena validate the

theoretical results that locally smoothing tests suffer from the dimensionality curse that

causes slower convergence rate to their limits under the null and slower divergence rate to

infinity under the alternative than globally smoothing tests.

Table 3− 4 about here

In the following example, we consider a nonlinear null model against alternative mod-

els with higher structural dimensions. A more comprehensive comparison is made with

Zheng(1996)’s test TZHn , Guo et al.(2015)’s test TGWZ
n and our test W 2

n .

Example 4. Consider the following models

H41 : Y = exp(
1

2
X1) + aX3

2 + ε;

H42 : Y = exp(
1

2
X1) + a{X3

2 + cos(πX3) +X4}+ ε;

H43 : Y = exp(
1

2
X1) + a{X3

2 + cos(πX3) +X4 − |X5|+X2
6 +X7 ×X8}+ ε;

where (X1, . . . , Xp) is independent of ε and follows the standard multivariate normal
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distribution N(0, Ip) with p = 4 or 8. Let βi be the unit vector with the i-th component

1, i = 1, . . . , p and a = 0, 0.2, 0.4, . . . , 1. When a 6= 0, the structural dimension q = 2, B =

(β1, β2) for H41; q = 4, B = (β1, β2, β3, β4) for H42 and q = 8, B = (β1, β2, . . . , β8) for

H43. Note that under the alternatives, the models H42 and H43 do not have dimension

reduction structure for p = 4 and p = 8 respectively. Thus, this can be used to further

check the usefulness of the model adaptation method. The simulation results are reported

in Figure 2.

Figure 2 about here

From this figure, we can see that when p = 4, the performance of our test is slightly

better than the other two competitors. However, when p = 8, Zheng’s test TZHn behaves

much worse than W 2
n and TGWZ

n . This again indicates that the dimensionality is a severe

issue for the locally smoothing test without model adaptation as the adaptive-to-model

test TGWZ
n can also work well though it is also locally smoothing-based. For model H42

with p = 4 and model H43 with p = 8, W 2
n and TGWZ

n still work well in the power

performance, even though the model has no dimension reduction structure when a 6= 0.

Further, globally smoothing-based test procedure shows its advantage as our test W 2
n can

outperform TGWZ
n when both are of the model adaptation property.

4.3 Real data analysis

This data set is studied to understand the various self-noise mechanisms. The data

set is available at UCI Machine Learning Repository https://archive.ics.uci.edu/

ml/datasets/Airfoil+Self-Noise. There are 1503 observations on one output variable:

Scaled sound pressure level Y (in decibels) and five input variables: Frequency X1 (in

Hertzs), Angle of attack X2 (in degrees), Chord length X3 (in meters), Free-stream velocity

X4 (in meters per second) and Suction side displacement thickness X5 (in meters). For
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easy interpretation, all variables are standardized separately. To establish a regression

relationship between Y and 5 covariates X = (X1, · · · , X5), we try simple model first.

When the dimension reduction is applied, we find that Y may be conditionally independent

of X given a projected covariate β>1 X in which the direction β1 is searched by DEE. The

scatter plot in Figure 3 shows a seemly linear relationship.

Figure 3 about here

To further explore the exhaustive search of projected covariables, we use the second por-

jected covariable searched by DEE, and then scatter plot of Y against (β>1 X,β
>
2 X) is

presented in Figure 4.

Figure 4 about here

We can see clearly that the second direction β2 is not necessary to use as the curves along

the second direction could be almost identical. In other words, the projection of the data

onto the space β>1 X contains almost all information of model structure. Thus, we use a

linear model to fit the data where the direction β̂>1 = (−0.6323,−0.4339,−0.5339, 0.2386,

−0.2644). To test whether the linear model is adequate, we use our test. The value of the

test statistic W 2
n = 7.5322 and the p-value is about 0. Hence we need to further explore

a possible model. When we use a polynomial to fit the data, a cubic polynomial of β̂>1 X

may be appropriate. The fitted curve is added into the scatter plot. See Figure 5.

Figure 5 about here

The model is as follows:

Y = θ1 + θ2(β>X) + θ3(β>X)2 + θ4(β>X)3 + ε.

The value of the test statistic W 2
n = 0.1596 and the p-value is 0.70. Thus this model is

plausible.
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5 Discussions

In this paper, we propose a projection-based test that is based on residual marked em-

pirical process and an adaptive-to-model martingale transformation. Compared to existing

projection-based tests, the new test have the asymptotically distribution-free property un-

der the null hypothesis and the omnibus property under the alternative hypothesis. This

method is now for hypothetical models with dimension reduction structure. It is of great

interest to investigate the application or extension of the method to hypothetical models

without such kind of structure. The research is ongoing.

6 Appendix

Proof of Lemma 1. Under the regularity conditions given by Zhu et. al. (2010),

Theorem 2 therein asserts that Mn −M = Op(n
−1/2). Therefore, following the analogous

argument of Zhu and Ng (1995) or Zhu and Fang (1996), we have λ̂i− λi = Op(n
−1/2) for

i = 1, · · · , p.

(I) Under H0, since dim(SY |X) = 1, we have λ1 > 0, λl = 0 for any l > 1. Therefore,

λ̂2
1 = λ2

1 +Op(n
−1/2) and λ̂2

l = Op(n
−1), l = 2, . . . , p. Hence, for any l > 1,

λ̂2
2 + cn

λ̂2
1 + cn

=
cn +Op(1/n)

λ2
1 + cn +Op(1/

√
n)
→ 0,

λ̂2
l+1 + cn

λ̂2
l + cn

=
cn +Op(1/n)

cn +Op(1/n)
→ 1.

Therefore, the minimizer q̂ = 1 with a probability going to 1.

(II) Under the alternative H1, dim(SY |X) = q, we have λl > 0 and λ̂2
l = λ2

l +Op(1/
√
n)
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for l = 1, . . . , q and λ̂2
l = Op(1/n) for l = q + 1, . . . , p. Hence, for l < q

λ̂2
q+1 + cn

λ̂2
q + cn

−
λ̂2
l+1 + cn

λ̂2
l + cn

=
cn +Op(1/n)

λ2
q + cn +Op(1/

√
n)
−
λ2
l+1 + cn +Op(1/

√
n)

λ2
l + cn +Op(1/

√
n)

→ −
λ2
l+1

λ2
l

< 0.

For l > q

λ̂2
q+1 + cn

λ̂2
q + cn

−
λ̂2
l+1 + cn

λ̂2
l + cn

=
cn +Op(1/n)

λ2
q + cn +Op(1/

√
n)
− cn +Op(1/n)

cn +Op(1/n)
→ −1 < 0.

Therefore, we can conclude that Pr(q̂ = q) −→ 1. �

Proof of Theorem 3.1. Under the null hypothesis, Pr(q̂ = 1) → 1. Thus we can

only work on the event q̂ = 1 as the probability of the event q̂ 6= 1 tends to 0. Therefore

α̂ = 1 and Vn(u) = Vn(u, α̂). Decompose the term Vn(u) as follows

Vn(u) = Vn(u, α̂) = n−1/2
n∑
i=1

{Yi − g(β>nXi, θn)}I(B̂>nXi ≤ u)

= n−1/2
n∑
i=1

{Yi − g(β>nXi, θn)}I(κβ>0 Xi ≤ u) +

n−1/2
n∑
i=1

{Yi − g(β>nXi, θn)}[I(B̂>nXi ≤ u)− I(κβ>0 Xi ≤ u)]

≡: V1n + V2n

where κ = 1/‖β0‖. Following the analogous argument of Theorem 1 in Stute and Zhu

(2002), we obtain V1n −→ V∞ −M(u)>V ≡ V 1
∞ and V2n tends to zero uniformly in u. �

Proof of Lemma 2. Using the same notations as in the proof of Lemma 1. Following

the analogous argument for proving Theorem 2 in Guo et al.(2015), we obtain Mn−M =

Op(n
−1/2), therefore λ̂i − λi = Op(n

−1/2) for i = 1, · · · , p. Note that λl = 0 for any l > 1.

The proof is concluded from the exact arguments for proving Lemma 1. �

Proof of Theorem 3.2. Again, we only work on the event q̂ = 1 as q = 1 under the

null hypothesis. Denote V 2
n (u) = n−1/2

∑n
i=1[Yi − g(β>nXi, θn)]I(B̂>nXi ≤ u). Under the
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null, α̂ = 1 and sup‖α̂‖=1,a1≥0 TnVn(u, α̂) = TnV
2
n (u). More explicitly,

TnV
2
n (u) = V 2

n (u)−
∫ u

−∞
an(v)>A−1

n (v)[

∫ ∞
v

an(z)V 2
n (dz)]σ2

n(v)F1n(dv).

Let V 1
n (u) = n−1/2

∑n
i=1[Yi − g(β>0 Xi, θ0)]I(B̂>nXi ≤ u). Then

TnV
1
n (u) = V 1

n (u)−
∫ u

−∞
an(v)>A−1

n (v)[

∫ ∞
v

an(z)V 1
n (dz)]σ2

n(v)F1n(dv).

Here F1n is the empirical distribution function of B̂>nXi, 1 ≤ i ≥ n. Similarly as the

arguments for proving Lemma 3.2 and Theorem 1.3 in Stute et al.(1998b), we obtain that

TnV
2
n (u) = TnV

1
n (u) + op(1),

TnV
1
n (u) = TV 1

n (u) + op(1).

Recalling that under H0 we have V 0
n (u) = n−1/2

∑n
i=1[Yi − g(β>0 Xi, θ0)]I(κβ>0 Xi ≤ u),

then

TV 0
n (u)− TV 1

n (u) = V 0
n (u)− V 1

n (u)

−
∫ u

−∞
a(v)>A−1(v)

∫ ∞
v

a(z)V 0
n (dz)σ2(v)Fκβ0(dv)

+

∫ u

−∞
a(v)>A−1(v)

∫ ∞
v

a(z)V 1
n (dz)σ2(v)Fκβ0(dv).

Using the same proof for Theorem 1 in Stute and Zhu(2002), we obtain that TV 0
n −TV 1

n =

op(1) uniformly in u. Therefore Lemma 3.3 in Stute et al.(1998b) gives our result. �

Proof of Theorem 3.3. (I) First we consider the global alternative hypothesis. Un-

der the alternative H1, Lemma 1 asserts that Pr(q̂ = q) → 1, thus we work on the

event q̂ = q, α̂ = α = (a1, . . . , aq)
>. Therefore on this event, sup‖α̂‖=1,a1≥0 TnVn(u, α̂) =

sup‖α‖=1,a1≥0 TnVn(u, α). Denote δn = (β>n , θ
>
n )> and δ0 = (β>0 , θ

>
0 )>. According to White

(1981), we have
√
n(δn− δ̃0) = Op(1) where δ̃0 may not be equal to the true value δ0 under

the null hypothesis.
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Denote

V 1
n (u, α) = n−1/2

n∑
i=1

[Yi − g(β̃>0 Xi, θ̃0)]I(α>B̂>nXi ≤ u),

V 2
n (u, α) = n−1/2

n∑
i=1

[Yi − g(β̃>0 Xi, θ̃0)]I(α>B>Xi ≤ u).

Similarly as the proof for Theorem 3.2, we obtain that

n−1/2[TnVn(u, α)− TnV 1
n (u, α)] = op(1),

n−1/2[TnV
1
n (u, α)− TV 2

n (u, α)] = op(1).

Here

n−1/2TV 2
n (u, α) =

1

n

n∑
i=1

[Yi − g(β̃>0 Xi, θ̃0)]I(α>B>Xi ≤ u)

− 1√
n

∫ u

−∞
a1(v, α)>A−1

1 (v, α)

∫ ∞
v

a1(z, α)V 2
n (dz)σ2

1(v, α)Fα(dv)

Note that

1√
n

∫ ∞
v

a1(z, α)V 2
n (dz) =

1

n

n∑
i=1

I(α>B>Xi ≥ v)a1(α>B>Xi, α)[Yi − g(β̃>0 Xi, θ̃0)].

Then we derive that under H1,

n−1/2TV 2
n (u, α)→

∫ u

−∞
H(v, α)Fα(dv)−

∫ u

−∞
a1(v, α)>A−1

1 (v, α)a2(v, α)σ2
1(v, α)Fα(dv),

where Fα is the distribution function of α>B>X and

H(v, α) = E(G(B>X)− g(β̃>0 X, θ̃0)|α>B>X = v),

σ2
1(v, α) = E[(G(B>X)− g(β̃>0 X, θ̃0))2 + ε2|α>B>X = v],

a1(v, α) = {g1(v/κ1, θ̃0)E(X>|α>B>X = v)/σ2
1(v, α), g2(v/κ1, θ̃0)/σ2

1(v, α)}>,

A1(v, α) = E{I(α>B>X ≥ v)a1(α>B>X,α)(g1(β̃0
>
X, θ̃0)X>, g2(β̃0

>
X, θ̃0))},

a2(v, α) = E{I(α>B>X ≥ v)a1(α>B>X,α)(G(B>X)− g(β̃0
>
X, θ̃0))}.
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Hence we conclude that

n−1/2TnVn(u, α)→
∫ u

−∞
H(v, α)Fα(dv)−

∫ u

−∞
a1(v, α)>A−1

1 (v, α)a2(v, α)σ2
1(v, α)Fα(dv).

Therefore
1√
n

sup
‖α̂‖=1,a1≥0

TnVn(u, α̂)→ some nonzero process.

The resulting test statistic converges to infinity at the rate of O(1/n).

(II) Under the local alternatives H1n, Lemma 2 asserts that P (q̂ = 1)→ 1 as n→∞,

thus we also consider the event q̂ = 1. Denote

V 2
n (u) = n−1/2

n∑
i=1

[Yi − g(β>nXi, θn)]I(B̂>nXi ≤ u).

Therefore α̂ = 1, B̂n is a vector and sup‖α̂‖=1,a1≥0 TnVn(u, α̂) = TnV
2
n (u). Let

V 1
n (u) = n−1/2

n∑
i=1

[Yi − g(β>0 Xi, θn)]I(B̂>nXi ≤ u).

Following the analogous argument for proving Theorem 3.3 we obtain that

TnV
2
n (u) = TnV

1
n (u) + op(1),

TnV
1
n (u) = TV 1

n (u) + op(1),

TV 0
n (u) = TV 1

n (u) + op(1).

To finish the proof, it remains to derive the limit of TV 0
n (u). Recall that V 0

n (u) =

n−1/2
∑n

i=1[Yi − g(β>0 Xi, θ0)]I(κβ>0 Xi ≤ u) and

TV 0
n (u) = V 0

n (u)−
∫ u

−∞
a(v)>A−1(v)

∫ ∞
v

a(z)V 0
n (dz)σ2(v)Fκβ0(dv).

Under the local alternative H1n,

V 0
n (u) =

1

n

n∑
i=1

G(B>Xi)I(κβ>0 Xi ≤ u) +
1√
n

n∑
i=1

εiI(κβ>0 Xi ≤ u).
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Similarly as the proof for Theorem 1.1 in Stute(1997), we have

V 0
n (u)→ V∞(u) +

∫ u

−∞
H0(v)Fκβ0(dv),

where H0(v) = E[G(B>X)|κβ>0 X = v].

For the second term in TV 0
n (u), note that∫ ∞

v
a(z)V 0

n (dz) =
1√
n

n∑
i=1

I(κβ>0 Xi ≥ v)a(κβ>0 Xi)[Yi − g(β>0 Xi, θ0)]

=
1

n

n∑
i=1

I(κβ>0 Xi ≥ v)a(κβ>0 Xi)G(B>Xi)

+
1√
n

n∑
i=1

I(κβ>0 Xi ≥ v)a(κβ>0 Xi)εi.

Therefore, ∫ ∞
v

a(z)V 0
n (dz)→W1(v) +W2(v) in distribution

where W1(v) =
∫∞
v a(z)H0(z)Fκβ0(dz) and W2(v) have a normal distribution with mean

zero and variance

σ2
2(v) =

∫ ∞
v

σ2(u)a(u)a(u)>Fκβ0(du).

Here σ2(u) = E(ε2|κβ>0 X = u). Hence we can conclude that

TV 0
n (u)→ V∞(u) +

∫ u

−∞
{H0(v)− a(v)>A−1(v)[W1(v) +W2(v)]σ2(v)}Fκβ0(dv).

�

30



References

Cook, R. D. (1998). Regression Graphics: Ideas for Studying Regressions Through Graph-

ics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1991). Discussion of Sliced inverse regression for dimension

reduction, by K. C. Li. Journal of the American Statistical Association, 86, 316-342.

Cook, R. D. and Forzani, L. (2009). Likelihood-based sufficient dimension reduction.

Journal of the American Statistical Association, 104, 197-208.

Dette, H. (1999). A consistent test for the functional form of a regression based on a

difference of variance estimates. The Annals of Statistics. 27, 1012-1050.

Escanciano, J. C.(2006). A consistent diagnostic test for regression models using projec-

tions. Econometric Theory, 22, 1030-1051.

Eubank, R. L., Li, C. S. and Wang, S. (2005). Testing lack-of-fit of parametric regression

models using nonparametric regression techniques. Statistica Sinica, 15, 135-152.

Fan, J. Q. and Huang, L. S. (2001). Goodness-of-fit tests for parametric regression

models, Journal of the American Statistical Association, 96, 640-652.

Fan, Y. and Li, Q. (1996). Consistent model specication tests: omitted variables and

semiparametric functional forms. Econometrica, 64, 865-890.

Fan, J., Zhang, C. and Zhang, J. (2001) Generalized likelihood ratio statistics and Wilks

phenomenon. The Annals of Statistics, 29, 153-193.

Friedman, J. H. and Stuetzle, W. (1981) Projection pursuit regression. Journal of the

American Statistical Association, 76, 817-823.

31



Guo, X., Wang, T. and Zhu, L. X. (2015). Model checking for generalized linear models:

a dimension-reduction model-adaptive approach. Journal of the Royal Statistical

Society: Series B,
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Figure 1: The empirical sizes and powers of TSZn and W 2
n in Example 1. The dash and

solid line denote the results of TSZn and W 2
n respectively.
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Table 1: Empirical sizes and powers of TGWZ
n , W 2

n and TSGPn for H0 vs. H11, H12 and

H13 in Example 2.

a TGWZ
n W 2

n TSGP
n

n=50 n=100 n=50 n=100 n=50 n=100

H11, X ∼ N(0, Ip) 0.0 0.0445 0.0480 0.0470 0.0525 0.0640 0.0650

0.2 0.0830 0.1490 0.0635 0.0950 0.1050 0.1320

0.4 0.1915 0.4595 0.1180 0.2155 0.1710 0.3260

0.6 0.4245 0.8115 0.2005 0.4245 0.2930 0.5680

0.8 0.6025 0.9590 0.3090 0.6480 0.4600 0.8010

1.0 0.7590 0.9915 0.4170 0.8285 0.5830 0.9060

H11, X ∼ N(0,Σ) 0.0 0.0470 0.0460 0.0465 0.0505 0.0760 0.0680

0.2 0.0655 0.1090 0.0500 0.0495 0.0910 0.0650

0.4 0.1350 0.3595 0.0485 0.0590 0.0790 0.0960

0.6 0.2645 0.6870 0.0645 0.0935 0.0970 0.1370

0.8 0.4065 0.8905 0.0640 0.1035 0.1100 0.1700

1.0 0.5580 0.9780 0.0840 0.1650 0.1300 0.2280

H12, X ∼ N(0, Ip) 0.0 0.0450 0.0515 0.0495 0.0535 0.0590 0.0590

0.2 0.0530 0.0680 0.0750 0.1220 0.0930 0.1190

0.4 0.0965 0.1550 0.1865 0.3430 0.2180 0.3260

0.6 0.1670 0.3145 0.3505 0.6565 0.3610 0.6020

0.8 0.2595 0.5400 0.5320 0.8705 0.5550 0.8420

1.0 0.3685 0.7535 0.7085 0.9655 0.7170 0.9570

H12, X ∼ N(0,Σ) 0.0 0.0520 0.0540 0.0525 0.0510 0.0760 0.0680

0.2 0.0955 0.1675 0.1705 0.4230 0.2020 0.3420

0.4 0.2465 0.5385 0.5050 0.8770 0.4370 0.7460

0.6 0.4510 0.8520 0.7330 0.9900 0.6670 0.9130

0.8 0.6455 0.9670 0.8780 0.9995 0.7980 0.9510

1.0 0.7940 0.9935 0.9550 1.0000 0.8980 0.9600
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Table 2: Empirical sizes and powers of TGWZ
n , W 2

n and TSGPn for H0 vs. H11, H12 and

H13 in Example 2.

a TGWZ
n W 2

n TSGP
n

n=50 n=100 n=50 n=100 n=50 n=100

H13, X ∼ N(0, Ip) 0.0 0.0450 0.0500 0.0490 0.0500 0.0790 0.0650

0.2 0.0540 0.0735 0.1075 0.1610 0.1280 0.1640

0.4 0.0990 0.2030 0.2605 0.5250 0.2100 0.3870

0.6 0.1905 0.4590 0.4610 0.8350 0.3970 0.6900

0.8 0.3365 0.7550 0.6625 0.9575 0.5520 0.8660

1.0 0.4830 0.9120 0.7925 0.9940 0.7120 0.9620

H13, X ∼ N(0,Σ) 0.0 0.0495 0.0480 0.0500 0.0470 0.0710 0.0740

0.2 0.1385 0.2640 0.3565 0.7110 0.3050 0.5380

0.4 0.4490 0.8575 0.7930 0.9920 0.6910 0.9610

0.6 0.7750 0.9935 0.9455 0.9995 0.8970 0.9970

0.8 0.9005 0.9995 0.9790 1.0000 0.9700 1.0000

1.0 0.9525 1.0000 0.9925 1.0000 0.9860 1.0000
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Table 3: Empirical sizes and powers of TZHn and W 2
n for H0 vs. H31 in Example 3.

a TZH
n W 2

n

n=50 n=100 n=50 n=100

H31, X ∼ N(0, Ip), p = 2 0.0 0.0345 0.0430 0.0465 0.0500

0.2 0.0820 0.1505 0.2095 0.4375

0.4 0.3020 0.6170 0.6240 0.9210

0.6 0.6180 0.9440 0.8615 0.9925

0.8 0.8410 0.9930 0.9445 1.0000

1.0 0.9345 0.9995 0.9885 1.0000

H31, X ∼ N(0, Ip), p = 8 0.0 0.0265 0.0295 0.0500 0.0450

0.2 0.0260 0.0475 0.2095 0.4190

0.4 0.0360 0.0850 0.5770 0.9020

0.6 0.0765 0.1640 0.8100 0.9935

0.8 0.1145 0.2600 0.9260 0.9980

1.0 0.1635 0.3805 0.9560 1.0000

H31, X ∼ N(0,Σ), p = 2 0.0 0.0315 0.0390 0.0520 0.0475

0.2 0.0930 0.1565 0.2335 0.4660

0.4 0.3250 0.6530 0.6275 0.9305

0.6 0.6515 0.9550 0.8690 0.9955

0.8 0.8740 0.9985 0.9510 1.0000

1.0 0.9550 1.0000 0.9775 1.0000

H31, X ∼ N(0,Σ), p = 8 0.0 0.0185 0.0350 0.0465 0.0530

0.2 0.0695 0.1495 0.5565 0.9055

0.4 0.2045 0.4365 0.9330 1.0000

0.6 0.3370 0.7320 0.9835 1.0000

0.8 0.4740 0.8580 0.9930 1.0000

1.0 0.5545 0.9200 0.9970 1.0000

39



Table 4: Empirical sizes and powers of TZHn and W 2
n for H0 vs. H32 in Example 3.

a TZH
n W 2

n

n=50 n=100 n=50 n=100

H32, X ∼ N(0, Ip), p = 2 0.0 0.034 0.0455 0.0530 0.0500

0.2 0.083 0.1155 0.1215 0.2050

0.4 0.250 0.4730 0.3430 0.6100

0.6 0.524 0.8480 0.6200 0.9195

0.8 0.782 0.9785 0.8540 0.9920

1.0 0.935 0.9985 0.9575 0.9995

H32, X ∼ N(0, Ip), p = 8 0.0 0.0215 0.0265 0.0550 0.0480

0.2 0.0285 0.0375 0.1185 0.1970

0.4 0.0475 0.0760 0.3215 0.5830

0.6 0.0650 0.1550 0.5690 0.8910

0.8 0.1280 0.2930 0.7965 0.9900

1.0 0.1765 0.4210 0.9230 1.0000

H32, X ∼ N(0,Σ), p = 2 0.0 0.0310 0.0430 0.0510 0.0515

0.2 0.0745 0.1410 0.1205 0.1880

0.4 0.2545 0.4900 0.3190 0.5955

0.6 0.5420 0.8540 0.6160 0.9150

0.8 0.8105 0.9835 0.8400 0.9880

1.0 0.9420 0.9990 0.9480 0.9995

H32, X ∼ N(0,Σ), p = 8 0.0 0.0270 0.0295 0.0520 0.0470

0.2 0.0235 0.0395 0.0885 0.1430

0.4 0.0485 0.0770 0.1895 0.3720

0.6 0.0725 0.1480 0.3750 0.7000

0.8 0.1145 0.2845 0.5705 0.9015

1.0 0.1900 0.4605 0.7465 0.9715
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Figure 2: The empirical sizes and powers of TZHn , TGWZ
n and W 2

n in Example 4. The dash,

dash-dotted and solid line denote the results of TZHn , TGWZ
n and W 2

n respectively.
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Figure 3: Scatter plot of the response against the β̂>1 X in which the direction β̂1 is obtained

by DEE.
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Figure 4: Scatter plot of the response against the (β̂>1 X, β̂
>
2 X) in which the directions β̂1

and β̂2 are obtained by DEE.
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Figure 5: Plot of Y against β̂>1 X obtained by DEE and the fitted cubic polynomial curve.
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