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Abstract

Skew normal mixture models provide a more flexible framework than the popular nor-

mal mixtures for modelling heterogeneous data with asymmetric behaviors. Due to the

unboundedness of likelihood function and the divergency of shape parameters, the maxi-

mum likelihood estimators of the parameters of interest are often not well defined, leading

to dissatisfactory inferential process. We put forward a proposal to deal with these issues

simultaneously in the context of penalizing the likelihood function. The resulting penalized

maximum likelihood estimator is proved to be strongly consistent when the putative order

of mixture is equal to or larger than the true one. We also provide penalized EM-type

algorithms to compute penalized estimators. Finite sample performances are examined by

simulations and real data applications and the comparison to the existing methods.
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1 Introduction

Finite mixtures of skew normal (SN) distributions have received considerable attention in recent

years. In tackling data with multimodal and asymmetric behaviours, skew normal mixture

(SNMIX) models are considered as a more flexible and robust tool than the most popular

Gaussian mixture(GMIX) models. With component densities themselves capturing skewness

and excess kurtosis, this framework remedies unrealistic symmetric assumptions and avoids the

overfitting problem existing in GMIX (Lin et al. 2007b; Fruhwirth-Schnatter and Pyne 2010).

The several attempts to analyse skew normal mixtures are attributed to Lin et al. (2007b)

and Basso et al. (2010). A multivariate extension of this model has been developed by Lin

(2009) and Cabral et al. (2012). Fruhwirth-Schnatter and Pyne (2010) explored a Bayesian

approach and proposed an efficient MCMC scheme in multivariate SNMIX. Other researchers

extended the SN distribution to more general statistical models, such as linear mixed models

(Lachos et al. 2010), parsimonious clustering models (Vrbik and McNicholas 2014) and mixtures

of regression models (Zeller et al. 2016).

Consider the SN distribution introduced by Azzalini (1985), whose density function is given

by

fSN(x; θ) =
2

σ
φ

(

x− µ

σ

)

Φ

(

λ
x− µ

σ

)

, x ∈ R (1.1)

where θ = (µ, σ2, λ) ∈ Θ ⊆ R×R
+ ×R, and φ(·) and Φ(·) are the normal density and distribu-

tion function. The density (1.1) depends on µ, σ2, λ, which regulate location, scale and shape

(skewness) respectively.

Given the kernel density (1.1) and a finite order p, as shown in Lin et al. (2007b), the density

function of SNMIX is

f(x; Ψ) =

p
∑

k=1

πkfSN(x; θk) =

∫

fSN(x; θ)dΨ(θ) (1.2)

where πk, θk = (µk, σ
2
k, λk) are the mixing proportion and component parameters respectively.

We use the notation Ψ for all parameters in SNMIX, and for its cumulative distribution function

Ψ(θ) =
∑p

k=1 πkI(θk ≤ θ), where I(·) is the indicator function.
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The parameter space of Ψ can then be written as

Γ =

{

Ψ = (π1, · · · , πp, µ1, · · · , µp, σ1, · · · , σp, λ1, · · · , λp) :

0 ≤ πk ≤ 1,

p
∑

k=1

πk = 1,−∞ < µk, λk < +∞, σk ≥ 0, k = 1, · · · , p
}

.

In finite mixture models, several approaches are available in the literature, which characterize

the mixing distribution Ψ, see Lindsay (1995) and McLachlan & Peel (2000). Among which,

the maximum likelihood estimator (MLE) is commonly used for its asymptotic efficiency under

regular parametric models. In univariate and multivariate SNMIX, Lin et al. (2007b) and

Lin (2009) investigated the theory and applications of the MLE as well as corresponding EM

algorithms.

However, the ordinary MLE may be not well defined even in the classical normal mixtures

(Kiefer and Wolfowitz 1956; Day 1969). Suppose we have a random sample {X1, · · · ,Xn} of

size n from the above SNMIX model. Then the log-likelihood function is

ℓn(Ψ) =

n
∑

i=1

log f(Xi; Ψ) =

n
∑

i=1

log

{ p
∑

k=1

2πk
σk

φ

(

Xi − µk

σk

)

Φ

(

λk
Xi − µk

σk

)}

(1.3)

It is clear that ℓn(Ψ) is unbounded over parameter space Γ for any given n, due to it goes to

infinity as µk → Xi and σk → 0 with the other parameters fixed (Ciuperca et al. 2003). Hence,

a global MLE of Ψ is known to be inconsistent. Meanwhile, the likelihood ratio test statistic is

shown to lose the elegant asymptotic properties.

To avoid likelihood degeneracy, two likelihood-based approaches were proposed to regain the

consistency and efficiency. One is the constraint MLE. Redner (1981) proved that, in every

compact parameter subspace containing the true parameter Ψ0, the MLE Ψ̂ → Ψ0 in proba-

bility as n → ∞. Hathaway (1985) suggested using a constrained MLE under the condition

min
i,j

σi/σj ≥ c > 0, where c is a fixed constant. However, as stated in Chen et al. (2008), the re-

duction of parameter space may lead to the true parameter Ψ0 not belonging to the altered space.

Other researchers focused on the penalized method. It is a promising approach to counter the

likelihood unboundedness problem without altering the parameter space. With different penal-

ties on component variances, Ciuperca et al. (2003) and Chen et al. (2008) respectively proved

the strong consistency of the penalized maximum likelihood estimators (PMLE).
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In addition to the unbounded likelihood, another undesirable property in SNMIX is that the

MLE of λk diverges. For the SN distribution, Azzalini and Capitanio (1999) found that the MLE

of λ can occur on the boundary (i.e. λ̂ = ±∞), even for data whose distribution can be fairly

well approximated by the SN model with finite λ. To obtain reliable estimators of λ, the larger

sample sizes are often required (DiCiccio and Monti 2004). Azzalini and Arellano-Valle (2013)

proved that lim
n→∞

P (|λ̂| → ∞) = 0, but the divergence of MLE occurs with a non-negligible

probability for finite sample size. In SNMIX, for Φ(·) being a monotonically increasing function,

ℓn(Ψ) in (1.3) over Γ is maximized at

λ̂k =

{ ∞,
∑n

i=1 I(Xi > µk) = n

−∞,
∑n

i=1 I(Xi < µk) = n

Although λ̂k = ±∞ will not lead to degenerate likelihood, the standard asymptotic distribution

theory of MLE does not hold on the boundary of Γ. Furthermore, an divergent estimator requires

an enormous amount of computational workload and has unpleasant effects on inferential process

(Azzalini and Arellano-Valle 2013).

Unfortunately, under this peculiar situation, the constraint MLE has no way to alleviate

the divergency of shape parameter estimation. As an example, place an additional constraint

maxk{|λk|} ≤ C on Γ, where C is a sufficiently large positive constant. ℓn(Ψ) would be maxi-

mized only if shape parameters converge to the boundary of the constrained Γ as

max
k

|λ̂k| = C, if max
k

∣

∣

∣

∣

n
∑

i=1

sgn(Xi − µk)

∣

∣

∣

∣

= n (1.4)

where sgn(·) is the sign function. Therefore, the constrained MLE turns out to be invalid.

In this paper, to overcome both likelihood degeneracy and divergent shape parameters, we

recommend estimating Ψ by maximizing the likelihood function with a penalty function. The

penalized log-likelihood is defined as

pℓn(Ψ) = ℓn(Ψ) + pn(Ψ),

pn(Ψ) =

p
∑

k=1

pn(σk) +

p
∑

k=1

pn(λk).
(1.5)

Then PMLE of Ψ would be obtained by Ψ̃ = argmaxΨ pℓn(Ψ). With reasonable penalties, the

corresponding penalized likelihood pℓn(Ψ) is bounded over Γ, granting the existence of PMLE.
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To regain the consistency of Ψ̃, penalty functions pn(σ) and pn(λ) must be chosen carefully. We

select pn(σ) such that it goes to negative infinity when σ goes to either 0 or infinity, and choose

pn(λ) such that pn(λ) tends to negative infinity as |λ| tends to infinity.

We focus on investigating the penalized likelihood-based estimator in skew normal mixtures.

The remainder of the article unfolds as follows. Section 2 outlines some preliminaries including

technical lemmas and choice of penalties. In Section 3, we provide a rigorous proof of the

strong consistency of the proposed PMLE in both p = p0 and p > p0 cases. The penalized

EM algorithms are presented in Section 4. The simulation results as well as two application

examples are respectively in Section 5 and 6. Technical proofs are relegated to the Appendix.

2 Preliminaries

2.1 Technical lemmas

In normal mixture models, Chen et al. (2008) provided a novel technique to establish the strong

consistency. Based on the Bernstein Inequality, they proved an insightful conclusion, the number

of observations falling in a small neighbourhood of the location parameters has a uniform upper

bound. However, as noted in Chen et al. (2008), the normality assumption does not play a

crucial role. The conclusion has recently been furthered to the distribution-free case by Chen

(2016). Without proofs, we conclude the main results as the following Lemma 2.1.

Lemma 2.1. Let X1, · · · ,Xn be i.i.d. observations from an absolute continuous distribution

F with density function f(x). Suppose f(x) is continuous and M = supx f(x) < ∞. Let

Fn(x) = n−1
∑n

i=1 I(Xi ≤ x) be the empirical distribution function. Thus, as n → ∞,

sup
x∈R

{Fn(x+ ǫ)− Fn(x)} ≤ 2Mǫ+ 10n−1 log n,

holds uniformly for all ǫ > 0 almost surely.

It is worth observing that, Lemma 2.1 excludes the zero-probability event for each ǫ on which

the upper bound is violated. Furthermore, it is clear that the density and distribution function

of skew normal mixtures satisfy the milder distribution assumptions in Lemma 2.1. Thus, let
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ǫ = |σ log σ|, where σ > 0 and σ is small. With a slight alteration, we state the conclusion for

skew normal mixtures as follows:

Lemma 2.2. Suppose Xi, i = 1, · · · , n are i.i.d. random samples from the finite mixture of

skew normal distributions with density function f(x; Ψ0) as defined in (1.2), except for a zero-

probability event not depending on σ, we have

sup
µ∈R

n
∑

i=1

I (|Xi − µ| ≤ |σ log σ|) ≤ 4Mn|σ log σ|+ 10 log n, a.s. as n → ∞.

in which M = supx f(x; Ψ0).

Remark. For n → ∞ much faster than log n, the first item dominates the upper bound.

2.2 Choice of penalties

Lemma 2.1 and 2.2 provide a technical basis for the sizes of the penalties. To ensure the

consistency of the proposed PMLE, we assume the following conditions on pn(σ) and pn(λ):

C1. ∀σ > 0, pn(σ) = o(n) and supσ>0 max{0, pn(σ)} = o(n).

C2. pn(σ) ≤ (log n)2 log σ, when σ < n−1 log n and n is large.

C3. pn(λ) is a continuous function that takes maximum at λ = 0 and goes to negative infinity

as |λ| → ∞. Besides, pn(0) = 0.

C4. pn(σ) and pn(λ) are differentiable with respect to σ and λ respectively, and as n → ∞,

p′n(σ) = o(n1/2) and p′n(λ) = o(n1/2).

However, the existence of the above required penalty functions is obvious and of non-

uniqueness. Users therefore have the freedom to choose penalties, indicating the added mathe-

matical conditions are not restrictive. Condition C1 makes a restriction on the upper and lower

bounds of pn(σ), while C2 makes pn(σ) sufficiently severe to prevent σ2 → 0. Condition C3

limits the effect of pn(λ). Condition C4 guarantees the existence of a limiting distribution of the

penalized MLE. Here, with sample variance denoted by s2n, we recommend to use the following
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two penalty functions

pn(σ) = −an
(

s2n/σ
2 + log(σ2/s2n)− 1

)

,

pn(λ) = −bn
(

λ2 − log(1 + λ2)
)

.
(2.1)

where an and bn are positive tuning parameters of pn(σ), pn(λ) respectively.

Note that Conditions C1-C4 are easy to verify for the recommended penalties. The form of

pn(σ) also stands for a prior inverse Gamma distribution placed on σ2 from the Bayesian point

of view and has the advantage of retaining scale invariance (Chen et al. 2008). It is also well

used in constructing EM-test statistic, see Chen and Li (2009) and Chen et al. (2012).

The penalty function pn(λ) in (2.1), compared with p(λ) = −c1 log(1+c2λ
2) used in Azzalini

and Arellano-Valle (2013), in which c1 and c2 are two fixed constants, has several markedly

advantages. Firstly, as a convex function, pn(λ) is fairly flat near zero and very steep when λ is

away from 0. Hence, it has little effects on likelihood function when λ is regular, while sensitive

to the divergent skewness parameter. Furthermore, it is also remarkable that pn(λ) will not

increase computation complexity in the EM-type algorithms.

The sensible choice of an and bn should depend on n. Under large sample case as n → ∞,

Chen et al. (2012) pointed out that the asymptotic property of the EM-test statistic will not

be changed whenever an = o(n1/4). The consistency of PMLE can also be granted whenever

bn = o(n). In practice, we recommend

an = ca/n, bn = cb/ log n (2.2)

in which the constants ca and cb control the scale of penalties. In this paper, we take ca = 1

and cb = 0.05. Chen et al (2012) is a reference that also took ca = 1.

3 Strong Consistency of The Penalized MLE

3.1 Consistency of The Penalized MLE when p = p0

Let K0 = EΨ0(log f(X; Ψ0)) denote conditional expectation under the true mixing distribution

and recall M = supx f(x; Ψ0) in Lemma 2.2. Suppose that ǫ0 and η0 are sufficiently small and
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large positive constant respectively. Given p,M and K0, there exists ǫ0 → 0 satisfying following

two inequalities:

4pMǫ0 log
2 ǫ0 ≤ 1 and log ǫ0 +

log2 ǫ0
2

≥ p(2−K0).

Besides, we also select a η0 such that η0 > maxk{|λ0k|}, k = 1, · · · , p, where λ0k is the element

of Ψ0. The choice of ǫ0 and η0 clearly depend on Ψ0 but not on the sample size n.

For the obvious existence of ǫ0 and η0, it is convenient to define regions:

Γσ = {Ψ ∈ Γ : min{σk} ≤ ǫ0, k = 1, · · · , p},

Γλ = {Ψ ∈ Γ : max{|λk|} ≥ η0, k = 1, · · · , p},

Γ∗ = Γ− Γσ ∪ Γλ.

We will see that the penalization will be on these regions of the parameters. When a vector

is in the region Γσ, then the parameter of the mixing distribution has at least one component

deviation close to zero. The penalty pn(σ) will counter it such that PMLE with σ ∈ Γσ is with

a diminishing probability. Similarly, PMLE will exclude the values in the region Γλ in which

there is at east one |λk| diverges to infinity.

We first give the consistency in the following theorem. To state the results clearly, rearrange

the component deviations in ascending order as σ(1) ≤ · · · ≤ σ(p), with the corresponding mixing

proportion and parameters being respectively denoted as π(k) and θ(k) = (µ(k), σ
2
(k), λ(k)) when

k ∈ {1, · · · , p}. Hence, for τ ∈ {1, · · · , p}, the parameter space Γσ can be partitioned by

Γτ
σ = {Ψ ∈ Γσ : σ(1) ≤ · · · ≤ σ(τ) ≤ τ0 < ǫ0 ≤ σ(τ+1) ≤ · · · ≤ σ(p)}.

In particular, when τ = p,

Γp
σ = {Ψ ∈ Γσ : σ(1) ≤ · · · ≤ σ(p) ≤ τ0 < ǫ0}.

Theorem 3.1. Assume that the density function is f(x; Ψ0). Let the penalized likelihood pℓn(Ψ)

be defined as in (1.5) with the penalty function pn(Ψ) satisfying C1-C3. Then for any Ψ ∈ Γp
σ,

as n → ∞ and almost surely

sup
Γp
σ

pℓn(Ψ)− pℓn(Ψ0) → −∞.
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The proof of Theorem 3.1 is in Appendix. For the spaces Γτ
σ with 1 ≤ τ ≤ p − 1, we can

obtain the similar results as in Theorem 3.1. The result is stated below.

Theorem 3.2. Under the same assumptions as in Theorem 3.1 except that Ψ ∈ Γτ
σ for τ with

1 ≤ τ ≤ p− 1, supΨ∈Γτ
σ
pℓn(Ψ)− pℓn(Ψ0) → −∞ almost surely as n → ∞.

Note that Γσ = ∪p
τ=1Γ

τ
σ. From Theorems 3.1 and 3.2, we conclude that PMLE of Ψ is not

in Γσ except for a zero probability event. Below, we present a result showing the boundedness

of skewness parameters λ in PMLE. Consider the region Ψ ∈ Γc
σ ∩ Γλ.

Theorem 3.3. Under the same conditions as in Theorem 3.1, as n → ∞, we can also show

that almost surely supΨ∈Γc
σ∩Γλ

pℓn(Ψ)− pℓn(Ψ0) → −∞.

From the above three Theorems, we have exclude the possibility that the penalized MLE Ψ̃

falls in Γσ ∪ Γλ = Γσ ∪ {Γc
σ ∩ Γλ}. Hence, it suffices to show that Ψ̃ ∈ Γ∗ with probability 1.

The strong consistence of Ψ̃ is stated below.

Theorem 3.4. Assume the same conditions as in Theorem 3.1, Ψ is a mixing distribution with

p0 components satisfying

pℓn(Ψ)− pℓn(Ψ0) ≥ c > −∞.

Then as n → ∞, Ψ → Ψ0 almost surely.

Rewrite Γ∗ = {Ψ ∈ Γ : mink{σk} ≥ ǫ0,maxk{|λk|} ≤ η0}, Ψ ∈ Γ∗ is equivalent to impose a

positive lower bound to component deviations and a positive upper bound to the absolute value

of skewness parameters. Since Γ∗ is regular, the consistency is then covered by the technique in

Kiefer and Wolfowitz (1956) even with a penalty of size o(n).

Since pℓn(Ψ̃) − pℓn(Ψ0) ≥ 0, the PMLE Ψ̃ is thus strongly consistent. Besides, for p = p0,

all elements in Ψ̃ converge to those of Ψ0 almost surely.

Further, let Sn(Ψ) = ∂ℓn(Ψ)
∂Ψ and S′

n(Ψ) = ∂2ℓn(Ψ)
∂Ψ∂ΨT ) be respectively the score vector and second

derivative matrix of ℓn(Ψ). Since the SNMIX model is regular at Ψ0, we have the positive definite

fisher information matrix I(Ψ0) = −E{S′

n(Ψ0)} = E{ST
n (Ψ0)Sn(Ψ0)}. Based on the classical

asymptotic technique and condition C4 such that p′n(σ) = o(n1/2), p′n(λ) = o(n1/2), we have

Ψ̃−Ψ0 = −{S′

n(Ψ0)}−1Sn(Ψ0) + op(n
1/2).
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Thus, the penalized estimator is of the asymptotic normality and efficiency.

Theorem 3.5. Under the same conditions as in Theorem 3.1 and Condition C4, as n → ∞

√
n(Ψ̃−Ψ0) → N(0, I−1(Ψ0))

in distribution.

3.2 Consistency of The Penalized MLE when p > p0

In practice, it is often that people only know an upper bound of the mixture order rather than

the exact p0, that is, p0 < p < ∞. In this case, by treating both Ψ̃ and Ψ0 as mixing distributions

on the same space, Chen et al. (2008) and Chen and Tan (2009) proved the consistency of their

PMLEs in univariate and multivariate normal mixtures. To measure the difference between the

mixing distributions Ψ and Ψ0, we first define a distance as

D(Ψ,Ψ0) =

∫

Θ
|Ψ(θ)−Ψ0(θ)| exp(−|θ|)dθ (3.1)

where θ = (µ, σ2, λ) ∈ Θ ⊆ R × R
+ × R, |θ| = |µ| + σ2 + |λ| and dθ = dµdσ2dλ. The

distance has two desirable properties. First, it is bounded with the inequalities 0 ≤ D(Ψ,Ψ0) ≤
∫

Θ exp(−|θ|)dθ < ∞. Second, D(Ψ̃,Ψ0) → 0 implies that Ψ̃ → Ψ0 in distribution, providing the

technical basis for consistency. Hence, we have the following theorem.

Theorem 3.6. Assume the same conditions as in Theorem 3.1, except that p0 < p < ∞, for

any mixing distribution Ψ with p components satisfying

pℓn(Ψ)− pℓn(Ψ0) ≥ c > −∞.

Then as n → ∞, Ψ → Ψ0 almost surely.

4 Penalized EM Algorithms

Concerning computation, Lin et al. (2007b) exploited two extensions of the EM algorithm: the

ECM algorithm (Meng and Rubin 1993) and the ECME algorithm (Liu and Rubin 1994). In

view of the asymptotic properties (Hero and Fessler 1993) and the fast convergence rate (Green
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1990) of the penalized EM algorithm, we present two penalized EM-type algorithms to achieve

the PMLE Ψ̃.

Consider the complete data (X,Z) = {Xj , Zj}nj=1, where the latent component-indicators

vector Zj = (Z1j , · · · , Zpj) follows a multinomial distribution with 1 trial and cell probabilities

π1, · · · , πp. Write it as Zj ∼ M(1;π1, · · · , πp). Note that Z1, · · · , Zn are mutually independent.

Based on the component-indicators, for each Xj(j = 1, · · · , n), a hierarchical representation for

skew normal mixtures is given by

Xj |τj, Zij = 1 ∼ N
(

µi + δ(λi)τj , (1− δ2(λi))σ
2
i

)

,

τj|Zij = 1 ∼ TN[0,+∞)

(

0, σ2
i

)

,

Zj ∼ M(1;π1, · · · , πp).

(4.1)

where δ(λ) = λ/
√
1 + λ2 and TN[0,+∞)(0, σ

2) denotes the truncated normal distribution. In

addition, τ1, · · · , τn are also mutually independent.

According to (4.1), ignoring additive constants, the complete data log-likelihood function is

ℓc(Ψ) =

p
∑

i=1

n
∑

j=1

Zij

{

log(πi)− log(σ2
i )−

1

2
log(1− δ2(λi))

−
τ2j − 2δ(λi)τj(xj − µi) + (xj − µi)

2

2σ2
i (1− δ2(λi))

}

.

(4.2)

By Bayesian theorem, we have τj|(Xj = xj , Zij = 1) ∼ TN[0,+∞)(µτij , σ
2
τi), where µτij =

δ(λi)(xj−µi), στi = σi
√

1− δ2(λi). Thus, for the current parameters Ψ(t) = (π
(t)
1 , · · · , π(t)

p , θ
(t)
1 , · · · , θ(t)p )

with θ
(t)
k = (µ

(t)
k , σ

2(t)
k , λ

(t)
k ), let µ

(t)
τij = δ(λ

(t)
i )(xj − µ

(t)
i ) and σ

(t)
τi = σ

(t)
i

√

1− δ2(λ
(t)
i ). The ECM

algorithm proceeds as follows:

E-step: Compute the conditional expectations

α
(t)
ij = E

(

Zij |Xj = xj ,Ψ
(t)
)

=
π
(t)
i fSN (xj ; θ

(t)
i )

∑p
k=1 π

(t)
k fSN (xj ; θ

(t)
k )

,

β
(t)
ij = E

(

τj|Xj = xj, Zij = 1,Ψ(t)
)

= µ(t)
τij + σ(t)

τi ∆
(t)
ij ,

γ
(t)
ij = E

(

τ2j |Xj = xj, Zij = 1,Ψ(t)
)

= µ2(t)
τij + σ2(t)

τi + µ(t)
τijσ

(t)
τi ∆

(t)
ij .

where ∆
(t)
ij = φ

(

λ
(t)
i

xj−µ
(t)
i

σ
(t)
i

)/

Φ

(

λ
(t)
i

xj−µ
(t)
i

σ
(t)
i

)

. Thus we get E(Zijτj|Xj ,Ψ
(t)) = α

(t)
ij β

(t)
ij and
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E(Zijτ
2
j |Xj ,Ψ

(t)) = α
(t)
ij γ

(t)
ij . Therefore, the objective function can be written as

Q(Ψ|Ψ(t)) = E
(

ℓc(Ψ) + pn(Ψ)|X,Ψ(t)
)

=

p
∑

i=1

n
∑

j=1

α
(t)
ij

{

log(πi)− log(σ2
i )−

1

2
log(1− δ2(λi))

−
γ
(t)
ij − 2δ(λi)β

(t)
ij (xj − µi) + (xj − µi)

2

2σ2
i (1− δ2(λi))

}

+

p
∑

k=1

pn(σk) +

p
∑

k=1

pn(λk).

CM-step : Maximize Q(Ψ|Ψ(t)) with respect to Ψ under the restriction with
∑p

k=1 πk = 1.

1: Update π
(t)
i by π

(t+1)
i = n−1

∑n
j=1 α

(t)
ij ;

2: Update µ
(t)
i by

µ
(t+1)
i =

∑n
j=1 α

(t)
ij xj − δ(λ

(t)
i )

∑n
j=1 α

(t)
ij β

(t)
ij

∑n
j=1 α

(t)
ij

.

3: Fix µi = µ
(t+1)
i , denote S

(t)
0i =

∑n
j=1 α

(t)
ij γ

(t)
ij , S

(t)
1i =

∑n
j=1 α

(t)
ij β

(t)
ij (xj − µ

(t+1)
i ) and

S
(t)
2i =

∑n
j=1 α

(t)
ij (xj − µ

(t+1)
i )2, with the definition of pn(σ) in (2.1), obtain σ

2(t+1)
i by setting

σ
2(t+1)
i =

S
(t)
0i − 2δ(λ

(t)
i )S

(t)
1i + S

(t)
2i + 2an

(

1− δ2(λ
(t)
i )

)

s2n

2
(

1− δ2(λ
(t)
i )

)(

an +
∑n

j=1 α
(t)
ij

)

4: Fix µi = µ
(t+1)
i and σi = σ

(t+1)
i , with equivalent transformation of pn(λ) = −bn{ 1

1−δ2(λ)
+

log(1− δ2(λ))− 1}, and λ
(t+1)
i is the solution of

−δ3(λi)σ
2(t+1)
i

(

2bn +
n
∑

j=1

α
(t)
ij

)

+
(

1 + δ2(λi)
)

S
(t)
1i − δ(λi)

(

S
(t)
0i + S

(t)
2i − σ

2(t+1)
i

n
∑

j=1

α
(t)
ij

)

= 0.

4∗: For Azzalini’s penalty function p(λ) = −c1 log(1 + c2λ
2) where c1 = 0.876, c2 = 0.856 and

λ
(t+1)
i is obtained by solving

σ
2(t+1)
i δ(λi)

(

1− δ2(λi)
)

( n
∑

j=1

α
(t)
ij −

2c1c2
1− (1− c2)δ2(λi)

)

+
(

1 + δ2(λi)
)

S
(t)
1i −δ(λi)

(

S
(t)
0i +S

(t)
2i

)

= 0.

With some elementary modifications, the ECME algorithm for fitting the skew normal mix-

tures can be conducted by replacing the 4th CM-step with the following CML-step:

CML-step: Calculate

(

λ
(t+1)
1 , · · · , λ(t+1)

p

)

= argmax
λ1,··· ,λp

{ n
∑

j=1

log

( p
∑

i=1

π
(t+1)
i fSN

(

xj ;µ
(t+1)
i , σ

2(t+1)
i , λi

)

)

+

p
∑

i=1

pn(λi)

}

.
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As noted in Lin et al. (2007b), the ECME has a faster convergence rate than the ECM

when p = 1 or λ1, · · · , λp are the structure parameters. But beyond that, the ECM is the better

choice for the one-dimensional search involved in the 4th CM-step as it is more efficient than

the optimization of multi-parameter involved in CML-step.

To monitor convergence, we stop the EM-type algorithm after the relative change in the

objective function is smaller than a threshold 10−6.

Remark : Compared with the 4th CM-step in Lin et al. (2007b), the 4th CM-step of our

penalized algorithm shares a similar structure and then the same computational complexity.

We also note that the 4∗th CM-step Azzalini’s penalty function can significantly reduce the

computational complexity. Moreover, it is worth noting that the penalty standing for a prior

inverse Gamma distribution also enjoys the advantage of remaining computational efficiency, see

Ciuperca et al. (2003) and Chen et al. (2008).

5 Simulation Studies

5.1 Penalty comparison

The first numerical simulation is conducted to compare the performance of our PMLE only with

pn(λ) in (2.1) to that of the penalized estimator proposed by Azzalini and Arellano-Valle (2013),

who called it MPLE. For ease of comparison, the parameter values and the sample sizes are taken

to be the same as that in Azzalini and Arellano-Valle (Fig 5. 2013). That is, θ = (0, 1, 5) and

n = {50, 100, 250, 350, 500, 1000}. Besides, the replication time is 5000.

The biases and root mean squared errors (RMSEs) of estimators are plotted in the two rows

of Fig 1. The first row is with fixed skew value λ = 5 and different sample sizes, while the

second row is with the fixed sample size n = 100 and different λ. We can then examine how

the bias and RMSE can be reduced when the sample size is increasing. This can be showed in

the first row of plots indicating the estimation consistency. The second row of plots shows how

they behave when the sample size is fixed to be n = 100 and the value of λ is increasing. PMLE

is better performed than MPLE uniformly and the bias of PMLE can be small at some value

of λ around 6. The doubly logarithmic scale is adopted to simplify the interpretation for the
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Figure 1: Simulation study on our PMLE and Azzlini’s MPLE. Top left(right) panel:
log |bias|(log(RMSE)) are calculated when λ = 5 and n = {50, 100, 250, 350, 500, 1000}; Bot-
tom left(right) panel: log |bias|(log(RMSE)) are calculated when n = 100 and λ = 1, · · · , 10.

curves. especially for the upper left penal, in which the bias of MPLE decreases approximately

at the rate of order n−3/2. This is probably because pn(λ) in (2.1) decreases at the rate of order

log(n)−1 as n increases, the bias of PMLE diminishes faster than that of MPLE. Overall, PMLE

is markedly preferable to Azzalini’s MPLE under small or moderate sample size cases.

5.2 Simulations for p = p0

In this subsection, numerical studies are performed to examine the consistency of the PMLE.

The studies, based on 5000 replications, consider samples of size n = {100, 200} from two 2-

component SNMIX models. The null settings are shown in Table 1.

For each model, the estimators are obtained by local maximization of the (penalized) likeli-
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Table 1: The settings of two models

Models parameter settings (SN(µ, σ2, λ))

Model I 0.5SN(−2, 1, 2) + 0.5SN(2, 2, 1)
Model II 0.5SN(−1, 2, 1) + 0.5SN(1.5, 2,−1)

hood function via the (penalized) ECM algorithm. To tackle the initialization issue, Chen et al.

(2008) used the true mixing distribution as initial values and Basso et al. (2010) recommended a

combination of the K-means approach and the method of moments. We employ both schemes in

our simulations to see their performance. In addition, to overcome the effect of label switching

(McLachlan & Peel 2000), we employ the method on location parameters in Celeux et al. (1996)

in SNMIX.

Model I : The density function of Model I turns out to be bimodal and well-separated. Table

2 shows the minimum of σ̂2, the maximum of |λ̂| and their degeneracy frequencies of the two

estimators out of 5000 replications. We regard the estimated values of σ2 as 0 when σ̂2 < 10−10,

and take |λ̂| > 100 as an indication of divergence.

Table 2: Results of parameter estimation for Model I. (numbers in brackets record the occur-
rences of |λ̂| > 100)

Parameters
n = 100 n = 200

MLE PMLE MLE PMLE

True values

min(σ̂2) 0.111 0.136 0.270 0.273

max(|λ̂|) 3.8e2(205) 10.58 1.6e2(4) 11.03
K-means

min(σ̂2) 0.107 0.133 0.270 0.272

max(|λ̂|) 3.7e2(214) 10.62 1.4e2(3) 11.02

The outcomes in Table 2 indicate that the MLE of σ2 does not shrink to 0 in this case.

However, although the component densities are well-separated, the MLE still suffers from the

divergence on λ in both initializations of the algorithms.

Table 3 shows the biases and RMSEs of the two estimators. It is clear that all biases and

RMSEs of the PMLE in Table 3 decrease as n increases, reflecting its consistency. It is also
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Table 3: Biases and RMSEs (in brackets) for Model I

Parameters
n = 100 n = 200

MLE PMLE MLE PMLE

True values

µ̂1 0.027(0.26) 0.036(0.24) 0.015(0.19) 0.020(0.18)
µ̂2 0.071(0.46) 0.070(0.43) 0.051(0.35) 0.055(0.35)
σ̂2
1 0.162(0.74) 0.081(0.59) 0.072(0.45) 0.048(0.41)

σ̂2
2 0.055(0.84) 0.024(0.77) 0.029(0.62) 0.017(0.59)

λ̂1 7.208(40.9) 0.528(1.82) 0.571(4.36) 0.299(1.25)

λ̂2 5.065(32.0) 0.491(1.62) 0.358(1.94) 0.233(1.05)
π̂1 0.008(0.03) 0.005(0.03) 0.004(0.02) 0.003(0.02)

K-means

µ̂1 0.088(0.37) 0.097(0.36) 0.043(0.23) 0.049(0.22)
µ̂2 0.228(0.79) 0.226(0.77) 0.117(0.50) 0.120(0.49)
σ̂2
1 0.103(0.69) 0.030(0.56) 0.030(0.45) 0.006(0.41)

σ̂2
2 0.293(1.07) 0.229(0.93) 0.073(0.68) 0.059(0.65)

λ̂1 6.385(39.0) 0.304(1.95) 0.434(4.03) 0.178(1.29)

λ̂2 3.522(33.0) 0.095(2.13) 0.197(1.99) 0.091(1.25)
π̂1 0.003(0.03) 0.001(0.03) 0.002(0.02) 0.001(0.02)

remarkable that, the PMLE is far superior in the performances of estimating λ1 and λ2 to the

MLE, remedy the indeed unreliable MLE of λ especially when n is small. Overall, the PMLE

significantly outperforms the MLE except for the mean µ1. Meanwhile, presumably due to the

well separate kernel densities, the MLEs and PMLEs of all other parameters work well.

The unreliable MLE of λ reaffirms the theoretical expectation in DiCiccio and Monti (2004).

That is, larger sample sizes would be required to improve the estimation accuracy. When

n = 1000, the mixing distribution can generally be reliably estimated by the MLE. A separate

simulation study is performed in Model I with n = 1000, the outcome is summarized graphically

in Fig 2. In this situation, not only the estimated distribution Ψ̂ but also all elements in Ψ̂

converge to that of Ψ0.

Moreover, for SN distribution, DiCiccio and Monti (2004) proposed an easy-to-implement

procedure to handle the estimation divergence about λ. They defined λ̂ by the smallest value

λ̆ such that H0 : λ = λ̆ is not rejected at the 5% nominal level by a profile likelihood ratio test

converging in distribution to χ2
1.
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Figure 2: (a) Histogram of the simulating data from Model I with n = 1000 overlaid with
densities under null settings and MLEs with two starts, (b) Component densities under null
settings and MLEs with two starts

Let Λ̂ be the MLE of Λ = (λ1, · · · , λp) with Λ0 = (λ01, · · · , λ0p). Noting that there is no

σ2 → 0 in Model I, we thus extend the approach of DiCiccio and Monti (2004) to SNMIX

by taking Λ̂ to be a modified estimator (ME) Λ̆ = (λ̆1, · · · , λ̆p). The ME Λ̆ is obtained by

maxΛ̆ ||Λ̆ − Λ̂||1 under that the composite null hypothesis H0 : Λ = Λ̆ is not rejected at the 5%

nominal level by the profile likelihood ratio test whose limiting null distribution is chi-squared

χ2
ν with the degrees of freedom ν =

∑p
k=1 I(|λk| ≥ 30).

Table 4: Biases and RMSEs (in brackets) of the ME for Model I on λ.

Parameters
True values K-means

n = 100 n = 200 n = 100 n = 200

λ̆1 1.247(3.87) 0.443(1.74) 0.972(3.91) 0.317(1.76)

λ̆2 0.967(3.19) 0.336(1.52) 0.446(3.75) 0.183(1.64)

The only difference between the ME and MLE is mainly on the performance of estimating the

shape parameters λ1 and λ2. Table 4 shows that with both the initial schemes of the algorithms,

the ME has power to exclude diverging estimates. However, as shown in Table 3, the PMLE

works better than the ME.

Remark : Unfortunately, the extension of DiCiccio and Monti’s (2004) approach to the SN-
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MIX lacks rigorous theoretical basis. When σ̆2 = σ̂2 → 0, the null hypothesis H0 : Λ = Λ̆ lies

on the boundary of the parameter space. That is, the regularity conditions are not satisfied

for the mixture problem considered here, and the asymptotic χ2 theory of the likelihood ratio

test statistic does not hold. Hence, their method remains invalid in SNMIX but it seems to be

applicable only in the well-separated case without σ̂2 → 0, displaying an additional advantage

of the penalized estimator.

In the following, we consider a more difficult situation in which two component densities in

the mixture are close to one another. However, an interesting observation is that although the

parameters cannot be well estimated separately, the densities can be estimated accurately.

Model II : The components of Model II are of homoscedasticity and the density function here

seems to be strongly unimodal and thus poorly-separated. The simulated results are presented

in Tables 5 and 6.

Table 5: Results of parameter estimation for Model II (the numbers in brackets record the
occurrences of σ̂2 <1e-10(1 × 10−10) and |λ̂| > 100 respectively)

Parameters
n = 100 n = 200

MLE PMLE MLE PMLE

True values

min(σ̂2) 7.8e-31(62) 0.008 7.7e-31(12) 0.004

max(|λ̂|) 5.3e2(533) 9.511 3.3e2(91) 11.01
K-means

min(σ̂2) 2.7e-304(3) 0.008 0.001 0.009

max(|λ̂|) 3.1e2(638) 11.14 2.9e2(75) 12.28

It can be observed from Table 5 that (a) the MLE suffers from degeneracies in both of σ2 and

λ even when the true distribution is used for initialization of the algorithm, the difficult situation

is eased as sample size increases; (b) the penalized approach solves both degenerate problems on

σ2 and λ, all estimated values of PMLE are well confined; (c) the classical clustering procedure

K-means has, to certain extent, an excluding effect in fitting Ψ̂ with degenerate component

variances as we found that theK-means initialization of the algorithm can reduce the proportion

of diverging values compared with the true value initialization.

Table 5 also indicates a remarkable higher degenerate frequency on λ̂ than on σ̂2. The
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divergence of shape parameters in SNMIX thus must be paid more attention in practice. The

phenomenon can also partly explain our use of a significantly slower decreasing pn(λ) defined in

(2.2) with rate (log n)−1, than the n−1 of pn(σ) as n increases.

Table 6: Biases and RMSEs (in brackets) for Model II

Parameters
n = 100 n = 200

MLE PMLE MLE PMLE

True values

µ̂1 -0.123(0.74) -0.094(0.72) -0.081(0.57) -0.063(0.54)
µ̂2 0.154(0.76) 0.125(0.73) 0.089(0.58) 0.075(0.56)
σ̂2
1 -0.901(5.88) -0.579(1.09) -0.279(2.28) -0.280(0.72)

σ̂2
2 -0.793(5.15) -0.595(1.12) -0.319(2.63) -0.288(0.74)

λ̂1 12.14(52.1) 0.303(1.32) 2.707(19.8) 0.286(1.19)

λ̂2 -13.02(54.4) -0.350(1.36) -2.497(18.5) -0.269(1.13)
π̂1 0.003(0.23) 0.005(0.25) 0.003(0.19) 0.004(0.19)

K-means

µ̂1 0.871(1.18) 0.846(1.20) 0.947(1.13) 0.935(1.14)
µ̂2 -0.808(1.14) -0.784(1.17) -0.951(1.13) -0.940(1.13)
σ̂2
1 -0.719(1.52) -0.745(1.13) -0.562(0.87) -0.582(0.89)

σ̂2
2 -0.920(10.0) -0.796(1.19) -0.543(0.82) -0.564(0.83)

λ̂1 -15.27(50.5) -2.752(3.57) -4.648(15.7) -2.414(3.29)

λ̂2 14.64(50.1) 2.699(3.52) 4.447(16.8) 2.411(3.29)
π̂1 0.010(0.24) 0.009(0.25) 0.001(0.20) 0.001(0.20)

Table 6 reports the biases and RMSEs of the MLE and PMLE under Model II. To manifest

the discrepancy between degenerate σ̂2 and σ2
0, and to make a sensible comparison, we calculate

the bias and RMSE of log(σ̂2
i ) instead of σ̂2

i , which are in proportion to the relative indicators

used in Chen et al. (2008). When Ψ0 is used for initialization, the biases and RMSEs of PMLE

reduce rapidly as n increases, with remarkable superiority of PMLE over MLE displayed on λ̂

and σ̂2.

In the case of K-means initialization, although σ̂2 → 0 has been largely prevented, Ψ has not

been estimated accurately, both the estimators even lose the consistency on µ̂. This behavior

was investigated through a separate simulation study, which is conducted on a data set generated

from Model II with n = 1000. Table 7 shows the MLE and PMLE are almost equivalent under

the same initialization scheme, while quite different if the initialization changes. Meanwhile, the
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values of pℓn(Ψ̂) obtained when Ψ0 is used as initial value are smaller than those that are based

on K-means initialization. That is, the EM-type algorithm converges to a local maximum when

starting from Ψ0, the K-means based estimates seem the global maximum solution, which leads

to the poor performances in Table 6.

The outcomes in Table 7 are vividly summarized in Figure 3. We can see that although

the K-means based fitted mixing density is close to the true value based estimate, the resulting

component densities differ substantially from the true ones. In other words, this phenomenon

does not challenge the identifiability of finite mixture models(Wald 1949; Kiefer and Wolfowitz

1956), but reveals the so-called ”over-flexibility” shortcoming of the estimation methods for

SNMIX when the two mixing components are close to one another.

Table 7: Parameter estimates for Model II when n = 1000

Method µ1 µ2 σ2
1 σ2

2 λ1 λ2 π1 pℓn(Ψ̂)

True values

MLE -1.018 1.440 1.940 1.873 1.018 -1.016 0.504 -1617
PMLE -1.018 1.439 1.940 1.873 1.018 -1.015 0.504 -1617
K-means

MLE -0.037 0.273 1.136 1.399 -0.846 1.814 0.525 -1616
PMLE -0.038 0.273 1.136 1.398 -0.844 1.804 0.525 -1616

Another interesting observation about the K-means based estimation is its much lower oc-

curance of σ̂2 → 0 than the true value based estimation in SNMIX presented in Table 5 in spite

of its poor performances indicated in Table 6. To further study this phenomenon, we consider

Example 2 of Chen et al. (2008), in which data were generated from 0.5N(0, 1) + 0.5N(1.5, 3).

In this case, based on the two starting strategies, we fit the data with both two-component

GMIX and SNMIX. The replication time is again 5000.

The results in Table 8 suggest the following. For the GMIX model, the K-means based

estimation gets more degenerate σ̂2 than the true value based estimation does when n = 100.

While for SNMIX, the K-means based estimation avoids σ̂2 → 0 more efficiently than the true

value based estimation. However, the K-means based estimation suffers much more severely

from the divergence of λ̂ than the true value based estimation. This may explain the reason

why the aggregated estimation effect of the K-means based estimation is worse.
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Figure 3: (a) Histogram of the simulating data from Model II with n = 1000 overlaid with
densities under null settings and MLEs with two starts, (b) Component densities under null
settings and MLEs with two starts

Table 8: Results of parameter estimation for 0.5N(0, 1) + 0.5N(1.5, 3) fitted by GMIX and SN-
MIX. (the numbers in brackets record the occurrences of σ̂2 <1e-10 and |λ̂| > 100 respectively)

Parameters
True values K-means

n = 100 n = 200 n = 100 n = 200

GMIX

min(σ̂2) 0(30) 0(3) 0(40) 0(3)
SNMIX

min(σ̂2) 4.3e-252(22) 7.7e-31(2) 7.8e-304(3) 3.1e-30(2)

max(|λ̂|) 3.0 2.8 4.4e2(588) 3.0e2(116)

The achievement of preventing σ̂2 → 0 under Model II thus comes from the cooperation of

the SNMIX modelling scheme and the K-means starting strategy. An intuitive explanation for

this phenomenon is that, the K-means starts in SNMIX can escape from the attraction domain

around the singularities, the existence of which was proved by Biernacki and Chrtien (2003).

5.3 Simulation for p > p0

In the case of p0 < p < ∞, for convenience, the data have still been sampled from Model I with

n = {100, 200, 500}, that is, p0 = 2. For each data set, the MLE and PMLE are computed when

p = {2, 3, 4, 5}. The simulating size is 1000.
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Since p > p0, we cannot expect that every part of Ψ̂ equals to that of Ψ0. To handle this

situation, Chen et al. (2008) and Chen & Tan (2009) employed ten values in the neighbourhood

of Ψ0 as the starts of the ECM algorithm. In this simulation, the ten initial values are obtained

by slightly perturbing µ0j in Ψ0. The perturbation proceeds as follows:

µi = µ0j +N(0, 0.12), πi = π0j/ωj ; i = 1, · · · , p; j = 1, · · · , p0.

where ωj is the total component number that µi comes from µ0j and
∑p0

j=1 ωj = p. Given the

initial values, the best run in terms of objective function is taken as the final estimator.

In this case, it is meaningful to investigate the distance D(Ψ̂,Ψ0) defined in (3.1). However,

it is not sensible for measuring the discrepancy between Ψ̂ and Ψ0. To improve the situation, we

employ a modified distance D∗(Ψ̂,Ψ0) =
∫

Θ∗
|Ψ̂(θ)−Ψ0(θ)|dθ, where θ = (µ, log(σ2)/5, log(λ)/2)

and Θ∗ = [−5, 10] × [−15, 1] × [−10, 5]. Note that all parameter values of two estimators are

within the region Θ∗.

The numbers of degeneracies of MLE are shown in Table 9. It is immediately clear that the

frequencies of degeneracy of σ2 and λ decrease as n increases and increase as the putative order

p increases. In addition, we also observe a higher frequency of degeneracy existing on λ over σ2,

in agreement with Table 2 and 5. We also issue a statement here that, in all cases, there is no

degenerate outcomes occurred in our penalized estimator.

Table 9: Number of degeneracies in σ̂2 and λ̂ for Model I.

p0 = 2
n = 100 n = 200 n = 500

σ̂2 λ̂ σ̂2 λ̂ σ̂2 λ̂

p = 2 0 40 0 2 0 0
p = 3 12 492 3 134 0 1
p = 4 79 901 12 290 0 12
p = 5 166 1196 30 437 0 25

Table 10 reports the averages of D∗(Ψ̂,Ψ0). In each case, the mean of D∗(Ψ̂,Ψ0) decreases

as n increases. The slow decreasing rate of D∗(Ψ̂,Ψ0) may be also explained by the conclusion in

Chen (1995) that the optimal convergence rate of estimated distribution is at most n−1/4 when

p > p0. Moreover, for n = 100, we can observe a significantly smaller and slower increasing
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Table 10: Average D∗(Ψ,Ψ0) of MLE and PMLE for Model I

p0 = 2
MLE PMLE

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

p = 2 9.46 6.84 4.35 8.17 6.53 4.32
p = 3 15.56 10.83 6.59 10.37 9.00 6.23
p = 4 19.04 13.39 7.95 12.29 10.83 7.48
p = 5 22.28 15.44 9.08 13.82 12.19 8.48

average distance of PMLE over MLE, indicates the superiority of PMLE when p > p0. However,

the discrepancies on average D∗(Ψ̂,Ψ0) of two methods gradually vanishes as n increases.

6 Application Examples

6.1 Body mass index data

This data set contains information about body mass index (BMI), an important medical stan-

dard used to measure obesity, calculated by the ratio of body weight (kg) and square of body

height (m2). The BMI data is collected by the National Health and Nutrition Examination

Survey, conducted annually by the National Center for Health Statistics of the Center for Dis-

ease Control in the USA. According to the reports in years 1999-2000 and 2001-2002, Lin et

al. (2007a) investigated the BMI of man participants aged between 18 to 80, whose weights are

lying within [39.5, 70] kg and [95.01, 196.8] kg. The data is strongly bimodal and thus fitted

with two-component mixtures using four distributions: Normal, Student’ t, Skew normal and

Skew t. Another two distributions, skew contaminated normal and skew slash distribution, are

introduced by Prates et al. (2013) to model this data.

We obtain the BMI data consisting of 2107 participants in R package mixsmsn presented

by Prates et al. (2013). To compare the proposed PMLE with the ordinary MLE, the param-

eter estimations and penalized log-likelihoods are displayed in Table 11. The results are the

best performer of objective functions out of 20 runs with different K-means starts. A relative

tolerance of 10−6 for objective functions is employed in the ECM algorithm as the convergence

criterion.
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Table 11: Parameter estimates for BMI data

Method µ1 µ2 σ2
1 σ2

2 λ1 λ2 π1 pℓn(Ψ̂)

MLE 19.70 28.71 12.45 62.80 1.622 8.104 0.522 -6870
PMLE 19.74 28.70 12.05 62.69 1.564 7.618 0.520 -6870

The results of MLE and PMLE are given in Table 11, and they are essentially equivalent to

each other. Thus in the case without degeneracies on σ2 and λ, the PMLE can be sufficiently

close to MLE. Besides, it appears that the fitted model is of significant heteroscedasticity. The

approximation of two approaches in this data set seems reasonable, since the effect of the pe-

nalizing terms pn(σ) and pn(λ) naturally disappear as n increases to infinity.

6.2 The Faithful data

For the second case, we investigate the accuracy of the proposed PMLE in a data set with small

sample size. A good choice is the famous Faithful data, which is collected from Old Faithful

Geyser in Yellowstone National Park. Scientists presented analysis on this data, see Silverman

(1986) and Azzalini and Bowman (1990). It consists of 272 observations, measured on two

variables (in minutes): eruption length and eruption duration. Lin et al. (2007b) and Prates

et al. (2013) fitted the data with univariate and bivariate two-component SNMIX respectively,

both of which have better performance than corresponding two-component GMIX.

We focus on fitting eruption length with two-component SNMIX and list the outcomes in

the Table 12. As expected, all parameter values of PMLE keep almost the same as that of the

MLE. The similarity of MLE and PMLE is also reemphasized by the density curves and CDF

curves in Figure 4, both of which are inseparable.

Table 12: Parameter estimates for Faithful data

Method µ1 µ2 σ2
1 σ2

2 λ1 λ2 π1 pℓn(Ψ̂)

MLE 1.727 4.796 0.145 0.463 5.818 -3.401 0.349 -257.9
PMLE 1.728 4.794 0.143 0.462 5.559 -3.357 0.349 -257.9

Based on the results of Table 12 and Figure 4, it strongly suggests that the proposed penal-
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Figure 4: (a) Histogram of the faithful data overlaid with densities based on the results of MLE
and PMLE, (b) Empirical CDF of the faithful data overlaid with CDFs based on MLE and
PMLE

izing approach can give a reasonably accurate estimate, which would be also sufficient for data

sets of small sample size.

7 Conclusions

In this paper, we propose a penalized MLE to overcome both the degeneracy of σ2 and the

divergence of |λ| in MLE in skew noraml mixture models. The rigorous proofs of the consis-

tency of the PMLE are provided when the putative order p is equal to or larger than p0. The

approach developed could be valid for regaining the consistency and efficiency, and have the

advantage of placing no additional constraint on the parameter space. This methodology can

be extensively applicable to other class of finite mixture models, for example, the multivariate

SNMIX models (Lin 2009) and finite mixture of skew-t distributions (Lin et al. 2007a), which

are more complicated and worthy of further investigation.
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Appendix

Proof of Theorem 3.1

Proof. Define index sets of observations A(k) = {i : |xi − µ(k)| < |σ(k) log σ(k)|} for k = 1, · · · , p.
For any set S, let n(S) be the number of elements in S and define ℓn(Ψ;S) =

∑

i∈S log f(xi; Ψ).

For Ψ ∈ Γp
σ and small enough ǫ0, the mixture density f(xi; Ψ) ≤ 1

σ(k)
for any i ∈ A(k). Since

n(∩k−1
t=1A

c
(t) ∩A(k)) ≤ n(A(k)), recall the bound for n(A(k)) in lemma 2.2, almost surely, we have

ℓn(Ψ;∩k−1
t=1A

c
(t) ∩A(k)) ≤ −n(A(k)) log σ(k) ≤ 4Mnσ(k) log

2 σ(k) − 10 log σ(k) log n, (A.1)

Adding penalty function pn(σ(k)) satisfying conditions C1-C2, the (A.1) can be extended as

ℓn(Ψ;∩k−1
t=1A

c
(t) ∩A(k)) + pn(σ(k))

≤ 4Mnσ(k) log
2 σ(k) − (10 log n− log2 n) log σ(k)

≤ 4Mnσ(k) log
2 σ(k) ≤ 4Mnǫ0 log

2 ǫ0.

(A.2)

For any i ∈ ∩p
t=1A

c
(t), since |xi − µ(k)| > |σ(k) log σ(k)|, it is easy to show

log f(xi; Ψ) ≤ log

{ p
∑

k=1

2πk
σk

φ

(

xi − µk

σk

)}

≤ log

{ p
∑

k=1

2πk
σk

φ(− log σk)

}

≤ − log ǫ0 −
log2 ǫ0

2
< 0

By 4pMǫ0 log
2 ǫ0 ≤ 1, −4pMǫ0 log ǫ0 ≤ p−1

p holds for small enough ǫ0, this further implies

n(∩p
t=1A

c
(t)) ≥ n−

p
∑

t=1

n(A(t)) ≥
n

p
.

Hence, the total log-likelihood contributions of observations in ∩p
t=1A

c
(t) are bounded by

ℓn(Ψ;∩p
t=1A

c
(t)) ≤ −n

p

{

log ǫ0 +
(log ǫ0)

2

2

}

(A.3)

Thus, for Ψ ∈ Γp
σ and the selected sufficiently small ǫ0, with the results of (A.2) & (A.3) and

condition C3, the penalized log-likelihood has the upper bound as

pℓn(Ψ) =

p
∑

k=1

{

ℓn(Ψ;∩k−1
t=1A

c
(t) ∩A(k)) + pn(σ(k))

}

+ ℓn(Ψ;∩p
t=1A

c
(t)) + o(n)
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≤ 4pMnǫ0 log
2 ǫ0 −

n

p

{

log ǫ0 +
(log ǫ0)

2

2

}

+ o(n)

≤ n+ n(K0 − 2) + o(n) = n(K0 − 1) + o(n)

By the strong law of large numbers, we have 1
npℓn(Ψ0)a.s.

−→
K0. Consequently, as n → ∞,

almost surely,

sup
Γp
σ

pℓn(Ψ)− pℓn(Ψ0) ≤ −n+ o(n) → −∞.

Proof of Theorem 3.2

Proof. Let Γ̄τ
σ be a compactified Γτ

σ allowing σ(1) = · · · = σ(τ) = 0. For Ψ ∈ Γ̄τ
σ, define the

following continuous functions

gτ (x; Ψ) =

τ
∑

k=1

π(k)√
2
φ

(

x− µ(k)√
2ǫ0

)

+

p
∑

k=τ+1

π(k)f(x; θ(k))

where f(x; θ(k)) is density function of kth component. Since σ(p) ≥ · · · ≥ σ(τ+1) ≥ ǫ0, gτ (x; Ψ)

is bounded over Γ̄τ
σ. Therefore, ∀Ψ ∈ Γ̄τ

σ, we have logEΨ0{gτ (X; Ψ)/f(X; Ψ0)} = −∆τ (ǫ0) < 0.

It is also obvious that ∆τ (ǫ0) is a decreasing function and lim
ǫ0→0

∆τ (ǫ0) ∈ (0,∞). Hence, the

inequality 8τMǫ0 log
2 ǫ0 < ∆τ (ǫ0) holds for small enough ǫ0.

Define lτn(Ψ) =
∑n

i=1 log{gτ (xi; Ψ)} on Γ̄τ
σ, by the strong law of large numbers and the upper

bound of Jensen’s inequality, we have almost surely

sup
Ψ∈Γ̄τ

σ

n−1{lτn(Ψ)− ℓn(Ψ0)} → EΨ0 log{gτ (X; Ψ)/f(X; Ψ0)} ≤ −∆τ (ǫ0) (A.4)

For Ψ ∈ Γτ
σ and τ ∈ {1, · · · , p− 1}, recall the definition of A(k), k ∈ {1, · · · , τ}, the mixture

density f(xi; Ψ) ≤ 1
σ(k)

gτ (xi; Ψ) for all i ∈ A(k). While to the remaining observations, since |xi−
µ(k)| ≥ |σ(k) log σ(k)|, and if σ(k) is small enough that σ−1

(k) = exp{− log σ(k)} < exp{1
4 log

2 σ(k)},
thus

f(x; θ(k)) ≤
2

σ(k)
φ

(

x− µ(k)

σ(k)

)

≤ 1√
2
φ

(

x− µ(k)

2σ(k)

)

≤ 1√
2
φ

(

x− µ(k)

2ǫ0

)

holds with σ(k) ≤ ǫ0, which implies f(xi; Ψ) ≤ gτ (xi; Ψ).
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In summary, the log-likelihood contribution of xi have following upper bounds

log f(xi; Ψ) ≤
{ − log σ(k) + log gτ (xi; Ψ), i ∈ A(k),

log gτ (xi; Ψ), otherwise.

This further indicates the upper bound of log-likelihood

ℓn(Ψ) ≤ lτn(Ψ)−
τ

∑

k=1

n(A(k)) log σ(k).

With the conclusions of (A.2) and (A.4), it can be show that

sup
Γτ
σ

pℓn(Ψ)− pℓn(Ψ0)

≤ sup
Γτ
σ

{lτn(Ψ)− ℓn(Ψ0)}+ sup
Γτ
σ

τ
∑

k=1

{−n(A(k)) log σ(k) + pn(σ(k))}+ o(n)

≤ −n∆τ (ǫ0) + 4τMnǫ0 log
2 ǫ0 + o(n) ≤ −∆τ (ǫ0)

2
n+ o(n)

for the chosen ǫ0. Note that ∆τ (ǫ0) > 0, thus ∀τ ∈ {1, · · · , p−1}, supΓτ
σ
pℓn(Ψ)−pℓn(Ψ0) → −∞

a.s. as n → ∞.

Proof of Theorem 3.3

Proof. When Ψ ∈ Γc
σ ∩ Γλ, since the component deviances have a positive lower bound and di-

vergent skew parameters do not lead to infinite component density, f(x; Ψ) is therefore bounded

over Γc
σ ∩ Γλ.

According to Jensen’s inequality, we have EΨ0 log{f(X; Ψ)/f(X; Ψ0)} < 0 for any Ψ ∈
Γc
σ ∩ Γλ. We can also choose η0 large enough so that Ψ0 /∈ Γc

σ ∩ Γλ. Consequently it is easy to

show that, as in Wald (1949),

sup
Γc
σ∩Γλ

{

1

n

n
∑

i=1

log

(

f(xi; Ψ)

f(xi; Ψ0)

)}

→ −∆(η0) < 0 a.s. as n → ∞. (A.5)

Note that ∆(η0) is greater than zero and is a increasing function of η0. With the upper

bound in (A.5) and the conditions C1-C3, we get

sup
Γc
σ∩Γλ

pℓn(Ψ)− pℓn(Ψ0) = sup
Γc
σ∩Γλ

n
∑

i=1

log

(

f(xi; Ψ)

f(xi; Ψ0)

)

+ sup
Γc
σ∩Γλ

pn(Ψ)− pn(Ψ0)
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≤ −∆(η0)

2
n+ o(n)

Thus we have supΓc
σ∩Γλ

pℓn(Ψ)− pℓn(Ψ0) → −∞ almost surely as n → ∞.

Proof of Theorem 3.5

Proof. Based on the proof when p = p0, we establish a brief proof process for the case p > p0.

With the defined distance (3.1) and any κ > 0, let us define a new parameter space Ω(κ) = {Ψ :

Ψ ∈ Γ,D(Ψ,Ψ0) ≥ κ}. Clearly, Ψ0 /∈ Ω(κ) when κ > 0.

For Ψ ∈ Γp
σ ∩ Ω(κ), it is easy to show the derivations of Theorem 3.1 are still applicable by

replacing Ψ ∈ Γp
σ with Ψ ∈ Γp

σ∩Ω(κ). Hence, we can quickly get supΓp
σ∩Ω(κ) pℓn(Ψ)−pℓn(Ψ0) →

−∞ as n → ∞, and claim that Ψ̃ /∈ Γp
σ ∩ Ω(κ) with probability one.

Since Ψ0 /∈ Ω(κ), for Ψ ∈ Γτ
σ ∩ Ω(κ) where 1 ≤ τ ≤ (p − 1) and Ψ ∈ Γc

σ ∩ Γλ ∩ Ω(κ), the

corresponding inequalities EΨ0 log{gτ (X; Ψ)/f(X; Ψ0)} < 0 and EΨ0 log{f(X; Ψ)/f(X; Ψ0)} <

0 still holds respectively. Thus (A.4) and (A.5) can be extended to

sup
Γτ
σ∩Ω(κ)

n−1{lτn(Ψ)− ℓn(Ψ0)} ≤ −∆τ (ǫ0) < 0,

sup
Γc
σ∩Γλ∩Ω(κ)

{

1

n

n
∑

i=1

log

(

f(Xi; Ψ)

f(Xi; Ψ0)

)}

→ −∆(η0) < 0.

for the properly selected ǫ0, η0 and well-defined gτ (x; Ψ). Based on these two results, with

n → ∞, we similarly get supΓτ
σ∩Ω(κ) pℓn(Ψ) − pℓn(Ψ0) → −∞ for τ ∈ {1, · · · , (p − 1)} and

supΓc
σ∩Γλ∩Ω(κ) pℓn(Ψ)− pℓn(Ψ0) → −∞.

From the previous results, it is clear that the penalized maximum likelihood estimator Ψ̃

must fall in Γ∗∪Ωc(κ) with probability one. Given the arbitrariness of κ, Ψ̃ ∈ Ωc(κ) implies that

D(Ψ̃,Ψ0) → 0. At the same time, Ψ̃ ∈ Γ∗ also implies D(Ψ̃,Ψ0) → 0 by Kiefer and Wolfowitz

(1956). Thus, the strong consistency of the penalized MLE is proved under the case p > p0.
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