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1 Introduction

Testing the validity of a specified model is an important issue in statisti-

cal inference. A long-standing focus for this model checking problem is their

sensitivity to outlying observations or heavy-tailed distributions, which may

have destructive effects even though with small violation in usual observa-

tions. However, in the past decades, researchers have made more effort on

robust estimation whereas paid less attention to robust hypothesis testing.

Therefore, it is critical to develop a robust test that can be against outlier

contamination.

Outliers or contamination data are a ubiquitous problem in many dis-

ciplines, for example, clinical trials, medical research, longitudinal studies

and so forth. When there exist outliers in the data, robust statistical in-

ference procedures are necessary to improve the accuracy and reliability of

results. The purpose of robust testing is two-fold, just as stated in Heritier

and Ronchetti (1994): One is that under small and arbitrary departures

from the null hypothesis, the level of a test should be stable, which is called

the robustness of validity; The other is that the test can still make a good

power performance under small and arbitrary departures from specified al-

ternatives, that is called the robustness of efficiency. Wang and Qu (2007)

suggested a robust version of Zheng’s (1996) test. Their numerical studies

also showed the necessity of using a robust testing procedure: the effect of

outliers on Zheng’s original test is dramatic and destructive so that it can

not maintain the significance level.

Many efforts have been devoted to the development of robust testing

procedures. For linear regression models, Schrader and Hettmansperger

(1980) proposed the ρc test based on Huber’s M estimatiors; Markatou and

Hettmansperger (1990) introduced an aligned generalized M test for testing

subhypotheses in general linear models, which is a robustification of the well

known F test and can be viewed as a generalization of Sen’s (1982) M test

for linear models. Afterwards, Heritier and Ronchetti (1994) and Markatou

and Manos (1996) presented robust versions of the Wald, score and drop-

in-dispersion tests for general parametric models and nonlinear regression

models, respectively. Wang and Qu (2007) developed a robust approach

for testing the parametric form of a regression function versus an omnibus
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alternative, which can be viewed as a robustification of a smoothing-based

conditional moment test. Feng et al (2015) recommended a robust testing

procedure to make comparison of two regression curves through combining a

Wilcoxon-type artificial likelihood function with generalized likelihood ratio

test.

There are a number of proposals available in the literature on testing con-

sistently the correct specification of a parametric regression model. Most of

existing test procedures can be classified into two categories: global smooth-

ing tests and local smoothing tests. As mentioned in a comprehensive review

paper of González-Manteiga and Crujeiras (2013), the global smoothing tests

mainly involve empirical process, which can avoid subjective selection of the

smoothing parameter, such as bandwidth; The local smoothing tests are

based on nonparametric smoothing techniques such as Nadaraya-Waston

kernel estimation (Nadaraya 1964; Waston 1964), smoothing spline estima-

tion or other local smoothing techniques. Examples of global smoothing

tests include Bierens (1990), Bierens and Ploberger (1997), Stute (1997),

Stute et al (1998b), Whang (2000), Escanciano (2006a), among many oth-

ers. This class of methods enjoy fast convergence rate of order O(n−1/2) (see

Stute et al (1998a)). However, in high-dimensional scenarios, the limiting

null distribution is usually intractable which requires the assistance from re-

sampling approximation to determine critical values and is not sensitive to

high-frequency models. Further, the power performance in high-dimensional

cases is not very encouraging. This problem makes greatly practical limita-

tion since it is not uncommon to have high-order or high-frequency models.

As for local smoothing tests, examples include the tests suggested by

Härdle and Mammen (1993), Zheng (1996), Fan et al (2001), Horowitz and

Spokoiny (2001), Koul and Ni (2004), Van Keilegom et al (2008). Since they

must involve multivariate nonparametric function estimation procedures,

and thus inevitably suffer from the curse of dimensionality when the number

of covariates is large, even moderate. This typical problem is a big obstacle

for the tests to well maintain the significance level and sense the alternative

models. Because of the data sparseness in multidimensional spaces, the

behavior of nonparametric smooth estimators quickly deteriorates as the

dimension increases, see Stone (1980). Further, even when there are no
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outliers, local smoothing tests have the typical convergence rate of order

O(n−1/2h−p/4) to their limits, which is very slow when p is large where p

is the number of covariates. Besides, a suitable choice of smooth parameter

is difficult but necessary for these tests. Although previous simulation and

empirical studies show that the effect of bandwidth selection is not too

profound for small p situation, how to make an optimal bandwidth choice is

not solved thoroughly when the dimension p is relatively large.

The above analysis shows that there exists a common problem in both

procedures, the global and the local, that is, the sparseness of data in high-

dimensional spaces makes most of test statistics suffer curse of dimensional-

ity, even for large sample sizes (see Escanciano (2007)). To attack this chal-

lenge, a representative method documented as projection-pursuit technique

was proposed and experimented. The significant feature of this method is to

employ the projection of original data onto one-dimensional subspaces: first

projecting the original high-dimensional covariates to one-dimensional space

to form a linear combination and a test can be obtained as an average of tests

based on these selected combinations, see Huber (1985) for detail. Escan-

ciano (2006b) proposed a consistent test for the goodness-of-fit of parametric

regression models, which applied a residual marked empirical process based

on projections to bypass the curse of dimensionality caused by the fact that

high-dimensional space is mostly empty. Zhu and Li (1998) suggested to use

projection pursuit technique to define a test that is based on an unweighed

integral of expectations with respect to all one-dimensional directions. Zhu

and An (1992) had already used this idea to deal with a relevant testing

problem. Zhu (2003) constructed a lack-of-fit test via seeking for a good

projection direction for plotting to achieve the dimension-reduction aim.

Lavergne and Patilea (2008) introduced the projection-pursuit technique to

local smoothing-based tests to avoid the effect of dimension. Afterwards,

Lavergne and Patilea (2012) suggested a smooth integrated conditional mo-

ment (ICM) test, which is an omnibus test based on the kernel estimation

that performs against a sequence of directional nonparametric alternatives

as if there were only one regressor whatever the number of regressors. How-

ever, all of tests require resampling/bootstrap to determine the critical val-

ues, which is compute-intensive and time-consuming. Stute and Zhu (2002)
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simply used the one-dimensional projected covariate that is based on the null

model and thus the problem of dimensionality is greatly alleviated. But the

disadvantage is that it is a directional rather than an omnibus test which

cannot detect general alternatives. Another relevant reference is Stute, Xu

and Zhu (2008) who also suggested a dimension reduction test that is based

on the residual empirical process marked by a set of functions of the covari-

ates. This test relies solely on selecting proper functions for the significance

level maintainance and power enhancement.

Recently, a dimension-reduction model-adaptive test is proposed by Guo

et al (2015), which is an omnibus test against global alternative models. This

test introduces a model-adaptation concept in model checking for paramet-

ric regression models. The test statistic under the hypothetical model can

converge to its limit at the rate of order O(n−1/2h−1/4) and detect local

alternatives distinct from the null model at this rate, which is not affected

by the dimension of covariates. Their test behaves like a local smoothing

test, as if the covariates were one-dimensional. Another superiority is that

it owns tractable limiting null distribution and can work very well even with

moderate sample sizes without the assistance of resampling approximation

to determine critical values.

All of the above tests can avoid the curse of dimensionality to some

extent, however, they are not robust against outliers and their efficiency is

adversely affected by outlying observations. Our subsequent numerical anal-

ysis suggests that the test proposed by Guo et al (2015) is failure when there

exist some outliers because a linear local average of the response variable

is not robust, as elaborated in Härdle (1992). To address this problem, we

intend to incorporate the idea in Guo et al (2015) into our robust model-

adaptive smoothing-based conditional moment test so that it can possess the

robustness property and simultaneously solve the problem of dimensionality.

The hypothetical model is the following with a dimension-reduction

structure:

Y = g(β⊤X, θ) + e, (1.1)

where Y is the response with the covariate X ∈ R
p, the error e is with zero

mean and is independent of X. β and θ are unknown parameter vectors

of dimensions p and d, respectively. In addition, g(·) is a known function
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and the superscript ⊤ denotes transposition. As we often have no much

information in advance on model structure under alternative hypothesis, a

general alternative model is considered as follows:

Y = m(B⊤X) + ε, (1.2)

where m(·) is an unknown smooth function and E(ε|X) = 0. B is a p × q

matrix with q orthogonal columns for an unknown number q with 1 ≤ q ≤
p. This model treats the nonparametric regression E(Y |X) = m(X) as a

special case for which the matrix B = Ip with q = p:

Y = m(X) + ε,

where m(·) is an unknown smooth link function and E(ε|X) = 0.

In this paper, we construct a robust dimension reduction adaptive-to-

model test (RDREAM). It sufficiently invokes the information in both the

null and alternative models to get rid of curse of dimensionality and employs

centered asymptotic rank transformation technique to achieve the goal of

robustness. We further study the local robustness via influence function

analysis, which indicates that our RDREAM has first-order influence func-

tion of zero and second-order influence function bounded in the response

direction. Therefore, it is verified that our test can make more stable and

robust performance when there are outliers in responses than existing local

smoothing tests.

The rest of this article is organized as follows. In Section 2, the test is

constructed. The approaches to estimate the matrix B and to identify its

structure dimension q are also stated in this section. Section 3 presents the

large sample properties under the null, global and local alternative hypoth-

esis. Section 4 discusses the local robustness property through the Hampel

influence function analysis. Numerical studies including simulation studies

and a HIV real data analysis are respectively reported in Section 5 and

Section 6. All of the proofs are relegated to the Appendix.
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2 A robust dimension reduction adaptive-to-model

test

As discussed before, the hypotheses of interest are:

H0 : E(Y |X) = g(β⊤X, θ) for some β ∈ Rp, θ ∈ Rd;

H1 : E(Y |X) = m(B⊤X) 6= g(β⊤X, θ) for any β ∈ Rp, θ ∈ Rd, (2.1)

where g(·) is a known link function. β and θ are respectively the parameter

vectors of p and d dimensions. B is a p × q orthonormal matrix where

B⊤B = Iq and 1 ≤ q ≤ p.

2.1 Test statistic construction

The key idea of the local smoothing-based conditional moment test is to

apply the centered rank-transformed residuals. Denote e = Y − g(β⊤X, θ)

and let e⋆i = H(ei) − 1
2 , where H(·) is the distribution function of e and

H(ei), i = 1, . . . , n follow a uniform distribution on (0, 1). Under the null

hypothesis H0,

E(e⋆i |Xi) = E
{
H(ei)−

1

2
|Xi

}
= 0, (2.2)

In this case, the model (1.1) is with q = 1, and

E(e⋆i |Xi) = 0 = E(e⋆i |β⊤Xi) = E(e⋆i |B⊤Xi) = 0.

Further, the following formula

E{e⋆iE(e⋆i |B⊤Xi)f(B
⊤Xi)} = E{E2(e⋆i |B⊤Xi)f(B

⊤Xi)} = 0 (2.3)

holds under H0, where f(·) is the probability density function of B⊤Xi.

Under H1, we have e = Y − g(β⊤X, θ) = m(B⊤X) − g(β⊤X, θ) + ε. It

is easy to see that

E(e⋆i |Xi)

= E
{
Q
(
εi + (m(B⊤Xi)− g(β⊤Xi, θ))− (m(B⊤X)− g(β⊤X, θ))

)
− 1

2
|Xi

}
, (2.4)
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where Q(·) is the distribution function of ε. The conditional expectation

E(e⋆i |Xi) equals to zero only if for any x in a set with probability 1, there is

E
{
Q
(
εi+(m(B⊤x)−g(β⊤x, θ))−(m(B⊤X)−g(β⊤X, θ))

)
− 1

2

}
= 0. (2.5)

It occurs only when P (m(B⊤Xj)− g(β⊤Xj , θ) = C) = 1 for some constant

C, which only holds under the null hypothesis H0. Since we can enlarge the

null class of models by including some location shifts, if g(β⊤x, θ) belongs

to the null class of models, then so does g(β⊤x, θ) + C; in other words,

it is reasonable to assume that the null class of models is sufficiently gen-

eral to contain all location shifts in the y direction. Therefore, under H1,

the formula (2.5) does not hold. Further, based on (2.4), the conditional

expectation E(e⋆i |Xi) is not zero and

E(e⋆i |Xi) 6= 0 ⇔ E(e⋆i |B⊤Xi) 6= 0.

Thus, we have

E{e⋆iE(e⋆i |B⊤Xi)f(B
⊤Xi)} = E{E2(e⋆i |B⊤Xi)f(B

⊤Xi)} > 0. (2.6)

Based on the different performance of E{e⋆iE(e⋆i |B⊤Xi)f(B
⊤Xi)} under

H0 and H1 in (2.3) and (2.6), respectively, the empirical version of it can be

applied to construct a test statistic. The null hypothesis H0 is rejected for

large values of the test statistic.

Given a random sample {(y1, x1), (y2, x2), · · · , (yn, xn)}, define the asymp-

totic rank transform of êi = yi − g(β̂⊤xi, θ̂) as n−1
∑n

l=1 I(êl ≤ êi) where∑n
l=1 I(êl ≤ êi) is the rank of êi among all of the n residuals. Here, β̂ and θ̂

come from robust etimates of β and θ. Further, the corresponding centered

asymptotic rank transform of residuals is as follows

ê⋆i =
1

n

n∑

l=1

I(êl ≤ êi)−
n+ 1

2n
, l = 1, . . . , n, (2.7)

where I(·) is the indicator function.

Once an estimator of B̂(q̂) is available, a kernel estimator of the regres-

sion function E(e⋆i |B⊤Xi) can be estimated as follows:

Ê(e⋆i |B̂(q̂)⊤xi) =
1

n−1

∑n
j 6=i ê

⋆
jKh{B̂(q̂)⊤(xi − xj)}
f̂(B̂(q̂)⊤xi)

,
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where ê⋆j has been defined in (2.7). B̂(q̂) is an sufficient dimension reduction

(SDR) estimate of the matrix B with an estimated structural dimension q̂

of q and the estimates will be specified later. Besides, Kh(·) = K(·/h)/hq̂ ,
where K(·) is a q̂-dimensional kernel function and h is the bandwidth, and

f̂(B̂(q̂)⊤xi) is a kernel estimator of the density function of f(B⊤xi),

f̂(B̂(q̂)⊤xi) =
1

n− 1

n∑

j 6=i

Kh{B̂(q̂)⊤(xi − xj)}.

Further, a robust dimension reduction adaptive-to-model test (RDREAM)

can be constructed as follows:

Vn =
1

n(n− 1)

n∑

i=1

n∑

j 6=i

Kh{B̂(q̂)⊤(xi − xj)}ê⋆i ê⋆j . (2.8)

Remark 1. From the above construction of Vn in (2.8), it seems that ex-

cept for the estimates of the matrix B and structural dimension q, the test

statistic makes no difference with the test proposed by Wang and Qu (2007)

as follows:

Ṽn =
1

n(n− 1)

n∑

i=1

n∑

j 6=i

K̃h(xi − xj)ê
⋆
i ê

⋆
j , (2.9)

where K̃h(·) = K̃(·/h)/hp with K̃(·) being a p-dimensional kernel function.

Comparing the test statistic in (2.8) with that in (2.9), we note that q̂-

dimensional kernel function (q̂ ≤ p) is required in Vn. The result in Section 3

shows that under the null hypothesis H0, q̂ → 1, which can avoid the curse

of dimensionality greatly. Another superiority of the new test is the model-

adaptive property, that is, through estimating the matrix B, the test can

automatically adapt the hypothetical and alternative model such that it can

have better performance in the significance level maintainance and power

enhancement. To be specific, under H0, B̂(q̂) → cβ for a constant c, and

under H1 q̂ → q ≥ 1, B̂(q̂) → BC for a q × q orthogonal matrix, adaptive

to the alternative model (1.2).
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Remark 2. Another related test is the dimension reduction model-adaptive

test TGWZ
n proposed by Guo et al. (2015):

TGWZ
n =

1

n(n− 1)

n∑

i=1

n∑

j 6=i

Kh{B̂(q̂)⊤(xi − xj)}êiêj . (2.10)

In the Section 4, we will show through Hampel influence function analysis

that RDREAM has more stable and robust behavior than TGWZ
n when the

response is contaminated.

2.2 Identification and estimation of B

As the estimates of the matrix B and structural dimension q are crucial

for our RDREAM, we first specify the estimate for the matrix B under given

q and then study how to select q consistently. Note that the model (1.2) is a

multi-index model with unknown q indexes, thus outer product of gradients

(OPG) introduced by Xia et al (2002) can be considered to estimate B.

Another method to estimate B is inspired by sufficient dimension reduction

technique. In fact, B is not identifiable since for any q×q orthogonal matrix

C, m(B⊤X) can always be rewritten as m̃(C⊤B⊤X). Therefore, what we

can identify is the space spanned by B via sufficient dimension reduction

technique, or in other words, we can identify q base vectors of the space

spanned by B. There exist several proposals in the literature, such as sliced

inverse regression (SIR) proposed by Li (1991), sliced average variance esti-

mation (SAVE) considered by Cook and Weisberg (1991), minimum average

variance estimation (MAVE) advised by Xia et al (2002) and discretization-

expectation estimation (DEE) suggested by Zhu et al (2010). In view of

easy-operation and good-performance of DEE, we consider to employ it to

estimate B. Further, as the method called outer product of the gradients in

Xia et al (2002) has less restriction on the covariates X, we then also use it

to estimate B for a comparison with SIR-based DEE. In the following, we

give simple review of OPG and SIR-based DEE.

10



2.2.1 Outer product gradients

The outer product of the gradients can be written as

E{∇m(B⊤X)∇m(B⊤X)⊤} = BE{m′(B⊤X)m′(B⊤X)⊤}B⊤,

wherem(B⊤x) = E(Y |X = x), ∇m(B⊤X) = ∂
∂Xm(B⊤X) andm′(B⊤X) =

∂
∂B⊤X

m(B⊤X). Note that E{∇m(B⊤X)∇m(B⊤X)⊤} has q nonzero eigen-

values, the matrix B is in the space spanned by the q eigenvectors corre-

sponding to the largest q eigenvalues of E{∇m(B⊤X)∇m(B⊤X)⊤}. Thus,
we need to estimate the expectation E{∇m(B⊤X)∇m(B⊤X)⊤} and then

obtain the estimator of B.

By local linear fitting

m(B⊤xi) = m(B⊤xj) +m′(B⊤xj)
⊤B⊤(xi − xj) = aj + b⊤j xij ,

where aj = m(B⊤xj), bj = B ×m′(B⊤xj) and xij = xi − xj , we can obtain

(âj , b̂j) by minimizing the following objective function

min
aj ,bj

n∑

i=1

Kh(B
⊤xij){yi − aj − b⊤j xij}2, (2.11)

where Kh(·) = K(·/h)/h with K(·) being a q-dimensional kernel function and

h being a bandwidth. The corresponding estimating equation from (2.11)

for (aj , bj) can be given as

n∑

i=1

Kh(B
⊤xij)(1, x

⊤
ij)

⊤{yi − âj − b̂⊤j xij} = 0.

Further, E{∇m(B⊤X)∇m(B⊤X)⊤} can be estimated as

Σ̂ =
1

n

n∑

j=1

b̂j b̂
⊤
j . (2.12)

Therefore, the q eigenvectors corresponding to the largest q eigenvalues of

Σ̂ can be regarded as the estimator of the matrix B.
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2.2.2 Discretization-expectation estimation

We first give some notations. The central subspace, denoted by SY |X ,

is defined as the intersection of all subspaces spanned by the columns of a

matrix A, SA, of minimal dimension such that Y⊥⊥X|A⊤X, where ⊥⊥ stands

for statistical independence. Similarly, let SE(Y |X) be the intersection of all

subspaces SA spanned by the matrix A such that Y⊥⊥E(Y |X)|A⊤X. In

sufficient dimension reduction, SE(Y |X) is called the central mean subspace

and its dimension, denoted by dE(Y |X), is called the structural dimension.

As to the model (1.2), we have SE(Y |X) = span(B) and dE(Y |X) = q. Thus,

we aim to identify the q base vectors of SE(Y |X).

Compared with SIR, DEE can avoid the choice of the number of slices,

as Li and Zhu (2007) pointed out, which may affect the efficiency and even

lead to inconsistent estimates, and has no optimal solution. Define the new

response variable Z(t) = I(Y ≤ t) for any t, where the indicator function

I(Y ≤ t) takes the value 1 if Y ≤ t and 0, otherwise. When SIR is applied,

the original related matrix M(t) based on SIR is a p × p positive semi-

definite matrix such that span{M(t)} = SZ(t)|X . Here, SZ(t)|X is the central

subspace of Z(t)|X. Given M = E{M(T )}, according to Theorem 1 in Zhu

et al (2010), span{M} = SY |X . To ensure SY |X = SE(Y |X) for ε in the

model (1.2), based on Guo et al (2015), a condition that ε = m1(B
⊤X)ε̃

and ε̃⊥⊥X is needed.

Based on the above analysis, estimating SE(Y |X) amounts to estimating

M. Given the sample {(y1, x1), (y2, x2), · · · , (yn, xn)}, we define the di-

chotomized responses as zi(yj) = I(yi ≤ yj), i, j = 1, . . . , n. Thus, for each

fixed yj, we can obtain a new sample {(z1(yj), x1), (z2(yj), x2), · · · , (zn(yj), xn)}
and the estimate Mn(yj) of M(yj) can be gained with SIR. Thus, M can

be estimated as

Mn,n = n−1
n∑

j=1

Mn(yj), (2.13)

which has been proved to be root-n consistent toM by Zhu et al (2010). The

q eigenvectors of Mn,n corresponding to its q largest eigenvalues are applied

to estimate B. For this method, a mild linearity condition is assumed:

E(X|B⊤X = u) is linear in u (Li, 1991).
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2.3 Estimation of structural dimension q

In order to get RDREAM in (2.8), the estimate of structural dimension

q is necessary for the above two methods of identifying B. Here, a Ridge-

type Ratio Estimate (RRE) method, which is inspired by Xia et al (2015),

is suggested to determine q for OPG and DEE. It is based on the ratios of

the eigenvalues with an artificially added ridge value c. Denote λ̂1 ≥ λ̂2 ≥
. . . ≥ λ̂p to be the eigenvalues of the estimating matrix Σ̂ or Mn,n in (2.12)

and (2.13), respectively. q̂ can be obtained as

q̂ = arg min
k=1,...,p−1

λk+1 + c

λk + c
,

where the constant c = 1/
√
nh is recommended. The consistencies of q̂

under the null hypothesis (1.1) and global alternative hypothesis (1.2) are

shown in the following lemma.

Lemma 1. Assume that the OPG-based matrix Σ̂ or the DEE-based matrix

Mnn is root-n consistent to Σ or M . Then the corresponding estimate q̂ = q

as n→ ∞ with a probability going to one. Therefore, for a q× q orthogonal

matrix C, B̂(q̂) is a root-n consistent estimate of BC⊤.

3 Asymptotic properties

In this section, the large-sample properties of the RDREAM test statistic

Vn in (2.8) are investigated via its asymptotic distributions under the null

hypothesis, global alternative hypothesis and local alternative hypothesis.

3.1 Limiting null distribution

The asymptotic normality discussed in the following also requires that

the regression parameter is root-n consistently estimated under H0 and the

residuals must come from a robust fit. Let Z = B⊤X and

V ar =
1

72

∫
K2(u)du

∫
p2(z)dz,
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where p(z) is the probability density function of Z. Moreover, V ar can be

consistently estimated by:

V̂ ar =
1

72n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K2

{B̂(q̂)⊤(xi − xj)

h

}
.

We first state the asymptotic property of the RDREAM test statistic in

(2.8) under the null hypothesis H0 as follows:

Theorem 1. Suppose that conditions (C1)-(C8) in the Appendix hold. Un-

der H0, we have

nh1/2Vn ⇒ N(0, V ar).

Plugging in a consistent estimator of V ar, a standardized version of Vn

can be defined as

Sn =
n− 1

n

nh1/2Vn√
V̂ ar

. (3.1)

The following corollary can be easily obtained.

Corollary 1. Under H0 and Conditions (C1)-(C8) in the Appendix, we

have

S2
n ⇒ χ2

1,

where χ2
1 is the chi-square distribution with one degree of freedom.

Theorem 1 and Corollary 1 characterize the asymptotic properties of the

test statistic Vn. Based on Corollary 1, p-values of RDREAM can be easily

determined by the quantiles of the chi-square distribution with one degree

of freedom. The null hypothesis H0 is rejected when Sn ≥ χ2
1−α(1) where

χ2
1−α(1) is the 1− α upper quantile of the chi-square distribution.

3.2 Power study

We are now in the position to examine the power performance of our

RDREAM under alternative hypothesis. More specifically, the following

sequence of alternative models is under consideration:

H1n : Y = g(β̃⊤X, θ̃) + Cnm(B⊤X) + ε, (3.2)
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where E(ε|X) = 0, E[m2(B⊤X)] < ∞ and {Cn} is a constant sequence.

When Cn = C for a nonzero constant C, the model is a global alternative

model, while when Cn goes to zero, it is a sequence of local alternative

models. In this sequence of models, β is one of the column in B. Denote

α̃ = (β, θ) to be

α̃ = argmin
α
E{g(β⊤X, θ)−m(X)},

where m(X) = E(Y |X). When the null hypothesis H0 holds, α̃ is the true

parameter. For a robust estimate α̂, we have α̂ − α̃ = Op(1/
√
n). We first

discuss the consistency of q̂ under the local alternative hypothesis (3.2).

When n → ∞, the local alternative models converge to the null model, q̂s

under the local alternative models are expected to converge to q̂ under the

null model, which finally converge to the structural dimension q = 1 under

the null model.

Lemma 2. Assume conditions (C1)-(C8) in the Appendix hold and under

the local alternative hypothesis (3.2) with Cn = n−1/2h−1/4, we have q̂ = 1

as n → ∞ with a probability going to one, where q̂ is either the OPG-based

or the DEE-based estimate.

The asymptotic properties under global and local alternative hypotheses

are concluded in the following Theorem.

Theorem 2. Under Conditions (C1)-(C8) in the Appendix, we have:

(i) Under the global alternative of (1.2) or equivalently the above model

with Cn = C,

Sn/(nh
1/2) ⇒ Constant > 0;

(ii) Under the local alternative hypothesis (3.2) with Cn = n−1/2h−1/4,

we have

nh1/2Vn ⇒ N(µ, V ar) and S2
n ⇒ χ2

1(µ
2/V ar),

where

µ = E[h2(ε)m2(B⊤X)p(X)],
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h(·) denotes the probability density function of ε and χ2
1(µ

2/V ar) is a non-

central chi-squared random variable with one degree of freedom and the non-

centrality parameter µ2/V ar.

The above Theorem indicates that under the global alternative hypoth-

esis, the RDREAM test is consistent with the asymptotic power 1 and can

detect the local alternatives distinct from the null hypothesis at a non-

parametric rate of order n−1/2h−1/4, which is the optimal rate with one

dimensional predictor for the test Ṽn in (2.9).

Remark 3. From the above theorem, we can observe that under the null

hypothesis, the use (automatically) of lower order kernel function in Vn in

(2.8) makes a very significant improvement than Ṽn in (2.9). Based on

Theorem 1, Vn owns a much faster convergence rate of order nh1/2 and

nh1/2Vn is asymptotically normal under the null whereas the rate of order

nhp/2 is for Ṽn. Further, according to Theorem 2, the conclusion can be made

that Vn is much more sensitive than Wang and Qu’s test Ṽn in the sense

that Vn can detect the local alternatives distinct from the null at the rate

of n−1/2h−1/4 whereas Ṽn is only workable at the rate of order n−1/2h−p/4.

Therefore, the power performance of the proposed test can be much enhanced.

Remark 4. Our original simulation results based on Sn in (3.1) suggest

the conservative sizes of tests. Thus, the following size-adjustment is needed

for the test statistics with both the OPG-based estimate and the DEE-based

estimate:

S̃n = (1 + 4n−4/5)Sn. (3.3)

The size-adjustment constant is chosen through intensive simulation with

various different values and this one is recommended. With such a size-

adjustment, our new test S̃n can better control type I errors. It is worth

noting that the size-adjustment is asymptotically negligible when n → ∞
since S̃n → Sn when n→ ∞.
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4 Robustness property

In this section, we investigate the local stability of RDREAM under

infinitesimal local contamination through Hmapel influence function, which

was introduced by Hampel (1974). The Hampel influence analysis reveals

that RDREAM has the desired local robustness property. In the following,

we first give von Mises functional expansion of RDREAM and further derive

the Hampel influence function. For this investigation, Wang and Qu (2007)

is a good reference. The key difference is between the used covariate X and

B̂(q̂)⊤X in the respective test statistics, and B̂(q̂)TX is automatically 1-

and q-dimensional under the null and alternative hypothesis. Thus, we only

give some brief descriptions about the results.

Following Wang and Qu (2007), the von Mises analysis (see Fernholz

(1983)) can provide the basis of the Hampel influence function calculation.

We now discuss the von Mises functional expansion.

Let Z = B⊤X, Ẑ = B̂(q̂)⊤X and denote Ĥn as the empirical distribution

function of Y1 − g(β̂⊤X1, θ̂), . . . , Yn − g(β̂⊤Xn, θ̂). When H0 holds, B = cβ,

and B̂(q̂) is an estimator of β up to a scalar constant c. The RDREAM

statistic Vn in (2.8) can be asymptotically expressed as

T (F̂h, Fn) =:

∫ ∫ [
Ĥn(y − g((β⊤x)(Fn), θ(Fn)))−

1

2

]
×

(∫ [
Ĥn(y1 − g((β⊤x)(Fn), θ(Fn)))

−1

2

]
× f̂h(ẑ, y1)dy1

)
dFn(ẑ, y),

where Fn(·) is the empirical distribution function of (Ẑi, Yi)’s, ((β
⊤x)(Fn), θ(Fn))

⊤

is an estimator of (β⊤x, θ)⊤, which can be rewritten as a functional of the

empirical distribution Fn, and f̂h(zi, yi) is a smoothing kernel estimation of

the joint density function of (Ẑ, Y ), which has the following form:

f̂h(ẑi, yi) =
1

n− 1

n∑

i 6=j

K1,h(yi − yj)K2,h(ẑi − ẑj),

where K1(·),K2(·) are two kernel functions and satisfy K1,h(·) = K1(·/h)/h
andK2,h(·) = K2(·/h)/hq̂ , respectively. An appropriate functional for RDREAM

is bivariate with the form

T (F,F )
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=:

∫ ∫ [
H(y − g((β⊤x)(F ), θ(F ))) − 1

2

]
×

(∫ [
H(y1 − g((β⊤x)(F ), θ(F ))) − 1

2

]

×f(z, y1)dy1
)
dF (z, y), (4.1)

here, F (·) is the distribution function of (Z, Y ) and H(·) is the distribution

function of Y − g(β⊤X, θ): H(v) =
∫ ∫

y≤g((β⊤x)(F ),θ(F ))+v dF (z, y).

Now we are in the position to analyse Hampel influence function (Ham-

pel 1974). When the second-order influence function in the response di-

rection, the regression functions is robustly estimated. Thus, we calculate

the first-order and second-order influence function of T (F,F ) in (4.1) at the

point (z0, y0). When H0 holds, the Hampel’s first-order influence function

of T (F,F ) in (4.1) at the point (z0, y0) is defined as

IF (1)(z0, y0;T ) = lim
t→0

T (Ft, Ft)− T (F,F )

t
,

where T (F,F ) = 0 and Ft = (1 − t)F + t∆z0,y0 , here, ∆z0,y0 is the point

mass function at the point (z0, y0). Denote L(t) = T (Ft, Ft) = T (F+tU, F+

tU), where U = ∆z0,y0 − F . Thus, we have L(0) = 0. From the proof in

the Appendix, it is not difficult to obtain that dL(t)
dt |t=0 = 0. Therefore,

RDREAM has a degenerate first-order influence function.

To obtain the second-order influence function of RDREAM, we first com-

pute

1

2

d2

dt2
L(t)|t=0

=

∫ ( ∫
Ḣ(y − g((β⊤x)(F ), θ(F )))f(z, y)dy

)2
dz

+

∫ ∫
Ḣ(y − g((β⊤x)(F ), θ(F ))) ×

∫ [
H(y1 − g((β⊤x)(F ), θ(F ))) − 1

2

]

×u(z, y1)dy1dF (z, y) +
∫ ∫ [

H(y − g(β⊤x(F ), θ(F ))) − 1

2

]

×
∫
Ḣ(y1 − g((β⊤x)(F ), θ(F ))) × f(z, y1)dy1dU(z, y)

+

∫ ∫ [
H(y − g((β⊤x)(F ), θ(F ))) − 1

2

]
×

(∫ [
H(y1 − g((β⊤x)(F ), θ(F )))

−1

2

]
u(z, y1)dy1

)
dU(z, y), (4.2)
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where Ḣ(·) =: dHt(·)
dt |t=0 and Ht(·) represents H(·) under contamination,

that is, Ht(v) =
∫ ∫

y≤g(β⊤x(Ft),θ(Ft))+v dFt(z, y). Besides, u(z, y) is the prob-

ability density function of U(z, y). Taking U = ∆z0,y0 − F into the formula

(4.2), it is shown that the four terms in (4.2) converge at the same rate. Fur-

ther, based on Hampel’s definition, we can obtain the second-order influence

function of RDREAM at the point (z0, y0) as follows:

IF (2)(z0, y0) =

∫ ( ∫
Ḣ∆(z0,y0)

(y − g((β⊤x)(F ), θ(F )))f(z, y)dy
)2
dz

+
[
H(y0 − g((β⊤x0)(F ), θ(F ))) −

1

2

]
×

∫ ∫
Ḣ∆(z0,y0)

(y − g((β⊤x)(F ), θ(F )))dF (z, y)

+
[
H(y0 − g((β⊤x)0(F ), θ(F ))) −

1

2

]
×

∫
Ḣ∆(z0,y0)

(y − g(β⊤x0(F ), θ(F )))

×f(z0, y)dy +
[
H(y0 − g((β⊤x)0(F ), θ(F ))) −

1

2

]2
,

where z0 = β⊤x0 and Ḣ∆(z0,y0)
(y − g((β⊤x)(F ), θ(F ))) denotes d

dtH(y −
g((β⊤x)(Ft), θ(Ft)))|t=0,U=∆(z0,y0)

−F . The detail expression of Ḣ∆(z0,y0)
(y−

g((β⊤x)(F ), θ(F ))) can be written as

Ḣ∆(x0,y0)
(y − g((β⊤x)(F ), θ(F )))

=

∫
h(y − g((β⊤x)(F ), θ(F ))) × gradα{g((β⊤x)(F ), θ(F ))}⊤ × dα

dt
dFX (x)

+I
(
y0 ≤ y + g((β⊤x)0(F ), θ(F ))− g((β⊤x)(F ), θ(F ))

)

−H(y − g((β⊤x)(F ), θ(F ))),

where α = (β, θ)⊤ and gradα{g((β⊤x)x(F ), θ(F ))}⊤ represents the gradi-

ent of g((β⊤x)(F ), θ(F )) with respect to α. When the parameter α comes

from a robust fit, we have that dα/dt is bounded. Together with the con-

ditions (C1) and (C5) in the Appendix, it can be shown that Ḣ∆(z0,y0)
(y −

g((β⊤x)(F ), θ(F ))) is also bounded. Further, the second-order influence

function IF (2)(z0, y0) of RDREAM is bounded in the response direction.

For the purpose of comparison, we can similarly derive the first-order

and second-order influence function for the test TGWZ
n in (2.10). the first-

order influence function is also zero and the second-order influence function
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can be derived as

IF
(2)
GWZ(z0, y0) =

∫ ( d
dt
g((β⊤x)(F ), θ(F ))f(x)

)2
dz + [y0 − g((β⊤x)0(F ), θ(F ))]

2

−[y0 − g((β⊤x)0(F ), θ(F ))]
∫

d

dt
g((β⊤x)(F ), θ(F ))dz

−[y0 − g((β⊤x)0(F ), θ(F ))]
d

dt
g((β⊤x)0(F ), θ(F ))f(z0),

where d
dtg((β

⊤x)(F ), θ(F )) = d
dtg((β

⊤x)(Ft), θ(Ft))|t=0,U=∆(z0,y0)
−F .

The second-order influence function IF
(2)
GWZ(z0, y0) in the y-direction is

not bounded.

The above influence function analysis indicates RDREAM possesses more

stable and robust performance than the test TGWZ
n when the response is un-

der contamination.

5 Simulation studies

In this section, three simulation studies are conducted to examine the

theory and the finite-sample performance of the proposed RDREAM. Through-

out this section, denote the adjusted RDREAM statistic in the formula (3.3)

based on the OPG and SIR-based DEE estimate as S̃OPG
n and S̃DEE

n , re-

spectively. The purpose of the simulation studies is three-fold: to examine

the robustness of the new method; to check the usefulness to overcome the

curse of dimensionality; to demonstrate its usefulness in the cases with-

out outliers. To this end, the objective of the first study is to check and

compare the performance of RDREAM: S̃OPG
n and S̃DEE

n . The effects of

different distributions of the error and nonlinearity under the null hypothe-

sis on the performance of the new tests is also considered in this study. The

second study is used to examine the impact from dimensionality on both

RDREAM and the robust test TWQ
n introduced by Wang and Qu (2007).

Since the test TGWZ
n proposed by Guo et al (2015) is also to solve the di-

mensionality problem in model checking, the third study aims to show the

robustness properties of the proposed test via comparing S̃OPG
n , S̃DEE

n with

TGWZ
n and to examine its performance in the case without outliers.
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Study 1: Consider the following models

H11 : Y = β⊤X + a× exp(−1.5β⊤X) + ε,

H12 : Y = β⊤X + 1.5a(β⊤X)3 + ε,

H13 : Y = β⊤X + 6a× cos(0.8πβ⊤X) + ε,

H14 : Y = 2.5 exp(0.5β⊤X) + 1.5a(β⊤X)3 + ε,

where p = 8, β = (1, . . . , 1)⊤/
√
p. The covariate X = (X1, . . . ,Xp)

⊤ are i.i.d

and generated from a multivariate normal distribution N(0, Ip) where Ip is

a p×p identity matrix. Consider two kinds of errors: one is ε ∼ N(0, 1) and

the other is that εi’s are i.i.d from a log-normal distribution lnN(0, 0.25)

that is standardized to have mean 0 and variance 1. For all of models,

10% of the responses are randomly added by an outlying value 5. We set

a = 0, 0.2, . . . , 1.0 where a = 0 corresponds to the null hypothesis and a 6= 0

corresponds to the alternative hypothesis. For H11,H12 and H13, the null

models are a linear model and the alternative models are all single-index

models. The null model of H14 is a nonlinear model. Under the alternatives,

the third model H13 is high-frequent and the other three models are not.

We intend to examine whether the new tests can be powerful for both the

two types of models.

To compute the robust test statistics S̃OPG
n and S̃DEE

n , the residuals

are obtained from a robust regression through M -estimate. As to the non-

parametric regression estimation, throughout these simulations, unless oth-

erwise specified, the kernel function is taken to be K(u) = 15/16(1 − u2)2

if |u| ≤ 1 and 0, otherwise. Our experience in the simualtions suggests

that RDREAM is not sensitive to the choice of kernel function. The band-

width is recommended as hOPG = 1.8n−1/(q̂+4) for the test statistic S̃OPG
n

and hDEE = 0.5n−1/(q̂+4) for S̃DEE
n through intensive numerical compu-

tation. The significance level is set to be α = 0.05 and the sample size

n = 60, 100, 200 are considered. Every simulation result is the average of

2000 replications.

Table 1 displayed the empirical sizes and powers of the new tests against

the alternatives H11,H12 with different values of a. From this table, we can

see that for every case we conduct, the adjusted test statistics S̃OPG
n and

S̃DEE
n can maintain the significance level very well even with the sample
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size n = 60. It is reasonable that the larger the sample size is, the closer

the empirical size is to the significance level. As to the power performance,

for any a specific test S̃OPG
n or S̃DEE

n , the powers are higher with larger

sample sizes. S̃OPG
n and S̃DEE

n , from the results of H11, it can be seen that

in most cases, S̃OPG
n outperforms S̃DEE

n ; for H12, S̃
DEE
n exhibits slightly

higher powers than S̃OPG
n , however, the difference between them can be

negligible. Therefore, the test S̃OPG
n yields to no worse power performance

than S̃DEE
n . At last, for every specific alternative model, the impact of error

distribution on empirical sizes and powers shows no significant difference,

which, to some extent, illustrates that the proposed tests are robust to light

and heavy tail error distributions.

Table 1 about here

To get a sense of the performance under high-frequent alternative model

and the effect of nonlinear null model on the proposed tests, we conduct

a more in-depth analysis for the alternatives H13 and H14. The simulated

power curves of different values of a and sample sizes n = 100, 200 are dis-

played in Figure 1. From this figure, we can see that for the cosine alternative

H13, the simulated power curve for S̃OPG
n has a sigmoidal shape, whereas

the curve for S̃DEE
n shows rapid growth at the beginning and slightly de-

crease for a relative larger a. The different power performance for S̃OPG
n and

S̃DEE
n may be ascribed to the different sensitivity to high-frequent alterna-

tive model. However, their powers are all acceptable. As to the alternative

H14, both of these two tests show the popular sigmoidal shape power curves

and S̃OPG
n slightly outperforms S̃DEE

n .

Figure 1 about here

In summary, the proposed tests S̃OPG
n and S̃DEE

n can both control type I

error very well and make an excellent power performance. The OPG-based

test S̃OPG
n is more powerful.

Study 2: The data are generated from the following models:

H21 : Y = β⊤1 X + 1.5a(β⊤2 X)3 + ε,

H22 : Y = β⊤1 X + 0.3a
{
4(β⊤2 X)3 + (β⊤2 X)2

}
+ ε,
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H23 : Y = β⊤1 X + 4a exp(−β⊤2 X) + ε,

where β1 = (1, . . . , 1)⊤/
√
p, β2 = (1, . . . , 1︸ ︷︷ ︸

p/2

, 0, . . . , 0)⊤/
√
p/2, p = 4, 2 and

n = 100, 200. When a 6= 0, we have q = 2 and B = (β1, β2). The covariates

X and the error ε is independently generated from the multivariate and

univariate standard normal distributions, respectively. For all of cases, 10%

of the responses are randomly replaced by observations from a nonlinear

model Y = 5.5 cos(3πβ⊤1 X)+ε. We intend to apply these alternative models

to examine the effect of dimensionality on the proposed tests S̃OPG
n , S̃DEE

n

and TWQ
n considered by Wang and Qu (2007).

The simulation results with the alternatives H21,H22 are reported in

Table 2 for a = 0, 0.2, . . . , 1 at the significance level α = 0.05. From this

table, we can observe that for all of cases we conduct, the three tests can

control empirical sizes very well. Also, it is reasonable that the simulated

powers of all of tests become higher with increasing of the parameter a and

the tests are more powerful with larger sample size. It can be seen clearly

that the tests S̃OPG
n and S̃DEE

n work very well in power performance. TOPG
n

and TDEE
n are not significantly affected by the dimension of X. However,

TWQ
n severely suffers from the dimensionality problem. When the dimension

of X gets larger, TWQ
n completely fails to detect the alternatives. Figure 2

reports the simulated power curves under H23 for different values of a and

sample sizes n = 100, 200. The similar conclusion can be made.

Table 2 and Figure 2 about here

Study 3: We generate the data from the following models:

H31 : Y = β⊤X + 2a(β⊤X)3 + ε,

where β = (1, . . . , 1)⊤/
√
p and p = 8, 12. Here, the covariate X = (X1, . . . ,Xp)

⊤

come from the multivariate normal distribution N(0, Ip) where Ip is a p ×
p identity matrix and ε is from univariate standard normal distribution

N(0, 1). In this study, we want to examine two issues: One is whether

the test TGWZ
n can maintain empirical size when there exist some outlier

values in responses and the other is whether RDREAM can have an ac-
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ceptable power performance when there are not outliers. The ratio of re-

sponses randomly replaced by observations from a nonlinear model Y =

6exp(−|β⊤X|) + ε is denoted as ρ.

Figure 3 presents the empirical size curves or “significance trace” of the

three tests for different values of the ratio ρ and sample sizes n = 100, 200.

In this case, the ratio ρ = 0, 0.02, . . . , 0.1. From this figure, we can see that

when ρ = 0, all of the three tests can control empirical sizes very well which

are all close to the pre-specified significance level 0.05. However, with the

increasing of the ratio ρ, S̃OPG
n and S̃DEE

n outperform the test TGWZ
n . The

simulation results indicate that the new tests are not affected by the outlier

values and they are more robust, whereas TGWZ
n fails to work when outliers

exist.

Figure 3 about here

We display the simulated powers curves for different values of a in Fig-

ure 4. Here, we consider ρ = 0 and n = 100, 200. In other words, there are no

outliers in the data. The parameter a is set to be 0, 0.2, . . . , 1. Based on this

figure, we can see that compared with TGWZ
n , it is anticipated that TGWZ

n

has higher powers since their test employs more value-information whereas

the robust tests only utilize the rank-information of responses. However, the

powers of the new tests are still acceptable.

Figure 4 about here

6 Real data analysis

We now apply RDREAM to a real data set collected from a HIV clinical

trial. The HIV positive patients in this study were randomly divided into

four groups to receive antiretroviral regimen: (i) ZDV; (ii) didanosine (ddi);

(iii) ZDV+ddi and (iv) ZDV+zalcitabine. A more detailed description of this

real data set can be found in Hammer et al. (1996). Many researchers have

made use of this data set to illustrate their dimension reduction estimation

methods and further to compare the treatment effects of monotherapy (say

(i)) and combined therapy (say (ii)-(iv)), including Ding and Wang (2011),

Guo et al (2014) and Hu et al (2010). Recently, Niu et al (2015a) analyzed
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this data set to test whether the nonparametric component is a partial linear

regression function. The conclusion arrived was that a linear regression

model would be proper for this data set.

In this dataset, there are 746 male patients who had not received an-

tiretroviral therapy before the clinical trial and our study focuses on 473

patients who had observations in the variable CD4 cell counts at 96±5 weeks

post therapy among them. Further, based on the way of therapy, we divide

the dataset into two subsets: the first dataset has 105 male patients receiving

monotherapy, say (i) and the second dataset contains 368 patients receiving

combined therapies, say (ii)-(iv). For each dataset, the response variable Y

is CD4 cell counts at 96± 5 weeks post therapy and the four covariates are

CD4 cell counts at baseline (X1), CD4 cell counts at 20±5 weeks (X2), CD8

cell counts at baseline (X3) and CD8 cell counts at 20± 5 weeks (X4). For

ease of explanation, all the covariates are standardized separately and the

responses are centered.

It is our interest to test whether the data (Y,X) can be fitted with linear

regression models where X = (X1,X2,X3,X4)
⊤, that is,

H10 : E(Y |X) = β⊤1 X for some β1 ∈ R4,

H11 : E(Y |X) = m(B⊤
1 X) 6= β⊤1 X for any β1 ∈ R4 (6.1)

for the first dataset and

H20 : E(Y |X) = β⊤2 X for some β2 ∈ R4,

H21 : E(Y |X) = m(B⊤
2 X) 6= β⊤2 X for any β2 ∈ R4 (6.2)

for the second dataset, respectively. The same kernel function and band-

width are adopted as simulation section. With our proposed RDREAM,

we can obtain that for the first dataset, the p-values for tests S̃OPG
n and

S̃DEE
n are 0.696 and 0.678, respectively and the corresponding p-values for

the second dataset are 0.645 and 0.361. All of these results indicate that

the original two datasets can be fitted by linear regression models.

To investigate the influence of outlier values in the response space, we

artificially replace the first 5% responses of each dataset by an outlying value

800. With these two new datasets, we apply our proposed methods to test

(6.1) and (6.2), respectively. As to the first new dataset, the p-values for
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S̃OPG
n and S̃DEE

n are 0.546 and 0.780, respectively. The corresponding p-

values are 0.543 and 0.151 for the second dataset. The similar conclusion

with original data can be made, which indicates that our test methods are

robust.

We next add c1 = (3, 4, 5, 6) copies of (800, 168, 174, 605, 640) to the first

original dataset and c2 = (12, 15, 18, 21) copies of (400, 370, 373, 739, 606) to

the second original dataset, respectively, to carry out the same tests. Here,

the maximum contamination rate is 5%. The p-values of these tests are

listed in Table 3, which all suggest linear regression modelling.

Table 3 about here

Appendix. Proofs of theorems

The following conditions are required for proving the theorems in Section 3.

(C1) The joint probability density function f(z, y) of (Z, Y ) is bounded.

Both errors ei and εi have bounded probability density functions.

(C2) The density function f(B⊤X) of B⊤X on support Z exists and has

two bounded derivatives and satisfies

0 < inf f(z) < sup f(z) < 1.

(C3) The kernel function K(·) is a bounded, derivative and symmetric prob-

ability density function and all the moments of K(·) exist. The band-

width satisfies nh2 → ∞, nhq̂ → ∞,
∫
K(u)du = 1.

(C4) There exists an estimator α̂ such that under the null hypothesis,√
n(α̂ − α) = Op(1), where α = (β, θ) and under the local alterna-

tive sequences,
√
n(α̂ − α̃) = Op(1), where α and α̃ are both interior

points of Θ, a compact and convex set.

(C5) Denote α = (β, θ)⊤ and there exists a positive continuous function

G(x) such that ∀α1, α2, |g(x, α1)− g(x, α2)| ≤ G(x)|α1 − α2|.

(C6) The matrix E{∇m(B⊤X)∇m(B⊤X)⊤} is positive definite where∇m(·) =
m′(·) denotes the gradient of the function m(·).
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(C7) Mn(s) has the following expansion:

Mn(s) = M(s) + En{ψ(X,Y, s)} +Rn(s),

whereEn(·) denotes the average over all sample points, E{ψ(X,Y, s)} =

0 and E{ψ2(X,Y, s)} <∞.

(C8) sups ‖ Rn(s) ‖F= op(n
−1/2), where ‖ · ‖F denotes the Frobenius norm

of a matrix.

Remark 5. The conditions (C1) and (C5) are necessary for the robustness

of Hampel influence function. Conditions (C2) − (C4) are needed for en-

suring the asymptotic normality of our test statistic and the consistency of

the parameter estimators, where condition (C3) is the common requisite for

the kernel density estimation problem. Condition (C6) is assumed for OPG

and (C7)− (C8) are for DEE.

The following lemmas are used to prove the theorems in Section 3. We

first give the proof of Lemma 1 in Section 2.

Proof of Lemma 1. Under the null hypothesis H0 and fixed alternative

hypothesis Hn, the consistency for OPG-based estimate q̂ → q as n → ∞
has been proved in Lemma 1 of Niu et al. (2015b). In the following, we only

give the proof of DEE-based estimate and the same conditions in Theorem 4

of Zhu et al. (2010) are adopted.

Based on Theorem 2 in Zhu et al. (2010), under some conditions designed

by them, it can be shown that Mn,n −M = Op(n
−1/2). Further, the root-

n consistency of the eigenvalues of Mn,n is retained, that is, λ̂i − λi =

Op(n
−1/2). Note that when l ≤ q, λl > 0 and for l > q, we have λl = 0.

c = 1/
√
nh in our paper is recommended, thus, when nh → ∞, h → 0, we

have 1/
√
n = o(c) and c = o(1). For 1 ≤ l < q,

λ̂q+1 + c

λ̂q + c
− λ̂l+1 + c

λ̂l + c
=

λq+1 + c+Op(
1√
n
)

λq + c+Op(
1√
n
)

−
λl+1 + c+Op(

1√
n
)

λl + c+Op(
1√
n
)

=
c+Op(

1√
n
)

λq + c+Op(
1√
n
)
−
λl+1 + c+Op(

1√
n
)

λl + c+Op(
1√
n
)

⇒ −λl+1

λl
< 0.
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When l > q,

λ̂q+1 + c

λ̂q + c
− λ̂l+1 + c

λ̂l + c
=

λq+1 + c+Op(
1√
n
)

λq + c+Op(
1√
n
)

−
λl+1 + c+Op(

1√
n
)

λl + c+Op(
1√
n
)

=
c+Op(

1√
n
)

λq + c+Op(
1√
n
)
−
c+Op(

1√
n
)

c+Op(
1√
n
)
⇒ −1 < 0.

Therefore, we can conclude that under the null hypothesis H0 and under

the fixed alternative hypothesis (1.2), q̂ → q as n → ∞, which completes

the proof. �

The proof of Lemma 2 in Section 3 is given as follows.

Proof of Lemma 2. Under the local alternative hypothesis (3.2) with Cn =

n−1/2h−1/4, the proof of OPG-based q̂ → 1 as n → ∞ has been given in

Lemma 1 of Niu et al (2015b). We only state the proof for DEE-based

estimate.

From the proof of Theorem 2 in Guo et al (2015), it is shown that under

the local alternative hypothesis, Mn,n −M = Op(Cn). Further, we can get

λ̂i − λi = Op(Cn).

Thus, Note that λ1 > 0 and for any l > 1, we have λl = 0. Consequently,

under the condition that Cn = o(c) and c = o(1),

λ̂2 + c

λ̂1 + c
− λ̂l+1 + c

λ̂l + c
=

λ2 + c+Op(Cn)

λ1 + c+Op(Cn)
− λl+1 + c+Op(Cn)

λl + c+Op(Cn)

=
c+Op(Cn)

λ1 + c+Op(Cn)
− c+Op(Cn)

c+Op(Cn)
⇒ −1 < 0.

Thus under the local alternative (3.2), Lemma 1 holds. The proof of Lemma 2

is finished. �

Lemma 3. Given the conditions (C1)-(C8) in the Appendix, we have

nh1/2(Vn − V ⋆
n )

p→ 0,

where
p→ represents convergence in probability and

V ⋆
n =

1

n(n− 1)

n∑

i=1

n∑

j 6=i

Kh{B̂(q̂)⊤(xi − xj)}[H(ei)−
1

2
][H(ej)−

1

2
], (A.1)
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here, Kh(·) = K(·/h)/hq̂ .

Proof of Lemma 3. We first decompose Vn − V ⋆
n as

Vn − V ⋆
n =

1

n3(n− 1)

n∑

i=1

n∑

j 6=i

n∑

l=1

n∑

k=1

Kh{B̂(q̂)⊤(xi − xj)}

×[I(êl ≤ êi)− I(el ≤ ei)][I(êk ≤ êj)− I(ek ≤ ej)]

+
2

n3(n− 1)

n∑

i=1

n∑

j 6=i

n∑

l=1

n∑

k=1

Kh{B̂(q̂)⊤(xi − xj)}

×[I(êl ≤ êi)− I(el ≤ ei)][I(ek ≤ ej)−
n+ 1

2n
]

+
1

n3(n− 1)

n∑

i=1

n∑

j 6=i

n∑

l=1

n∑

k=1

Kh{B̂(q̂)⊤(xi − xj)}

×
{
[I(el ≤ ei)−

n+ 1

2n
][I(ek ≤ ej)−

n+ 1

2n
]

−[H(ei)−
1

2
][H(ej)−

1

2
]
}

=: A1 +A2 +A3. (A.2)

Since ei = yi − g(β⊤xi, θ), we further have êi − ei = g(β⊤xi, θ) −
g(β̂⊤xi, θ̂). Let α = (β, θ)⊤ and L(α̂) as

L(α̂) = max
1≤i≤n

n∑

l=1,l 6=i

|I(êl ≤ êi)− I(el ≤ ei)|.

Denote Ω = {α⋆ :
√
n|α⋆ − α0| ≤ δ} for δ = O(1) and t(xi, xl, α, α

⋆) =

[g(β⊤xi, θ)− g(β⋆⊤xi, θ⋆)]− [g(β⊤xl, θ)− g(β⋆⊤xl, θ⋆)], then

sup
α⋆∈Ω

|L(α⋆)| = sup
α⋆∈Ω

n∑

l=1,l 6=i

|I(el − ei ≤ t(xi, xl, α, α
⋆))− I(el ≤ ei)|

≤ sup
α⋆∈Ω

n∑

l=1,l 6=i

I(|el − ei| ≤ |t(xi, xl, α, α⋆)|)

≤
n∑

l=1,l 6=i

I(|el − ei| ≤ Cn−1/2), (A.3)

where C is a generic positive constant. From the above derivation, we can

obtain that, conditional on ei, I(|el − ei| ≤ Cn−1/2), l 6= i are iid Bernoulli
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random variables with O(n−1/2) order success probability. Using Bern-

stein’s inequality leads to P{∑n
l=1,l 6=i I(|el − ei| ≤ Cn−1/2) ≥ Cn1/2|ei} ≤

exp(−Cn1/2). Unconditionally, we still have that

P
{ n∑

l=1,l 6=i

I(|el − ei| ≤ Cn−1/2) ≥ Cn1/2
}
≤ exp(−Cn1/2).

Further,

P
{

max
1≤i≤n

n∑

l=1,l 6=i

I(|el − ei| ≤ Cn−1/2) ≥ Cn1/2
}
≤ n exp(−Cn1/2).

When n → ∞, for a positive constant C, n exp(−Cn1/2) → 0. Therefore,

P{max1≤i≤n
∑n

l=1,l 6=i I(|el − ei| ≤ Cn−1/2) < Cn1/2} = 1. Then,

max
1≤i≤n

n∑

l=1,l 6=i

I(|el − ei| ≤ Cn−1/2) < Cn1/2 = Op(n
1/2). (A.4)

Combining (A.3) and (A.4), we can gain the following useful probability

bound

L(α̂) = max
1≤i≤n

n∑

l=1,l 6=i

|I(êl ≤ êi)− I(el ≤ ei)| = Op(n
1/2).

An application of the formula (A.4) and for the term A1 in (A.2), we

have

nh1/2|A1| ≤ h1/2

n2(n− 1)hq̂
max
1≤i≤n

n∑

l=1,l 6=i

|I(êl ≤ êi)− I(el ≤ ei)|

× max
1≤j≤n

n∑

k=1,k 6=j

|I(êk ≤ êj)− I(ek ≤ ej)|

×
n∑

i=1

n∑

j 6=i

K{B̂(q̂)⊤(xi − xj)/h}

=
Ch1/2

n(n− 1)hq̂

n∑

i=1

n∑

j 6=i

K{B̂(q̂)⊤(xi − xj)/h}

=
Ch1/2

n(n− 1)hq̂

n∑

i=1

n∑

j 6=i

K{B⊤(xi − xj)/h}
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+
Ch1/2

n(n− 1)hq̂

n∑

i=1

n∑

j 6=i

[
K{B̂(q̂)⊤(xi − xj)/h} − K{B⊤(xi − xj)/h}

]

=: C1(A11 +A12), (A.5)

where C1 is a positive constant. Let Z = B⊤X. As to the term A11, the

term
1

n(n− 1)hq̂

n∑

i=1

n∑

j 6=i

K{B⊤(xi − xj)/h}

is an U-statistic with the kernel as Hn(z1, z2) = h−q̂K{(z1 − z2)/h}. In

order to apply the theory for non-degenerate U-statistic (Serfling 1980),

E[Hn(z1, z2)
2] = o(n) is needed. It can be verified that

E[Hn(z1, z2)
2] = E{E[Hn(z1, z2)

2|z1, z2]}

=

∫
1

h2q̂
K2(

z1 − z2
h

)p(z1)p(z2)dz1dz2

=

∫
1

h2q̂
K2(u)p(z1)p(z1 − hu)(−hq̂)dz1du

= − 1

hq̂

∫
K2(u)p2(z1)dz1du+ o(1)

= O(
1

hq̂
), (A.6)

where p(·) is denoted as the probability density function. With the condition

nhq̂ → ∞, we have E[Hn(z1, z2)
2] = O(1/hq̂) = o(n). The condition of

lemma 3.1 of Zheng (1996) is satisfied and we have A11 = h1/2E[Hn(z1, z2)]+

op(1), where E[Hn(z1, z2)] = O(1). Therefore we can obtain that A11 =

Op(h
1/2) = op(1). Denote

A⋆
12 =

1

n(n− 1)

n∑

i=1

n∑

j 6=i

h1/2−q̂K′{B̃⊤(xi − xj)/h}(xi − xj)
⊤ × B̂(q̂)−B

h
,

where B̃ lies between B and B̂. Then for the term A12 in (A.5), we have

A12 = A⋆
12 + op(A

⋆
12).

Similar to A11, the following term

1

n(n− 1)

n∑

i=1

n∑

j 6=i

h−q̂K′{B̃⊤(xi − xj)/h}(xi − xj)
⊤
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can be regarded as an U-statistic. It can be similarly shown that the term

is the order of Op(h). As ‖B̂(q̂)−B‖2 = Op(1/
√
n) and under the condition

n→ ∞, h→ 0, we can obtain that A12 = op(1). Towards to (A.5), we have

nh1/2|A1| ≤ op(1).

Similarly, we can derive that nh1/2|Ai| = op(1) for i = 2, 3. Combining with

the formula (A.2), it can be concluded that

nh1/2(Vn − V ⋆
n )

p→ 0,

which completes the proof of Lemma 3. �

In the following, we give the proof for Theorem 1.

Proof of Theorem 1. From Lemma 3, we know that the limiting distributions

for nh1/2Vn and nh1/2V ⋆
n are the same. Thus, we just need to derive the

asymptotic property of nh1/2V ⋆
n . The term V ⋆

n in (A.1) can be decomposed

as

V ⋆
n =

1

n(n− 1)

n∑

i=1

n∑

j 6=i

Kh{B⊤(xi − xj)}[H(ei)−
1

2
][H(ej)−

1

2
]

+
1

n(n− 1)

n∑

i=1

n∑

j 6=i

[H(ei)−
1

2
][H(ej)−

1

2
]
[
Kh{B̂(q̂)⊤(xi − xj)} − Kh{B⊤(xi − xj)}

]

=: V ⋆
n1 + V ⋆

n2,

where Kh(·) = K(·/h)/hq̂ .
For the term V ⋆

n1, it is a U-statistic, since we always assume that the di-

mension of B⊤X is fixed in our paper. Under the null hypothesis, H(ei), i =

1, . . . , n follows a uniform distribution on (0, 1), q = 1 and q̂ → 1. An ap-

plication of Theorem 1 in Zheng (1996), it is not difficult to derive the

asymptotic normality: nh1/2V ⋆
n1 ⇒ N(0, V ar), where

V ar =
1

72

∫
K2(u)du

∫
p2(z)dz

with Z = B⊤X.

Denote

Ṽ ⋆
n2 =

1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K′

{ B̃⊤(xi − xj)

h

}
(xi−xj)⊤[H(ei)−

1

2
][H(ej)−

1

2
]·B̂(q̂)−B

h
,
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where B̃ lies between B̂ and B. An application of Taylor expansion yields

V ⋆
n2 = Ṽ ⋆

n2 + op(Ṽ
⋆
n2).

Because the kernel K(·) is spherical symmetric, the following term can be

considered as an U-statistic:

1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K′{B̃⊤(xi − xj)/h}(xi − xj)

⊤[H(ei)−
1

2
][H(ej)−

1

2
].

Further note that

E
{ 1

hq̂
K′{B̃⊤(xi − xj)/h}(xi − xj)

⊤[H(ei)−
1

2
][H(ej)−

1

2
]|xi, yi

}

= E

[
E
{ 1

hq̂
K′{B̃⊤(xi − xj)/h}(xi − xj)

⊤[H(ei)−
1

2
][H(ej)−

1

2
]|xi, yi, xj

}
|xi, yi

]

= E

{
1

hq̂
K′{B̃⊤(xi − xj)/h}(xi − xj)

⊤[H(ei)−
1

2
] ·E[H(ej)−

1

2
|xj]|xi, yi

}
= 0.

Thus the above U-statistic is degenerate. Similar as the derivation of V ⋆
n1,

together with ‖B̂(q̂)−B‖2 = Op(1/
√
n) and 1/nh2 → 0, we have nh1/2V ⋆

n2 =

op(1). Therefore, under the null hypothesis H0, we can conclude that

nh1/2V ⋆
n ⇒ N(0, V ar). Based on Lemma 3, we have nh1/2Vn ⇒ N(0, V ar).

An estimate of V ar can be defined as

V̂ ar =
1

72n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K2

{B̂(q̂)⊤(xi − xj)

h

}
.

Since the proof is rather straightforward, we then only give a brief descrip-

tion. Using a similar argument as that for Lemma 3, we can get

V̂ ar =
1

72n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K2

{B⊤(xi − xj)

h

}
+ op(1).

The consistency can be derived through U-statistic theory. The proof for

Theorem 1 is finished. �

The proof for Theorem 2 is given as follows.

Proof of Theorem 2. Under the global alternative Hn in (1.2), we have

ei = m(B⊤xi)+εi−g(β̃⊤xi, θ̃). Together with Lemma 3, it can be obtained
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that Vn = V ⋆
n + op(1), where V

⋆
n can be rewritten as

V ⋆
n =

1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K
{ B̂(q̂)⊤(xi − xj)

h

}[
H(m(B⊤xi) + εi − g(β̃⊤xi, θ̃))−

1

2

]

[
H(m(B⊤xj) + εj − g(β̃⊤xj, θ̃))−

1

2

]

=
1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K
{B⊤(xi − xj)

h

}[
H(m(B⊤xi) + εi − g(β̃⊤xi, θ̃))−

1

2

]

[
H(m(B⊤xj) + εj − g(β̃⊤xj, θ̃))−

1

2

]
+

1

n(n− 1)

n∑

i=1

n∑

j 6=i

[
H(m(B⊤xi) + εi

−g(β̃⊤xi, θ̃))−
1

2

][
H(m(B⊤xj) + εj − g(β̃⊤xj, θ̃))−

1

2

][
Kh{B̂(q̂)⊤(xi − xj)}

−Kh{B⊤(xi − xj)}
]

= V ⋆
n3 + V ⋆

n4,

For the term V ⋆
n3, it is a standard U-statistic with

Hn(xi, xj) =
1

hq̂
K
{B⊤(xi − xj)

h

}
l(xi)l(xj),

where l(x·) = [H{m(B⊤x·) + ε· − g(β̃⊤x·, θ̃)} − 1/2]. Similar to the proof

of (A.6), when nhq̂ → ∞, we can derive that E[H2(xi, xj)] = o(n) and the

condition of Lemma 3.1 in Zheng (1996) can be shown to be satisfied. We

further cacluate

E[Hn(xi, xj)] = E{E[Hn(xi, xj)|xi, xj]}

=
1

hq̂

∫
K
{zi − zj

h

}
l̃(zi)l̃(zj)p(zi)p(zj)dzidzj

=
1

hq̂

∫
K(u)l̃(zj + hu)l̃(zj)p(zj + hu)p(zj)× hq̂dudzj

=

∫
l̃2(zj)p

2(zj)dzj + o(1)

= E[l2(X)2p(X)] + o(1).

where Z = B⊤X. Therefore, V ⋆
n3 = E[l2(X)2p(X)] + op(1) =: C2, here, C2

is a positive constant.

34



As to the term V ⋆
n4, similarly as the term V ⋆

n2, we have

V ⋆
n4 = Ṽ ⋆

n4 + op(Ṽ
⋆
n4),

where,

Ṽ ⋆
n4 =

1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K′

{ B̃⊤(xi − xj)

h

}
(xi−xj)

⊤l(xi)l(xj) ·
B̂(q̂)−B

h
,

here, B̃ lies between B and B̂. Similarly as the derivation of V ⋆
n3, together

with ‖B̂(q̂) − B‖2 = Op(1/
√
n), when nhq̂ → ∞, we have V ⋆

n4 = Op(h) ·
Op(1/

√
n) · (1/h) = op(1).

Based on the above analysis, we can derive that Vn = C2 + op(1) and

nh1/2Vn ⇒ ∞ in probability, which completes the proof of the global alter-

native situation.

We now consider the situation of local alternative H1n in (3.2). Based on

Lemma 3, we have Vn = V ⋆
n +op(1). In this situation, ei = Cnm(B⊤xi)+εi.

Therefore, V ⋆
n can be decomposed as

V ⋆
n =

1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K
{ B̂(q̂)⊤(xi − xj)

h

}[
H(Cnm(B⊤xi) + εi)−

1

2

]

[
H(Cnm(B⊤xj) + εj)−

1

2

]

=
1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K
{B⊤(xi − xj)

h

}[
H(Cnm(B⊤xi) + εi)−

1

2

]

[
H(Cnm(B⊤xj) + εj)−

1

2

]
+

1

n(n− 1)

n∑

i=1

n∑

j 6=i

[
H(Cnm(B⊤xi) + εi)

−1

2

][
H(Cnm(B⊤xj) + εj)−

1

2

][
Kh{B̂(q̂)⊤(xi − xj)} − Kh{B⊤(xi − xj)}

]

= V ⋆
n5 + V ⋆

n6, (A.7)

For the term V ⋆
n5, taking a Taylor expansion of H(Cnm(B⊤xi) + εi)

around Cn = 0, we have

H(Cnm(B⊤xi) + εi) = H(εi) +Cnh(εi)m(B⊤xi) + op(C
2
n).
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Then, the term V ⋆
n5 can be decomposed as

V ⋆
n5 =

1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K
{B⊤(xi − xj)

h

}[
H(εi)−

1

2

][
H(εj)−

1

2

]

+2Cn





1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K
{B⊤(xi − xj)

h

}[
H(εi)−

1

2

]
h(εj)m(B⊤xj)





+C2
n





1

n(n− 1)

n∑

i=1

n∑

j 6=i

1

hq̂
K
{B⊤(xi − xj)

h

}
h(εi)m(B⊤xi)h(εj)m(B⊤xj)



 + op(C

2
n)

= D1 + 2CnD2 + C2
nD3 + op(C

2
n).

Under the local alternative hypothesis, q̂ → 1 can be obtained. For the term

D1, similarly to the proof of the term V ⋆
n1 in Theorem 1, we can show that

nh1/2D1 ⇒ N(0, V ar), where

V ar =
1

72

∫
K2(u)du

∫
p2(z)dz

with Z = B⊤X. As to the term D2, similarly as the proof of Lemma 3.3b

in Zheng (1996), it can be obtained that D2 = Op(1/
√
n). When Cn =

n−1/2h−1/4, we have nh1/2CnD2 = Op(h
1/2). Turn to the term D3, similarly

to the proof of V ⋆
n3 in our Theorem 2, we haveD3 = E[h2(ε)m2(B⊤X)p(X)]+

op(1). Further, nh
1/2C2

nD3 = E[h2(ε)m2(B⊤X)p(X)] + op(1). Therefore,

nh1/2V ⋆
n5 ⇒ N(µ, V ar),

where µ = E[h2(ε)m2(B⊤X)p(X)].

As to the term V ⋆
n6, just similarly as the proof of the term V ⋆

n2 in our

Theorem 1, it can be gotten that nh1/2V ⋆
n6 = op(1).

Combining Lemma 3 and the formula (A.7), under the local alternative,

we have nh1/2Vn ⇒ N(µ, V ar).

The proof of Theorem 2 is finished. �

The verification for the formula (4.2) is as follows.

Verification of (4.2). Let ft and u be the probability density functions of

Ft and U . Recall Ft = F + tU , then dFt = dF + tdU and ft = f + tu, we

further have

L(t) =

∫ ∫ [
H(y − g(β⊤x(Ft), θ(Ft)))−

1

2

]
×

(∫ [
H(y1 − g(β⊤x(Ft), θ(Ft)))−

1

2

]
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×ft(z, y1)dy1
)
dFt(z, y),

=

∫ ∫ [
H(y − g(β⊤x(Ft), θ(Ft)))−

1

2

]
×

(∫ [
H(y1 − g(β⊤x(Ft), θ(Ft)))−

1

2

]

×f(z, y1)dy1
)
dF (z, y) + t

∫ ∫ [
H(y − g(β⊤X(Ft), θ(Ft))) −

1

2

]

×
(∫ [

H(y1 − g(β⊤x(Ft), θ(Ft))) −
1

2

]
× u(z, y1)dy1

)
dF (z, y)

+t

∫ ∫ [
H(y − g(β⊤x(Ft), θ(Ft)))−

1

2

]
×

( ∫ [
H(y1 − g(β⊤x(Ft), θ(Ft))) −

1

2

]

×f(z, y1)dy1
)
dU(z, y) + t2

∫ ∫ [
H(y − g(β⊤x(Ft), θ(Ft)))−

1

2

]

×
(∫ [

H(y1 − g(β⊤x(Ft), θ(Ft))) −
1

2

]
× u(z, y1)dy1

)
dU(z, y)

=: L1(t) + L2(t) + L3(t) + L4(t).

For the first term L1(t), we have

dL1(t)

dt
=

∫ ∫
d

dt
H(y − g(β⊤x(Ft), θ(Ft)))×

(∫ [
H(y1 − g(β⊤x(Ft), θ(Ft)))−

1

2

]

×f(z, y1)dy1
)
dF (z, y) +

∫ ∫ [
H(y − g(β⊤x(Ft), θ(Ft))) −

1

2

]

×
(∫ ( d

dt
H(y1 − g(β⊤x(Ft), θ(Ft)))× f(z, y1)dy1

)
dF (z, y).

Since
∫
[H(y − g(β⊤x(Ft), θ(Ft)))− 1/2]dF (y|z) = 0, we have that

dL1(t)

dt
|t=0 = 0.

Further,

d2L1(t)

dt2
|t=0 = 2

∫ ∫
Ḣ(y − g(β⊤x(F ), θ(F ))) ×

(∫ (
Ḣ(y1 − g(β⊤x(F ), θ(F )))

×f(z, y1)dy1
)
dF (z, y).

Similarly, it is not difficult to obtain that dLi(t)
dt |t=0 = 0, i = 2, 3, 4 and

1
2
d2L2(t)

dt2 |t=0 , i = 2, 3, 4 are equal to other three terms in the formula (4.2),

which completes the proof. �
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Table 1: Empirical sizes and powers of S̃OPG
n and S̃DEE

n for H10 v.s. H11 and H12

at the significance level α = 0.05 with p = 8.

ε a
n = 60 n = 100 n = 200

S̃OPG
n S̃DEE

n S̃OPG
n S̃DEE

n S̃OPG
n S̃DEE

n

H11 ε ∼ lnN(0, 0.252) 0 0.048 0.058 0.049 0.044 0.050 0.046

0.2 0.095 0.127 0.129 0.133 0.208 0.163

0.4 0.161 0.169 0.284 0.177 0.629 0.417

0.6 0.306 0.170 0.562 0.342 0.925 0.856

0.8 0.379 0.255 0.725 0.553 0.976 0.972

1.0 0.508 0.317 0.856 0.717 0.989 0.998

ε ∼ N(0, 1) 0 0.048 0.057 0.051 0.049 0.052 0.047

0.2 0.081 0.107 0.118 0.144 0.196 0.149

0.4 0.164 0.138 0.267 0.197 0.614 0.428

0.6 0.250 0.174 0.537 0.347 0.894 0.837

0.8 0.420 0.244 0.725 0.550 0.983 0.960

1.0 0.479 0.340 0.850 0.702 0.991 0.994

H12 ε ∼ lnN(0, 0.252) 0 0.045 0.061 0.045 0.052 0.052 0.046

0.2 0.064 0.103 0.092 0.142 0.318 0.372

0.4 0.156 0.171 0.351 0.407 0.835 0.852

0.6 0.296 0.297 0.606 0.624 0.976 0.979

0.8 0.378 0.406 0.764 0.753 0.993 0.995

1.0 0.498 0.498 0.860 0.868 0.998 0.999

ε ∼ N(0, 1) 0 0.051 0.059 0.056 0.055 0.050 0.046

0.2 0.068 0.076 0.104 0.142 0.277 0.340

0.4 0.136 0.169 0.350 0351 0.797 0.829

0.6 0.273 0.251 0.586 0.583 0.978 0.945

0.8 0.377 0.382 0.759 0.739 0.997 0.994

1.0 0.482 0.473 0.870 0.859 0.999 1.000

43



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a). Powers for S̃OP G

n and S̃DEE

n under H13 with n=100

a

p
o
w

e
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b). Powers for S̃OP G

n and S̃DEE

n under H13 with n=200

a

p
o
w

e
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
c). Powers for S̃OP G

n and S̃DEE

n under H14 with n=100

a

p
o
w

e
r

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
d). Powers for S̃OP G

n and S̃DEE

n under H14 with n=200

a

p
o
w

e
r

Figure 1: Empirical sizes and powers of S̃OPG
n and S̃DEE

n for H10 v.s. H13, H14 at

the significance level α = 0.05 with p = 8, X ∼ N(0, Ip) and ε ∼ lnN(0, 0.252). In

four plots, the solid line and the dash line are for S̃OPG
n and S̃DEE

n , respectively.
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Table 2: Empirical sizes and powers of S̃OPG
n , S̃DEE

n and TWQ
n for H20 v.s. H21

and H22 at the significance level α = 0.05.

p a
n = 100 n = 200

S̃OPG
n S̃DEE

n TWQ
n S̃OPG

n S̃DEE
n TWQ

n

H21 p = 4 0 0.045 0.055 0.048 0.051 0.057 0.045

0.2 0.145 0.112 0.055 0.389 0.164 0.056

0.4 0.479 0.273 0.058 0.871 0.648 0.061

0.6 0.708 0.501 0.062 0.976 0.874 0.067

0.8 0.833 0.649 0.067 0.990 0.956 0.071

1.0 0.893 0.733 0.070 0.997 0.982 0.075

p = 2 0 0.047 0.057 0.046 0.053 0.056 0.051

0.2 0.165 0.115 0.071 0.405 0.226 0.129

0.4 0.536 0.352 0.121 0.925 0.681 0.345

0.6 0.801 0.527 0.192 0.986 0.909 0.559

0.8 0.882 0.706 0.300 0.995 0.967 0.698

1.0 0.940 0.802 0.344 0.992 0.989 0.798

H22 p = 4 0 0.045 0.049 0.053 0.047 0.053 0.052

0.2 0.105 0.073 0.055 0.243 0.144 0.056

0.4 0.404 0.204 0.058 0.746 0.496 0.060

0.6 0.592 0.379 0.060 0.932 0.759 0.065

0.8 0.771 0.554 0.063 0.981 0.912 0.070

1.0 0.842 0.636 0.067 0.996 0.956 0.073

p = 2 0 0.051 0.052 0.059 0.041 0.055 0.049

0.2 0.123 0.097 0.064 0.275 0.160 0.101

0.4 0.429 0.230 0.108 0.801 0.531 0.252

0.6 0.684 0.405 0.170 0.970 0.800 0.440

0.8 0.819 0.597 0.214 0.994 0.927 0.605

1.0 0.897 0.706 0.287 0.996 0.964 0.717
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Figure 2: Empirical sizes and powers of S̃OPG
n , S̃DEE

n and TWQ
n for H20 v.s. H23

at the significance level α = 0.05 with X ∼ N(0, Ip) and ε ∼ N(0, 1). In four

plots, the solid line, the dash line and the dash-dotted line are for S̃OPG
n , S̃DEE

n

and TWQ
n , respectively.
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Figure 3: Empirical sizes of S̃OPG
n , S̃DEE

n and TGWZ
n for H30 at the significance

level α = 0.05 with X ∼ N(0, Ip), ε ∼ N(0, 1) and different values of ρ. In four

plots, the solid line, the dash line and the dash-dotted line are for S̃OPG
n , S̃DEE

n

and TGWZ
n , respectively.
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Figure 4: Simulated powers of S̃OPG
n , S̃DEE

n and TGWZ
n for H30 v.s. H31 at the

significance level α = 0.05 with X ∼ N(0, Ip) and ε ∼ N(0, 1). In four plots, the

solid line, the dash line and the dash-dotted line are for S̃OPG
n , S̃DEE

n and TGWZ
n ,

respectively.

48



Table 3: p-values of S̃OPG
n and S̃DEE

n for the real data analysis.

c1
The first subset

c2
The second subset

S̃OPG
n S̃DEE

n S̃OPG
n S̃DEE

n

3 0.273 0.934 12 0.802 0.528

4 0.400 0.527 15 0.587 0.755

5 0.686 0.235 18 0.374 0.909

6 0.919 0.119 21 0.207 0.532
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