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Summary. Local smoothing testing based on multivariate nonparametric regression estimation is one of

the main model checking methodologies in the literature. However, the relevant tests suffer from typical

curse of dimensionality, resulting in slow convergence rates to their limits under the null hypothesis and

less deviation from the null hypothesis under alternative hypotheses. This problem prevents tests from

maintaining the significance level well and makes tests less sensitive to alternative hypotheses. In this

paper, a model-adaptation concept in lack-of-fit testing is introduced and a dimension-reduction model-

adaptive test procedure is proposed for parametric single-index models. The test behaves like a local

smoothing test, as if the model was univariate. It is consistent against any global alternative hypothesis

and can detect local alternative hypotheses distinct from the null hypothesis at a fast rate that existing

local smoothing tests can achieve only when the model is univariate. Simulations are conducted to

examine the performance of our methodology. An analysis of real data is shown for illustration. The

method can be readily extended to global smoothing methodology and other testing problems.

Keywords: Dimension reduction; parametric single index models; model-adaptation; model check-

ing.

1. Introduction

Consider the following parametric single-index regression model:

Y = g(βT0 X, θ0) + ϵ, (1)

†Address for correspondence: Lixing Zhu, lzhu@hkbu.edu.hk.
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where Y is a scalar response, X is a predictor vector in p dimensions, g(·) is a known square integrable

continuous function, β0 is a p-dimensional unknown index vector, θ0 is a d-vector of parameters and

E(ϵ|X) = 0. Throughout, the ‘T’ superscript denotes the transpose operator.

As is well known, statistical analysis based on this model can be easily and accurately performed

under the assumption that this parametric structure is correct. Therefore, in practice, parametric

models are frequently used. Compared with nonparametric regression models that do not specify the

function form of E(Y |X), the parametric single index model can lead to more accurate estimates,

especially when the dimension p of X is high, provided that the model is correctly built. However, if

the parametric single index model is not correctly fitted for the data, we must apply some other more

flexible regression models, otherwise, further statistical analysis would give the wrong conclusions.

A model check must therefore be performed. A practical example is production theory, in which

the Cobb-Douglas function is commonly used to describe the linear relationship between the log-

inputs, such as labor and capital, and the log-output. However, this function may not describe

the relationship well. To avoid model mis-specification, Kumbhakar et al. (2007) developed semi-

parametric regression models (see also Simar et al. 2014). Financial markets are another example,

in which linear error correction model is used to describe the dynamics of spot and futures prices.

This model implicitly assumes that pricing errors are reduced at a speed that is independent of the

magnitude of the price deviation between spot and futures. However, this may be not the case.

To relax this assumption, Gaul and Theissen (2015) developed a partial linear regression model and

proposed a test for the adequacy of the linear error correction model. Zhang and Wu (2011), Lin et al.

(2014) and Lahaye and Shaw (2014) worked on tests of parametric functional form in nonstationary

time series, fixed effects panel data models and heterogenous autoregressive models, respectively. In

summary, when describing the regression relationship between responses and predictors, we must

make a choice between the simple but fragile parametric model and the flexible but complicated

nonparametric model.

To make reliable statistical inferences for model (1), we should carry out suitable and efficient

model checking. The literature contains a number of options for testing mode (1) against a general

alternative model:

Y = G(X) + η, (2)

where G(·) is an unknown smooth function and E(η|X) = 0. There are two general classes of meth-

ods, local and global smoothing methods. In local smoothing methods, Härdle and Mammen (1993)

considered the L2 distance between the null parametric regression and the alternative nonparametric

regression as the base of their test statistic construction. Zheng (1996) proposed a quadratic form

of the conditional moment test that was also independently developed by Fan and Li (1996). Dette

(1999) developed a test based on the difference between variance estimates under the null and alter-

native models. See also Fan et al. (2001), Koul and Ni (2004), Zhang and Dette (2004) and Van
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Keilegom et al. (2008). In global smoothing approaches based on empirical processes, Stute (1997)

introduced nonparametric principal component decomposition based on a residual marked empirical

process. Inspired by the Khmaladze transformation used in goodness-of-fitting for distributions, Stute

et al. (1998b) first developed the innovation martingale approach to obtain distribution-free tests. S-

tute and Zhu (2002) was a relevant reference for parametric single-index models. Khmaladze and Koul

(2004) studied the goodness-of-fit problem for errors in nonparametric regression. González-Manteiga

and Crujeiras (2013) provided a comprehensive review of the research in this area.

The empirical studies in the literature have shown that the existing local smoothing methods

are sensitive to high-frequency regression models and thus can have high power in detecting these

alternative models. However, a very obvious and serious shortcoming is that these methods suffer

severely from dimensionality due to the inevitable use of multivariate nonparametric function esti-

mation. Under the corresponding null hypotheses, existing local smoothing test statistics converge to

their limits at the rate O(n−1/2h−p/4) (or O(n−1h−p/2) if the tests are in quadratic forms), which is

very slow when p is large. Therefore, the significance level very often cannot be maintained when used

with a moderate sample size. Härdle and Mammen (1993) provided a good summary of this method.

This problem has been acknowledged in the literature and there are a number of local smoothing

tests that apply re-sampling or Monte Carlo approximation to help determine critical values (or p

values), for example as described by Härdle and Mammen (1993), Delgado and González-Manteiga

(2001), Härdle et al. (2004), Dette et al. (2007) and Neumeyer and Van Keilegom (2010). These

tests can also only detect alternative hypotheses distinct from the null hypothesis at the rate of order

O(n−1/2h−p/4) (see, e.g., Zheng 1996). Asymptotically, existing local smoothing tests are therefore

less powerful for detecting alternative models. In contrast, although their rate is of order 1/
√
n, most

of the existing global smoothing methods depend on high-dimensional stochastic processes (see, e.g.,

Stute et al. 1998a). Their power performance often drops significantly as p increases due to the data

sparseness in high-dimensional space.

It is thus of critical importance to investigate how to make local smoothing methods get rid of

the curse of dimensionality when model (1) is the hypothetical model with a dimension-reduction

structure. To motivate our method, we very briefly review the basic idea of local smoothing ap-

proaches. Under the null hypothesis, E{Y − g(βT0 X, θ0)|X} = E(ϵ|X) = 0. Under the alternative

model (2), E{Y − g(βT0 X, θ0)|X} ≠ 0. Thus, the empirical version with root-n consistent estimates

of β0 and θ0 can be used as a base to construct test statistics. Note that under the null hypoth-

esis, E(Y |X) − g(βT0 X, θ0) = 0. The distance between a nonparametric estimate of E(Y |X) and

a parametric estimate of g(βT0 X, θ0) is then a base for test statistic construction (see, e.g., Härdle

and Mammen 1993). However, these methods inevitably involve high-dimensional nonparametric

estimation of E(Y |X) or E(ϵ|X). This is the main cause of inefficiency in hypothesis testing with

aforementioned slow rate of order O(n−1/2h−p/4).
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To address this problem, we note that under the null hypothesis, E{Y − g(βT0 X, θ0)|X} =

E(ϵ|βT0 X) = 0. Thus, a naive idea is to construct a test statistic based on E{Y − g(βT0 X, θ0)|βT0 X}.

Intuitively, this can sufficiently explore the information provided in the hypothetical model. From the

technical development in the present paper, it is easy to see that a relevant test can have a rate of order

O(n−1/2h−1/4) as if the dimension of X was 1. Stute and Zhu (2002) conducted related work, using a

global smoothing method. However, this idea leads to another very obvious shortcoming; specifically,

as the test statistic construction is based completely on the hypothetical model, any test will be

directional rather than omnibus. The general alternative model (2) cannot be handled. For instance,

when the alternative model is E(Y |X) = g(βT0 X, θ0) + g̃(βT1 X), where β1 is orthogonal to β0 and X

follows the standard multivariate normal distribution N(0, Ip). Then βT0 X is independent of βT1 X.

When E{g̃(βT1 X)} = 0, it is clear that under this alternative model, E{Y −g(βT0 X, θ0)|βT0 X} = 0 still

holds. Thus, a test statistic based on E{Y − g(βT0 X, θ0)|βT0 X} cannot detect the above alternative.

Xia (2009) proposed a test statistic comparing the empirical cross-validation counterparts of the min-

imum of E2{ϵ− E(ϵ|αTX)} over all of the unit vectors α with the centered residual sum of squares,

where ϵ is the error term of the model. However, this procedure cannot provide the corresponding

limiting distributions under the null and alternative hypotheses and thus cannot test significance at

a nominal level. As was pointed out by Xia, under the null hypothesis, the rejection frequency tends

to 0 as n → ∞. In other words, this method cannot control the significance level asymptotically.

Cross validation also involves intensive computation. Xia also provided a single-indexing bootstrap

F test, but the consistency of this method has not been established. Thus, in certain sense it is hard

for users to recognize type I and type II errors.

The above discussions suggest that a good test should use the information under the null model (1)

to avoid the dimensionality problem, as if the dimension of X was 1, and adapt to the alternative

model (2) so that it can detect general alternative models. We use a sufficient dimension reduction

(SDR) technique (Cook 1998) to achieve this goal. Although SDR has been studied intensively over

the past two decades (see Subsections 2.2-2.5), this is the first time that it has been used as an efficient

tool in lack-of-fit testing. The theoretical and numerical results obtained in this paper suggest that

SDR has potential for the development of lack-of-fit testing for other problems. The basic idea is

as follows. Note that for any orthogonal p × p matrix B, G(X) = G(BBTX) := G̃(BTX). Thus,

E{G(X) − g(βT0 X, θ0)|X} ̸= 0 is equivalent to E{G̃(BTX) − g(βT0 X, θ0)|BTX} ̸= 0. It is also clear

that E(ϵ|X) = 0 is equivalent to E(ϵ|BTX) = 0. Based on this observation, we consider a more

parsimonious alternative model that is widely used in SDR:

Y = G(BTX) + η, (3)

where B is a p × q matrix with q orthogonal columns for an unknown number q with 1 ≤ q ≤ p, G

is an unknown smooth function, and E(η|X) = 0. When q = p, this model is identical to model (2).

When q = 1 and B = β0/∥β0∥2 is a column vector, model (3) reduces to a single-index model with the
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same index as that in the null model (1). Here ∥ · ∥2 denotes the L2 norm. Thus, it offers us a way to

construct a test that is automatically adaptive to the null and alternative models through consistently

determining q and estimating B (or BC for a q × q orthogonal matrix C) under both the null and

alternative models. A local smoothing test will be constructed using this idea in Section 2, giving two

nice and somewhat surprising features: the test sufficiently uses the dimension-reduction structure

under the null model and is an omnibus test for detecting general alternative models as existing local

smoothing tests try to do. More precisely, the test statistic under the null model converges to its

limit at the faster rate of order O(n−1/2h−1/4) (or O(n−1h−1/2) if the test is in a quadratic form), is

consistent against any global alternative model and can detect local alternative models distinct from

the null model at the rate of order O(n−1/2h−1/4). This is a significant improvement, particularly

when p is large, because the new test behaves like a local smoothing test, as if X was one-dimensional.

Thus, the test is expected to maintain the significance level well and have better power performance

than existing local smoothing tests.

The paper is organized as follows. As SDR plays a crucial role, we briefly review it in the next

section. In Section 2, a dimension-reduction model-adaptive (DRMA) test is constructed. The

asymptotic properties under the null and alternative models are investigated in Section 3. In Section 4,

the simulation results are reported and a data analysis example using real data is conducted for

illustration. The basic idea can be readily applied to other test procedures, the details of which we

leave to Section 5. The conditions are described in the Appendix. The proofs of the theoretical

results are given in the Supplementary Material. The data set can be obtained from the link at

http://archive.ics.uci.edu/ml/datasets/Auto+MPG and the computer codes for simulations can be

obtained from the link at http://www.math.hkbu.edu.hk/˜lzhu/publications.html.

2. DRMA test procedure

2.1. Basic test construction

We formulate the null hypothesis as follows:

H0 : ∃β0 ∈ Rp, θ0 ∈ Rd, such that, E(Y |X) = g(βT0 X, θ0).

The alternative hypothesis is for any β ∈ Rp, θ ∈ Rd and a p× q matrix B with 1 ≤ q ≤ p:

H1 : E(Y |X) = E(Y |BTX) ̸= g(βTX, θ). (4)

The null and alternative models can then be unified. Under the null hypothesis, q = 1. Then

B = β̃ = β0/||β0||2. Under the alternative hypothesis, q ≥ 1. In this subsection, let ϵ = Y −g(βT0 X, θ0)

denote the random error under the null hypothesis. Thus, under H0,

E(ϵ|X) = 0 =⇒ E(ϵ|βT0 X) = E(ϵ|BTX) = 0.
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Then,

E{ϵE(ϵ|BTX)W (BTX)} = E{E2(ϵ|BTX)W (BTX)} = 0, (5)

where W (BTX) is some positive weight function, discussed below.

Under H1, we have E(ϵ|BTX) = E(Y |BTX)− g(βT0 X, θ0) ̸= 0. Thus

E{ϵE(ϵ|BTX)W (BTX)} = E{E2(ϵ|BTX)W (BTX)} > 0. (6)

Here is a toy example to illustrate the above point. Consider the model:

Y = X1 + aX3
2 + η,

where X = (X1, X2, X3, X4)
T and η is the error term independent of X. a = 0 corresponds to the

null hypothesis with β0 = (1, 0, 0, 0)T and a ̸= 0 to the alternative hypotheses with B = (β0, β1),

where β1 = (0, 1, 0, 0)T . Thus, under H0, q = 1, B = β0, ϵ = η, and under H1, q = 2, ϵ = aX3
2 + η.

As a result, E(ϵ|BTX) = E(aX3
2 + η|X1, X2) = aX3

2 ̸= 0 when a ̸= 0. Clearly, q and B are according

to the underlying regression model.

The empirical version of the left hand side in (5) can be used as a test statistic. H0 will be

rejected for large values of the test statistic. As B is generally unknown with unknown dimension q,

we estimate E(ϵ|BTX) as follows: when a sample {(x1, y1), . . . , (xn, yn)} is available,

Ê{ϵi|B̂(q̂)Txi} =
1

n−1

∑n
j ̸=i ϵ̂jKh{B̂(q̂)Txi − B̂(q̂)Txj}

1
n−1

∑n
j ̸=iKh{B̂(q̂)Txi − B̂(q̂)Txj}

.

Here, ϵ̂j = yj − g(β̂Txj , θ̂), β̂ and θ̂ are the commonly used least squares estimates of β0 and θ0,

B̂(q̂) is an SDR estimate with an estimated structural dimension q̂ of q and Kh(·) = K(·/h)/hq̂, with

K(·) a q̂-dimensional kernel function and h a bandwidth. As the estimates of B and q are crucial for

the DRMA test, we will specify them later. The weight W (·) is chosen to be the density function

f(BTX) of BTX, which is estimated by

f̂{B̂(q̂)Txi} =
1

n− 1

n∑
j ̸=i

Kh{B̂(q̂)Txi − B̂(q̂)Txj}.

A non-standardized test statistic is defined by

Vn =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ϵ̂iϵ̂jKh{B̂(q̂)T (xi − xj)}. (7)

Remark 1. The test statistic suggested by Zheng (1996) is

Ṽn =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ϵ̂iϵ̂jK̃h(xi − xj). (8)

Here, K̃h(·) = K̃(·/h)/hp, with K̃(·) a p-dimensional kernel function. There are two main differences

between equations (7) and (8). First, our test uses B̂(q̂)TX in lieu of X in Zheng (1996)’s test and
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applies Kh(·) instead of K̃h(·). This reduces the dimension p down to q̂. Second, under H0, we will

show that q̂ → 1, B̂(q̂) → β0/||β0||2 and nh1/2Vn has a finite limit. Under the alternative model (3),

we will show that q̂ → q ≥ 1 and B̂(q̂) → BC for a q × q orthogonal matrix C.

Remark 2. If we assume that there is an oracle who knows the true B under the alternative (3),

Zheng’s oracle test statistic should be

V ZHO
n =

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

ϵ̂iϵ̂jK
O
h {BT (xi − xj)}. (9)

Here, KO
h (·) = KO(·/h)/hq, with KO(·) a q-dimensional kernel function. In the toy example,

B = {(1, 0, 0, 0)T , (0, 1, 0, 0)T }. Although the above test statistic uses a low-dimensional kernel es-

timate, the dimension q is fixed according to the alternative model. In other words, V ZHO
n does not

adapt to the dimension under both the null and alternative models. It can be easily shown that to

make the test statistic have finite limiting distribution under the null hypothesis, the standardizing

constant should be nhq/2 to get nhq/2V ZHO
n . As discussed in Remark 1, our test statistic Vn exploits

the dimension-reduction structure under the null hypothesis, giving nh1/2Vn a finite limit. The stan-

dardizing constant nh1/2 has a beneficial effect for alternatives with q > 1, because it makes nh1/2Vn

larger than nhq/2V ZHO
n . Under global alternatives, the main difference between Vn and V ZHO

n is the

difference in the two standardizing constants. nh1/2Vn is approximately related to nhq/2V ZHO
n as

follows:

nh1/2Vn = h(1−q)/2nhq/2V ZHO
n .

With q > 1, h(1−q)/2 is divergent to infinity as n → ∞ and h → 0, and hence nh1/2Vn can be more

powerful. In Section 4, we will compare the performance of our test, Zheng’s test and the oracle

Zheng’s test.

2.2. Identification and estimation of B and q

In general, B is not identifiable because for any q × q orthogonal matrix C, G(BTX) can also be

written G̃(CTBTX). It is thus sufficient to identify BC for a q × q orthogonal matrix C. To achieve

this, we use the SDR methodology. Define SE(Y |X) as the intersection of all subspaces SA, spanned

by matrices A, such that Y⊥⊥E(Y |X)|ATX, where ⊥⊥ means ‘is independent of’. In SDR, SE(Y |X)

is called the central mean subspace, and its dimension, denoted by dE(Y |X), is called the structural

dimension (Cook and Li 2002). Similarly, the central subspace (Cook 1998), denoted by SY |X, is

defined as the intersection of all subspaces SA of minimal dimension, such that Y⊥⊥X|ATX. In

model (3), we have SE(Y |X) = span(B) and dE(Y |X) = q. In other words, we can identify q basis

vectors of SE(Y |X). The literature contains several proposals, including sliced inverse regression (SIR,

Li 1991), sliced average variance estimation (SAVE, Cook and Weisberg 1991), contour regression

(Li et al. 2005), directional regression (Li and Wang 2007), likelihood acquired directions (Cook and
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Forzani 2009), discretization-expectation estimation (DEE, Zhu et al. 2010a), and average partial

mean estimation (Zhu et al. 2010b). The minimum average variance estimation (MAVE, Xia et al,

2002) can identify and estimate the relevant space with fewer regularity conditions on X, but requires

nonparametric smoothing. As DEE and MAVE have good performance in general, we review these

two methods below.

2.3. A review of DEE

Our test procedure involves the estimation of the p × q matrix B and the dimension q. In this

subsection, we first assume that the dimension q is known and then discuss how to determine it

consistently. SIR and SAVE are two popular SDR methods involving the partition of the range of

Y into several slices. However, as documented by many authors (Li 1991, Zhu and Ng 1995, and

Li and Zhu 2007), the choice of the number of slices can affect the efficiency and can even yield

inconsistent estimates. To avoid this, Zhu et al. (2010a) introduced DEE. The basic idea is simple.

We first define the new response variable Z(t) = I(Y ≤ t), which takes the value 1 if Y ≤ t and 0

otherwise. Let SZ(t)|X be the central subspace and M(t) be a p × p positive semi-definite matrix,

such that span{M(t)} = SZ(t)|X. Define M = E{M(T )}. Under certain mild conditions, M = SY |X.

To ensure that SY |X = SE(Y |X) for η in model (3), we assume that η = G1(B
TX)η̃, where G1(·) is

an unknown smooth function and η̃⊥⊥X. η⊥⊥X is a special case.

In the discretization step, we construct a new sample {xi, zi(yj)} with zi(yj) = I(yi ≤ yj). For each

fixed yj , we estimate M(yj) using SIR or SAVE. Let Mn(yj) denote the candidate matrix obtained

from the chosen method. In the expectation step, we estimate M by Mn,n = n−1
∑n

j=1Mn(yj). The

q eigenvectors of Mn,n corresponding to its q largest eigenvalues are then used to form an estimate of

B. Denote the DEE procedure based on SIR and SAVE to be DEESIR and DEESAV E , respectively.

To save space, we focus on these two basic methods. Zhu et al. (2010a) proved that B̂(q) is a root-n

consistent estimator of BC for a q × q non-singular matrix C when q is given. For DEESIR, a mild

linearity condition is often assumed: E(X|BTX = u) is linear in u. For DEESAV E , we require the

linearity condition and a constant covariance condition: V ar(X|BTX) is a constant matrix.

2.4. A review of MAVE

In contrast, MAVE requires fewer regularity conditions, but needs local smoothing in high-dimensional

space. In the following, we use MAVE to estimate the basis vectors of SE(Y |X).

From the population, MAVE minimizes the objective function

E{Y − E(Y |BTX)}2 subject to BTB = Iq.

It is equivalent to minimize the following problem:

min
B∈Rp×q

E{σ2B(BTX)} subject to BTB = Iq,
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where σ2B(B
TX) = E[{Y − E(Y |BTX)}2|BTX] is the conditional variance of Y given BTX.

When a sample {(x1, y1), . . . , (xn, yn)} is available, the corresponding estimate B̂ is the minimizer

of

n∑
j=1

n∑
i=1

(yi − aj − dT
j B

Txij)
2Kh(B

Txij),

over all B satisfying BTB = Iq, aj and dj , where xij = xi − xj . The details of the algorithm are

given in Xia et al. (2002). Compared with DEE, MAVE only requires E(η|X) = 0 for η in model (3),

which is a very mild condition. Again, B̂(q) has been shown to be consistent for BC for a q × q

orthogonal matrix C when q is given.

2.5. Estimation of the structural dimension q

For DEE, according to Zhu et al. (2010a), we can determine q by

q̂ = arg max
l=1,...,p

[
n

2
×

∑l
i=1{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

− 2×
√
n× l(l + 1)

2p

]
,

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0 are the eigenvalues of Mn,n. We note that the first term in the bracket

can be considered as a likelihood ratio and that the second term is a penalty term. Zhu et al. (2010a)

proved that under some regularity conditions, q̂ is a consistent estimate of q.

For MAVE, we suggest a BIC-type criterion that is a modified version of that proposed by Wang

and Yin (2008) of the following form:

BICk = log
(RSSk

n

)
+

log(n)k

min(nhk,
√
n)
,

where RRSk is the residual sum of squares and k is the estimate of the dimension. Let B(k) denote

the matrix B when the dimension is k. We then have

RSSk =

n∑
j=1

n∑
i=1

{yi − âj − d̂T
j B̂(k)Txij}2Kh{B̂(k)Txij}.

The estimated dimension is then

q̂ = arg min
1≤k≤p

(BICk).

Wang and Yin (2008) showed that under some mild conditions, q̂ is also a consistent estimate of q.

Proposition 1. Under conditions 8, 9 in the Appendix, the DEE-based estimate q̂ → q as n →

∞. Under conditions 3, 4 and 7 in the Appendix, the MAVE-based estimate q̂ → q as n → ∞.

Consequently, the estimate B̂(q̂) is a consistent estimate of BC for a q × q orthogonal matrix C.

These consistencies are established under the null and global alternative models. Under the local

alternative models, specified in Section 3, the results are different and we will show the consistency

of q̂ to 1.
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3. Asymptotic properties

3.1. Limiting null distribution

Notice that β0 is the true parameter value under H0. Let Z = βT0 X, σ
2(z) = E(ϵ2|Z = z), and

V ar = 2

∫
K2(u)du ·

∫
{σ2(z)}2f2(z)dz,

V̂ ar =
2

n(n− 1)

n∑
i=1

n∑
j ̸=i

1

hq̂
K2

{
B̂(q̂)T (xi − xj)

h

}
ϵ̂2i ϵ̂

2
j .

We first state the asymptotic property of the test statistic under the null hypothesis.

Theorem 1. Under H0 and the conditions in the Appendix, we have

nh1/2Vn ⇒ N(0, V ar).

Further, V ar can be consistently estimated by V̂ ar.

We now standardize Vn to obtain a scale-invariant statistic:

Tn =

√
n− 1

n

nh1/2Vn√
V̂ ar

.

Corollary 1. Under H0 and the conditions in the Appendix, we have

T 2
n ⇒ χ2

1,

where χ2
1 is the chi-square distribution with one degree of freedom.

From this corollary, we can calculate the p values easily using its limiting null distribution. A

Monte Carlo simulation can also be used. We will discuss this in Section 4.

3.2. Power study

We now examine the power performance of the proposed test statistic under a sequence of alternative

models with the form

H1n : Y = g(βT0 X, θ0) + CnG(B
TX) + η, (10)

where E(η|X) = 0 and the function G(·) satisfies E{G2(BTX)} < ∞. When Cn is a fixed constant,

it reduces to the global alternative model (3), whereas when Cn → 0, the models are local alternative

models. In this sequence of models, β0 is one of the columns in B.

Letm(X, β0, θ0) = gradβ,θ{g(βT0 X, θ0)}T be the gradient of g(βT0 X, θ0),H(X) = G(BTX)m(X, β0, θ0)

and Σx = E{m(X, β0, θ0)m(X, β0, θ0)
T }.

We first give the asymptotic behavior of the estimate q̂ under the local alternative models.

Theorem 2. Under the local alternative models of (10) with Cn = n−1/2h−1/4 and the conditions

in the Appendix, we have q̂ → 1. Here, q̂ is either the DEE-based or the MAVE-based estimate.
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Note that the central subspace of this alternative model is span(B). That is, at the population

level under the local alternatives, the structural dimension should be q. However, the above theorem

shows that at the sample level, the estimate we defined before is consistent to 1, rather than q. In

this case, by sufficient dimension reduction theory, with a probability going to 1 the corresponding

estimated matrix B̂ with q̂ = 1 asymptotically estimates a vector proportional to β0 at a certain rate.

We are now ready to present the result on power performance.

Theorem 3. Under the conditions in the Appendix, we have:

(i) under the global alternative of (3),

Tn/(nh
1/2) ⇒ Constant > 0;

(ii) under the local alternatives of (10) with Cn = n−1/2h−1/4, nh1/2Vn ⇒ N(µ, V ar) and T 2
n ⇒

χ2
1(µ

2/V ar), where

µ = E

([
G(BTX)−m(X, β0, θ0)

TΣ−1
x E{H(X)}

]2
f(βT0 X)

)
,

and χ2
1(µ

2/V ar) is a noncentral chi-squared random variable with one degree of freedom and the

non-centrality parameter µ2/V ar.

Remark 3. Together with the discussions in Remark 2, we further discuss the difference between

our test and Zheng’s test and give an intuitive explanation of why our test is more powerful than

Zheng’s test. For the local alternative models (10), from (6), we have ϵ = Y − g(βT0 X, θ0) =

CnG(B
TX) + η, E(ϵ|BTX) = CnG(B

TX). In other words, CnG(B
TX) = E(Y |BTX) − g(βT0 X, θ0)

is the difference between the functions under the null and alternative models. Thus,

V := E{ϵE(ϵ|BTX)W (BTX)} = C2
nE{G(BTX)2W (BTX)}.

Both Vn and Ṽn are empirical versions of V . The standardizing constants must be nh1/2 and nhp/2,

respectively, such that our test statistic Tn and Zheng’s test T̃n have finite limiting distributions

under the null hypothesis as we discussed in Remark 1. As shown in Theorem 3, the rate nh1/2

then determines that under the global alternative model with fixed Cn, Tn goes to infinity at the rate

nh1/2. Under the local alternative models, when Cn tends to zero at the rate n−1/2h−1/4, Tn still has a

constant drift. However, Zheng’s test statistic T̃n diverges to infinity only at the rate nhp/2 under the

global alternative model and Cn can only have the rate n−1/2h−p/4 under the local alternative models.

Our test can detect local alternative models distinct from the hypothetical model at a rate as if the

dimension of X was one. Without this model-adaptiveness property, we would not have this power

enhancement. Model-adaptation is a generic methodology that can be used to construct other tests.

Remark 4. Note that µ = 0 is equivalent to G(BTX) = m(X, β0, θ0)
TΣ−1

x E{H(X)} almost sure-

ly. Moreover Σ−1
x E{H(X)} is a (p+d)-dimensional vector l(β0, θ0). Further recall that m(X, β0, θ0) =
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{X∂g(βT0 X, θ0)/∂(βT0 X), ∂g(βT0 X, θ0)/∂θ0}, and CnG(B
TX) = E(Y |BTX) − g(βT0 X, θ0) is the dif-

ference between the functions under the null and alternative. Thus generally G(BTX) should not

be equal to m(X, β0, θ0)
TΣ−1

x E{H(X)}. In other words, µ > 0 holds. For example, assume that

g(βT0 X, θ0) = βT0 X, then m(X, β0, θ0) = X. Thus to make µ = 0, G(BTX) must be equal to

XT l(β0, θ0), a linear function of X. However, this is not the case.

4. Numerical analysis

4.1. Simulations

We now carry out simulations to examine the performance of the proposed test. To save space, we

concentrate on SIR-based DEE and MAVE. Four simulation studies are considered. In Study 1,

B = β under both the null and alternative hypotheses. The aim of this study is to compare the

DEE-based and MAVE-based tests. We also make a comparison with Stute and Zhu (2002)’s test,

because it works well in this scenario. The comparison can be used to examine whether and how

much our test loses in power. In Study 2, we compare our test with Stute and Zhu (2002)’s test to

show that our test is omnibus whereas Stute and Zhu’s test is directional. The purpose of Study 3

is to examine the effect of dimensionality on both our test and a local smoothing test (Zheng 1996).

We choose Zheng’s test for comparison because it has a tractable limiting null distribution, which

can be used to calculate the critical values (or p values). The literature shows that local smoothing

tests often do not maintain the significance level well when limiting null distributions are used. We

also use the re-sampling version of Zheng’s test to determine the critical values (or p values). We

conducted a comparison with Härdle and Mammen (1993)’s test in a small-scale simulation. As

the conclusions were very similar, the results are not reported here. In Study 4, we compare our

test with the oracle version of Zheng’s test, which was defined in Remark 2 in Subsection 2.1. This

comparison examines the effect of estimating q on our test and the effect of dimensionality on Zheng’s

test. In the comparison, we use a model with no dimension reduction structure under the alternative

hypothesis, so that we can show the performance of our adaptive test when the dimension q = p must

be estimated, although it is not necessary in this case. We consider linear models in the first three

studies. In the fourth study, the null model is nonlinear.

Study 1. Consider

H11 : Y = βTX+ a cos(0.6πβTX) + η;

H12 : Y = βTX+ a exp{−(βTX)2}+ η;

H13 : Y = βTX+ a(βTX)2 + η.

Here, a = 0 corresponds to the null hypothesis and a ̸= 0 the alternative hypotheses. The null

model is a linear model and the alternative models are all single-index models. Let p = 8, β =

(1, 1, . . . , 1)T /
√
p. X = (X1, X2, . . . , Xp)

T and η are independent. The observations xi, i = 1, 2, . . . , n,
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are generated i.i.d. from the multivariate normal distribution N(0,Σ1) or N(0,Σ2) with Σ1 = Ip×p

and Σ2 = (0.5|j−l|)p×p. The ηi’s are drawn independently from N(0, 1). In this simulation study, the

replication time is 2, 000. The first model is a high-frequency model that is in favor of local smoothing

tests. The other two models are low-frequency models that are in favor of global smoothing tests.

In the nonparametric regression estimation, we use the kernel function K(u) = 15/16(1− u2)2 if

|u| ≤ 1, and 0 otherwise. The bandwidth is taken to be h = 1.5n−1/(4+q̂) with separately standardized

predictors for simplicity. Our limited empirical experience suggests that it works well.

Tables 1-3 show the empirical sizes and powers of our proposed test against the alternatives

H1i, i = 1, 2, 3 with the nominal size α = 0.05. Let TDEE
n and TMAV E

n denote two versions of test

Tn based on DEE and MAVE, respectively. For all of the cases considered here, TDEE
n controls the

size very well, even at sample size n = 50. We can therefore rely on the limiting null distribution

for determining critical values (or p values). For TMAV E
n , unreported results show that the empirical

size tends to be slightly larger than 0.05. Empirically, we recommend using an adjusted version,

T̃MAV E
n =

TMAV E
n

1 + 4n−4/5
,

which is asymptotically equivalent to TMAV E
n . Tables 1-3 show that it performs better with small to

moderate sample sizes.

As is well known, local smoothing tests suffer from the dimensionality problem; they cannot

maintain the significance level and have good power performance at the same time. Thus, re-sampling

techniques are often used in finite samples. A typical technique is the wild bootstrap first suggested

by Wu (1986) and developed further by others (see, e.g., Härdle and Mammen 1993). Consider the

bootstrap observations y∗i = β̂Txi+ ϵ̂i×Ui. Here, {Ui}ni=1 can be chosen to be i.i.d. Bernoulli variates

with

P

(
Ui =

1−
√
5

2

)
=

1 +
√
5

2
√
5
, P

(
Ui =

1 +
√
5

2

)
= 1− 1 +

√
5

2
√
5
.

Let T ∗
n be the bootstrap version of Tn, based on the bootstrap sample (x1, y

∗
1), . . . , (xn, y

∗
n). The null

hypothesis is rejected if Tn is bigger than the corresponding quantile of the bootstrap distribution of

T ∗
n . The bootstrap versions of Tn based on DEE and MAVE are denoted by TDEE∗

n and TMAV E∗
n ,

respectively.

Tables 1-3 show that TDEE
n , TDEE∗

n , TMAV E∗
n and T̃MAV E

n have comparable significance levels.

Thus, the re-sampling technique is unnecessary for our DRMA tests, although TMAV E
n needs some

adjustment to get T̃MAV E
n . For power performance, when X ∼ N(0,Σ1), T̃

MAV E
n generally has a

higher power than TDEE
n . However, when X follows N(0,Σ2), T

DEE
n becomes the winner. TMAV E∗

n

has a slightly higher power than TDEE∗
n . For the alternatives H11 and H12, T

MAV E∗
n has a relatively

higher power than T̃MAV E
n , whereas for the alternative H13, T̃

MAV E
n is more powerful. In the DEE-

based tests, in almost all of the cases, TDEE
n has a higher power than the bootstrapped version TDEE∗

n .

All of the tests are generally sensitive to the alternatives in the sense that, as a increases, the power
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increases quickly. In summary, MAVE-based tests tend to be more conservative than DEE-based

tests. TDEE
n controls the size satisfactorily and has high power.

Tables 1-3 about here

Stute and Zhu’s (2002) test is a dimension reduction test. They developed an innovation process

transformation of the empirical process n−1/2
∑n

i=1

{
yi − g(β̂Txi, θ̂)

}
I(β̂Txi ≤ u). This test has

been shown to be powerful in many scenarios (see, e.g., Stute and Zhu 2002, Mora and Moro-Egido

2008). Stute and Zhu (2002)’s test is denoted TSZ
n . The results are presented in Tables 1 and 3.

For H11, T
DEE
n is found to be more powerful, particularly when X ∼ N(0,Σ2), but T

SZ
n does not

perform well. H11 corresponds to a high-frequency model, for which existing numerical studies in

the literature have already suggested that local smoothing based methods work better, as shown by

the results here. For the alternatives H12 and H13, T
SZ
n becomes the winner. However, our tests are

robust to the underlying models. We use Study 2 below to demonstrate that Stute and Zhu (2002)’s

test is not an omnibus test.

Study 2. Data are generated from the model

Y = βT1 X+ a(βT2 X)3 + η. (11)

Consider two cases, p = 3, β1 = (1, 0, 0)T , β2 = (0, 1, 0)T and p = 4, β1 = (1, 1, 0, 0)T /
√
2, β2 =

(0, 0, 1, 1)T /
√
2. When p = 3, n = 50, 100. When p = 4, n = 100. In both cases, X and η

are independently generated from the multivariate and univariate standard normal distributions,

respectively. We use a = 0.0, 0.3, . . . , 1.5. To save space, we only present the results of TDEE
n in

Figure 1. It is obvious that TDEE
n performs much better than TSZ

n , as TSZ
n has very low power and

TDEE
n efficiently detects the alternative models. However, for a fair comparison of global and local

smoothing tests, we should incorporate our model-adaptive technique into a global smoothing test,

which is possible in principle. This is an ongoing project.

Figure 1 about here

To investigate the performance of our test when there is more than one direction under the

alternative hypothesis and to investigate the effect of dimensionality on local smoothing tests, we

conduct the following simulation study.

Study 3. The data are generated from the model

Y = βT1 X+ a(βT2 X)2 + η, (12)

where β1 = (1, . . . , 1︸ ︷︷ ︸
p/2

, 0, . . . , 0)T /
√
p/2 and β2 = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

p/2

)T /
√
p/2. Under the null model,

we have B = β1. Under the alternative models, B = (β1, β2). We take p = 2 and p = 8.
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The observations xi, i = 1, 2, . . . , n are generated i.i.d. from the multivariate normal distribution

N(0,Σ1) or N(0,Σ2). The ηi’s are generated from N(0, 1) or the double exponential distribution

DE(0,
√
2/2) with density f(x) =

√
2/2 exp{−

√
2|x|}. To save space, we only consider TDEE

n and

TDEE∗
n due to their good performance in size control and easy computation. In theory, the dimension

reduction method DEE cannot identify the direction in the quadratic term of this model. However,

we can see that even in this case, our test works well.

When p = 2, β1 = (1, 0)T and β2 = (0, 1)T . The results are reported in Table 4 and show that

Zheng (1996)’s test TZH
n maintains the significance level reasonably in some cases, but the empirical

size is generally lower than it. The bootstrap version TZH∗
n performs better in this aspect. In contrast,

both TDEE
n and TDEE∗

n maintain the significance level very well. We can find that TZH
n and TDEE

n

generally have higher empirical powers than their bootstrap versions. However, the differences are

negligible in our tests. In other words, our DRMA test does not need assistance from the bootstrap

approach, whereas Zheng’s test does. Both TDEE
n and TDEE∗

n are uniformly and significantly more

powerful than TZH
n and TZH∗

n .

Table 4 about here

We now consider the p = 8 case. The results are reported in Table 5 and show that when p

increases from 2 to 8, the performance of Zheng’s test deteriorates significantly. Table 5 indicates

that the empirical size of TZH
n is far away from the significance level. The empirical size of TZH∗

n is

much better, but is still not very close to the nominal level. Again, TDEE
n maintains the significance

level very well and TDEE∗
n is not better than TDEE

n . TZH
n performs much worse than in the p = 2

case and its bootstrap version does not enhance its power. TDEE
n is not significantly affected by the

increase in dimension.

Table 5 about here

These findings coincide with the prior theoretical results: existing local smoothing tests have much

slower convergence rate (of order n−1/2h−p/4 or n−1h−p/2 if the tests are quadratic forms) to their

limits under the null model. They are much less sensitive under the alternative models because, in

theory, the tests diverge to infinity at a much slower rate of order n1/2hp/4 than the DRMA test.

The simulation results show that we can simply use the DMRA tests limiting null distribution to

determine critical values without a heavy computational burden.

As we comment above, the null models in Studies 1-3 are linear. We now consider a nonlinear null

model. To determine whether Zheng’s test can also benefit the dimension reduction structure, we

compare our test, the oracle Zheng test V ZHO
n and the original Zheng test. When p = q, the oracle

Zheng test V ZHO
n is equivalent to the original Zheng test.
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Study 4. Consider three models:

H41 : Y = 0.25 exp (2X1) + a(X3
2 ) + η;

H42 : Y = 0.25 exp (2X1) + a{X3
2 + cos(πX3) +X4}+ η;

H43 : Y = 0.25 exp (2X1) + a{X3
2 + cos(πX3) +X4 + |X5|+ |X6|1.5 +X7 ∗X8}+ η;

where Xi, i = 1, . . . , p are independent of η and both follow N(0, 1) and N(0, 0.5), respectively. For

the null model, θ = 0.25 and β1 = (2, 0, . . . , 0)T . Define βi to be the unit vector, in which the i-th

element is 1, i = 2, . . . , 8. When a ̸= 0, q = 2, B = (β1/2, β2) for H41, q = 4, B = (β1/2, β2, β3, β4)

for H42 and q = 8, B = (β1/2, β2, . . . , β8) for H43. Note that the third model under the alternative is

regarded as a full model without dimension reduction structure. It is used to examine the usefulness

of model-adaptation, although an extra and unnecessary estimation of q = p is required. Recall

that TZHO
n is the oracle Zheng test statistic. Consider a = 0, 0.1, . . . , 0.5, p = 4, 8 and n = 100.

TZHO
n is equivalent to TZH

n under H42 with p = 4. They are also equivalent under H43 with p = 8.

The bootstrap versions TZHO∗
n and TZH∗

n , of TZHO
n and TZH

n , respectively, are used to maintain

the significance level. The bootstrap versions are not required for our test. TDEE
n can control the

significance level very well for all three models, as all of the sizes are around 0.053. The results are

presented in Figure 2.

Figure 2 about here

We make the following observations. First, TZHO∗
n has greater power than TDEE

n under H41

(q = 2), although in theory, under the alternative models our test can diverge to infinity faster than

the oracle Zheng’s test. This seems to indicate the negative effect of the estimation of q. For H42

(q = 4), TDEE
n has the best performance. For H43 (q = 8), TDEE

n also performs much better than

TZHO∗
n . These results imply that even for the purely nonparametric regression model (p = q = 4, H42

or p = q = 8, H43), our model-adaptation procedure can have gains in the power performance. As

explained, this improvement mainly comes from the model-adaptation. The standardizing constant

nh1/2 can be used, which has a faster convergence rate to infinity. Further, comparing sub-figures 1

with 3 or sub-figures 2 with 4, it is clear that the power of TZH∗
n decreases quickly as p increases.

These results suggest that estimating q has a negative effect on our test and that dimensionality is a

more serious issue for Zheng’s test.

4.2. Real data analysis

A data set is obtained from the Machine Learning Repository at the University of California-Irvine

(http://archive.ics.uci.edu/ml/datasets/Auto+MPG). The data set was first analysed by Quinlan

(1993). Recently, Xia (2007) analysed this data set with their method. There are 406 observations

in the original data set. To illustrate our method, we first clear the units with missing response
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and/or predictor values, leaving 392 sample points. The response variable is miles per gallon (Y ).

There are seven predictors, the number of cylinders (X1), engine displacement (X2), horsepower

(X3), vehicle weight (X4), time to accelerate from 0 to 60 mph (X5), model year (X6) and origin of

the car (1 = American, 2 = European, 3 = Japanese). As the origin of the car contains more than

two categories, we follow Xia (2007)’s suggestions to define two indicator variables. Let X7 = 1 if

a car is from America and 0 otherwise. Let X8 = 1 if a car is from Europe and 0 otherwise. All

of the predictors are standardized separately. We aim to predict the response in terms of the eight

predictors X = (X1, . . . , X8)
T . Quinlan (1993) used a simple linear regression model. However, we

need to check its adequacy to avoid model mis-specification. The value of TDEE
n is 9.7040 and the

p value is 0. The value of T̃MAV E
n is 16.2309 and the p value is also 0. A linear regression model is

therefore not plausible for predicting the response. Figure 3 suggests that a nonlinear model should

be used. With DEE, q̂ = 1, thus a single-index model may be appropriate.

Figure 3 about here

5. Discussions

In this paper, we propose a DRMA test procedure and use Zheng’s test as an example to construct

a test statistic. The method is readily extendable to other local smoothing methods, as discussed

in Section 1. The same principle can also be applied to global smoothing methods. As discussed in

Section 2, under the null hypothesis Y = g(βT0 X, θ0) + ϵ with E(ϵ|X) = 0, we can have E(ϵ|βT0 X) =

E(ϵ|BTX) = 0. Under the alternative modelH1, E(ϵ|BTX) = E{Y −g(βT0 X, θ0)|BTX} = G(BTX)−

g(βT0 X, θ0) ̸= 0. We should note that the above B can be different under the null and the alternative

models, as illustrated in the toy example. This motivates us to define the following test statistic:

Rn(z) = n−1/2
n∑

i=1

{
yi − g(β̂Txi, θ̂)

}
I{B̂(q̂)

T
xi ≤ z}.

This statistic is different from that in Stute and Zhu (2002), in which B̂(q̂) = β̂. As shown in

the simulations, Stute and Zhu’s (2002) test is a directional test and is inconsistent under general

alternative models. Work on this problem is ongoing.

Extensions of our methodology to missing, censored or dependent data can also be considered. For

example, let δi be a missing indicator: δi = 1 if yi is observed, otherwise it is equal to zero. Assume

that the response is missing at random. Therefore P (δ = 1|X, Y ) = P (δ = 1|X) := π(X). For more

details, see Little and Rubin(1987). Again, we test whether the following regression model holds or

not, H0 : Y = g(βT0 X, θ0) + ϵ with E(ϵ|X) = 0 and Y missing at random. Note that under the

null hypothesis, E{δϵ/π(X)|βTX} = E{δϵ/π(X)|BTX} = 0, whereas under the alternative model,

E{δϵ/π(X)|BTX} ̸= 0. Similarly, we can construct a consistent test statistic of the following form:

Vn1 =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

δi
π̂(xi)

δj
π̂(xj)

ϵ̂iϵ̂jKh{B̂(q̂)
T
(xi − xj)},
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where π̂(xi) is a nonparametric or parametric estimate of π(xi), ϵ̂i = yi − g(β̂Txi, θ̂) and β̂, θ̂ and

B̂(q̂) are obtained from the completely observed units. Another possible test statistic is

Vn2 =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

δiδj ϵ̂iϵ̂jKh{B̂(q̂)
T
(xi − xj)}.

This corresponds to the test statistic obtained from the complete case.

We can consider applying the methodology to other testing problems, such as testing for ho-

moscedasticity, parametric quantile regression model and conditional parametric density function of

Y given X. This research is ongoing.

Alternatively, we may rely on a multiple testing procedure for all of the marginal functions E(ϵ|Xi)

for i = 1, . . . , p. However, note that E(ϵ|X) = 0 ⇒ E(ϵ|Xi) = 0 for i = 1, . . . , p, but they are not

equivalent. This approach is therefore still not necessary and sufficient, unless the function E(ϵ|X) = 0

is equivalent to there being a Xi such that E(ϵ|Xi) = 0. Note that H0 can be rejected if

q̂ > 1 or
(
q̂ = 1but |Ê{ϵÊ(ϵ|B̂TX)}| is large

)
.

A two-stage testing procedure would be feasible. However, a big challenge is that this testing pro-

cedure cannot determine both type I error and type II error when we use q̂ > 1 in the first stage

in the case where the alternative model is with q > 1. Thus, in our testing procedure, we do not

separate the above two hypotheses and the identification of the structural dimension q is adaptive to

the underlying models. When q̂ > 1, the alternative can be detected, and when q̂ = 1, the alternative

function can also be detected. In both cases, the type I and type II error can be computed. On the

other hand, it is worthwhile to point out that a two-stage testing procedure deserves a further study

because in the case where q̂ > 1, it seems that by using the estimation of q would offer a possible way

to handle the testing problem.

In summary, the proposed methodology is a general one that can be readily applied to many other

testing problems.
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Appendix. Conditions of the theorems

The following conditions are assumed for the theorems in Section 3.
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1) There exists an integrable function L(x) such that |mi(x, β, θ)| ≤ L(x) for all (β, θ) and 1 ≤ i ≤

d + p. g(XTβ, θ) is a Borel measurable function on Rp for each β, θ and a twice continuously

differentiable real function on a compact subset of Rp and Rd, Λ and Θ for each x ∈ Rp. Here,

m(X, β0, θ0) = gradβ,θ{g(βT0 X, θ0)}T .

2) Let γ = (β, θ)T and γ̃0 be the value of γ that minimizes S̃0n(γ) = E[{E(Y |X)−g(XTβ, θ)}2]. γ̃0
is an interior point and is the unique minimizer of the function S̃0n. Σx = E{m(X, β0, θ0)m(X, β0, θ0)

T }

is positive definite.

3) E|Y |k < ∞, E||X||k2 < ∞ for all k > 0. supE(X2
l |BTX) < ∞, l = 1, . . . , p; E(η2|BTX) < ∞,

G(·) has bounded, continuous third-order derivatives. E(X|Y ) and E(XXT |Y ) have bounded,

continuous third-order derivatives. Here, η = Y − E(Y |BTX).

4) The density function f(X) of X has bounded second derivatives and is abounded away from

0 in a neighborhood around 0. The density function f(Y ) of Y has bounded derivative and is

bounded away from 0 on a compact support. The conditional densities fX|Y (·) of X given Y

and f(X0,Xl)|(Y0,Yl)(·) of (X0,Xl) given (Y0, Yl) are bounded for all l ≥ 1.

5 The density f(BTX) of BTX on support C exists, has two bounded derivatives and satisfies

0 < inf
BTX∈C

f(BTX) ≤ sup
BTX∈C

f(BTX) <∞.

6) nh2 → ∞ under the null (1) and local alternative hypothesis (10); nhq → ∞ under the global

alternative hypothesis (3).

7) K(·) is a spherically symmetric density function with a bounded derivative and support, all of

the moments of K(·) exist and
∫
UUTK(U)dU = I.

8) Mn(t) has the following expansion:

Mn(t) = M(t) + En{ψ(X, Y, t)}+Rn(t),

where En(·) denotes the average over all sample points. E{ψ(X, Y, t)} = 0 and E{ψ2(X, Y, t)} <

∞.

9) supt ||Rn(t)||F = op(n
−1/2), where || · ||F denotes the Frobenius norm of a matrix.

Remark 5. Conditions 1) and 2) are necessary for the asymptotic properties of the least squares

estimates β̂ and θ̂. Conditions 3), 4) and 7) are required for MAVE. Condition 5) is needed for

the asymptotic normality of our statistic. In Condition 6), nh2 → ∞ is a usual assumption in

nonparametric estimation. Conditions 8) and 9) are assumed for DEE. Under the linearity condition

and the constant conditional variance condition, DEESIR and DEESAV E satisfy the conditions 8)

and 9).
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Table 1. Empirical sizes and powers of T̃MAVE
n , TDEE

n and TSZ
n for

H0 vs. H11 and H12 in Study 1, with X ∼ N(0,Σi), i = 1, 2 and

ϵ ∼ N(0, 1).
a T̃MAV E

n TDEE
n TSZ

n

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

H11, X ∼ N(0,Σ1) 0 0.0630 0.0565 0.0470 0.0500 0.0730 0.0680

0.2 0.0890 0.1535 0.0730 0.1263 0.0940 0.0850

0.4 0.2175 0.4735 0.1623 0.3857 0.1070 0.1870

0.6 0.4290 0.8125 0.3207 0.7227 0.2030 0.3200

0.8 0.6470 0.9630 0.4910 0.9207 0.2930 0.5010

1.0 0.8135 0.9990 0.6347 0.9803 0.3410 0.6390

X ∼ N(0,Σ2) 0 0.0460 0.0545 0.0480 0.0563 0.0640 0.0580

0.2 0.0570 0.1050 0.0767 0.1173 0.0720 0.0780

0.4 0.1165 0.3255 0.1647 0.3667 0.0790 0.0910

0.6 0.2275 0.6530 0.3243 0.7203 0.0910 0.0900

0.8 0.4100 0.8885 0.4953 0.9293 0.0870 0.0900

1.0 0.5230 0.9690 0.6787 0.9887 0.0920 0.1250

H12, X ∼ N(0,Σ1) 0 0.0535 0.0610 0.0490 0.0470 0.0670 0.0620

0.2 0.1275 0.1845 0.0990 0.1687 0.1460 0.2390

0.4 0.2950 0.5695 0.2657 0.5510 0.3960 0.6500

0.6 0.5715 0.8895 0.5383 0.8980 0.7030 0.9480

0.8 0.8100 0.9945 0.7763 0.9890 0.8940 0.9950

1.0 0.9410 1.0000 0.9267 0.9993 0.9630 1.0000

X ∼ N(0,Σ2) 0 0.0395 0.0380 0.0460 0.0523 0.0700 0.0540

0.2 0.0700 0.1160 0.0773 0.1140 0.1260 0.1480

0.4 0.1545 0.3690 0.1820 0.3717 0.2590 0.4220

0.6 0.3285 0.6920 0.3660 0.6953 0.4650 0.7390

0.8 0.5490 0.9025 0.5723 0.9130 0.6280 0.9030

1.0 0.7340 0.9805 0.7587 0.9857 0.8060 0.9830

0 0.3 0.6 0.9 1.2 1.5
0

0.2

0.4

0.6

0.8

1
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a
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2,Empirical size and power with p=3,n=100
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3,Empirical size and power with p=4,n=100

a

Fig. 1. The empirical size and power curves of TSZ
n and TDEE

n in Study 2. The solid and dashed line represent

the results of TSZ
n and TDEE

n , respectively.
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Table 2. Empirical sizes and powers of TMAVE∗
n and

TDEE∗
n for H0 vs. H11 and H12 in Study 1, with X ∼

N(0,Σi), i = 1, 2 and ϵ ∼ N(0, 1).
a TMAV E∗

n TDEE∗
n

n = 50 n = 100 n = 50 n = 100

H11, X ∼ N(0,Σ1) 0 0.0697 0.0580 0.0470 0.0500

0.2 0.1160 0.1890 0.0840 0.1425

0.4 0.2740 0.5260 0.1635 0.3900

0.6 0.4670 0.8510 0.3255 0.7235

0.8 0.6750 0.9750 0.5115 0.9185

1.0 0.8320 0.9960 0.6160 0.9780

X ∼ N(0,Σ2) 0 0.0490 0.0550 0.0500 0.0475

0.2 0.0770 0.1160 0.0680 0.1285

0.4 0.1600 0.3460 0.1515 0.3480

0.6 0.2850 0.7170 0.3080 0.7155

0.8 0.4520 0.8930 0.4835 0.9255

1.0 0.5800 0.9740 0.6660 0.9820

H12, X ∼ N(0,Σ1) 0 0.0770 0.0740 0.0435 0.0555

0.2 0.1520 0.2070 0.1095 0.1680

0.4 0.3320 0.5990 0.2545 0.5510

0.6 0.6170 0.9200 0.5600 0.8975

0.8 0.8410 0.9990 0.7690 0.9925

1.0 0.9430 1.0000 0.9215 1.0000

X ∼ N(0,Σ2) 0 0.0570 0.058 0.0420 0.0540

0.2 0.0990 0.1250 0.0705 0.1275

0.4 0.2070 0.3560 0.1770 0.3495

0.6 0.3710 0.7070 0.3380 0.6870

0.8 0.5920 0.9150 0.5390 0.9190

1.0 0.7600 0.9810 0.7445 0.9805
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Fig. 2. The empirical size and power curves of TZHO∗
n , TDEE

n and TZH∗
n in Study 4 with p = 4 and p = 8. The

solid, dashed and dashed-dotted line represent the results of TZHO∗
n , TDEE

n and TZH∗
n , respectively.
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Table 3. Empirical sizes and powers for H0 vs. H13 in Study 1, with X ∼

N(0,Σi), i = 1, 2 and ϵ ∼ N(0, 1).
a T̃MAV E

n TDEE
n TSZ

n

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

X ∼ N(0,Σ1), ϵ ∼ N(0, 1) 0 0.0515 0.0625 0.0507 0.0563 0.0690 0.0570

0.2 0.1255 0.2245 0.1067 0.2000 0.2430 0.4250

0.4 0.3465 0.7520 0.3330 0.7127 0.6020 0.9060

0.6 0.6390 0.9790 0.6170 0.9580 0.8180 0.9940

0.8 0.8335 0.9980 0.8023 0.9960 0.9370 1.0000

1.0 0.9240 1.0000 0.8897 0.9993 0.9840 1.0000

X ∼ N(0,Σ2), ϵ ∼ N(0, 1) 0 0.0485 0.0505 0.0477 0.0480 0.0670 0.0650

0.2 0.4160 0.8745 0.4163 0.8523 0.7200 0.9580

0.4 0.8760 0.9995 0.8933 0.9993 0.9790 1.0000

0.6 0.9515 1.0000 0.9680 0.9997 0.9980 1.0000

0.8 0.9750 1.0000 0.9860 1.0000 1.0000 1.0000

1.0 0.9765 1.0000 0.9907 1.0000 1.0000 1.0000

a TMAV E∗
n TDEE∗

n

n = 50 n = 100 n = 50 n = 100

X ∼ N(0,Σ1), ϵ ∼ N(0, 1) 0 0.0767 0.0640 0.0490 0.0490

0.2 0.1580 0.2570 0.1075 0.1835

0.4 0.3860 0.7190 0.3120 0.6800

0.6 0.6170 0.9560 0.5655 0.9410

0.8 0.7940 0.9920 0.7400 0.9885

1.0 0.8660 0.9930 0.8475 0.9930

X ∼ N(0,Σ2), ϵ ∼ N(0, 1) 0 0.0580 0.0435 0.0400 0.0475

0.2 0.4170 0.8310 0.3925 0.7855

0.4 0.7950 0.9880 0.7755 0.9870

0.6 0.8770 0.9920 0.8985 0.9955

0.8 0.8870 1.0000 0.9390 1.0000

1.0 0.8880 1.0000 0.9445 1.0000
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Fig. 3. Plot of the residuals from the linear regression model against the single-indexing direction obtained

from DEE in the real data analysis.
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Table 4. Empirical sizes and powers in Study 3, with p = 2. Here cas-

es 1-4 represent situations with X ∼ N(0,Σ1), ϵ ∼ N(0, 1) (case 1)

or DE(0,
√
2/2) (case 2) and X ∼ N(0,Σ2), ϵ ∼ N(0, 1) (case 3) or

DE(0,
√
2/2) (case 4).
a TZH

n TZH∗
n TDEE

n TDEE∗
n

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

Case 1 0 0.0470 0.0375 0.0500 0.0490 0.0483 0.0453 0.0463 0.0527

0.2 0.0820 0.1390 0.0905 0.1335 0.1523 0.2653 0.1390 0.2683

0.4 0.2430 0.5065 0.2560 0.4885 0.4127 0.7610 0.4053 0.7530

0.6 0.5175 0.8635 0.4245 0.8320 0.6747 0.9650 0.6573 0.9557

0.8 0.7335 0.9825 0.6350 0.9465 0.8453 0.9943 0.8237 0.9933

1.0 0.8875 0.9990 0.7175 0.9750 0.9227 1.0000 0.9010 1.0000

Case 2 0 0.0410 0.0375 0.0370 0.0585 0.0497 0.0487 0.0453 0.0530

0.2 0.0915 0.1260 0.1005 0.1485 0.1653 0.2867 0.1540 0.2867

0.4 0.2725 0.5300 0.2630 0.5035 0.4293 0.7540 0.4213 0.7683

0.6 0.5460 0.8635 0.4840 0.8335 0.6757 0.9593 0.6643 0.9557

0.8 0.7565 0.9790 0.6115 0.9520 0.8370 0.9927 0.8287 0.9947

1.0 0.8745 0.9990 0.7220 0.9675 0.9183 0.9978 0.9000 0.9965

Case 3 0 0.0370 0.0405 0.0435 0.0590 0.0473 0.0527 0.0597 0.0513

0.2 0.0830 0.1130 0.0945 0.1760 0.1237 0.2107 0.1087 0.2130

0.4 0.2630 0.5340 0.2705 0.5220 0.3667 0.6417 0.3320 0.6410

0.6 0.5295 0.8955 0.4910 0.8505 0.6220 0.9363 0.5913 0.9250

0.8 0.7915 0.9855 0.6385 0.9580 0.8170 0.9923 0.7797 0.9870

1.0 0.9115 0.9995 0.7300 0.9775 0.9183 0.9990 0.8757 0.9987

Case 4 0 0.0370 0.0410 0.0455 0.0420 0.0463 0.0513 0.0565 0.0565

0.2 0.0890 0.1495 0.0995 0.1540 0.1367 0.2140 0.1305 0.2105

0.4 0.2960 0.5490 0.2680 0.5285 0.3677 0.6623 0.3690 0.6695

0.6 0.5750 0.8955 0.5060 0.8500 0.6450 0.9333 0.5960 0.9175

0.8 0.7885 0.9895 0.6600 0.9510 0.8147 0.9897 0.7725 0.9825

1.0 0.9005 0.9980 0.7380 0.9790 0.9110 0.9997 0.8855 0.9980
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Table 5. Empirical sizes and powers in Study 3, with p = 8. Here cases

1-4 represent the situations with X ∼ N(0,Σ1), ϵ ∼ N(0, 1) (case 1)

or DE(0,
√
2/2) (case 2) and X ∼ N(0,Σ2), ϵ ∼ N(0, 1) (case 3) or

DE(0,
√
2/2) (case 4).
a TZH

n TZH∗
n TDEE

n TDEE∗
n

n = 50 n = 100 n = 50 n = 100 n = 50 n = 100 n = 50 n = 100

Case 1 0 0.0182 0.0297 0.0450 0.0415 0.0605 0.0460 0.0465 0.0495

0.2 0.0280 0.0475 0.0500 0.0705 0.1400 0.2645 0.1345 0.2610

0.4 0.0442 0.0795 0.0785 0.0930 0.3485 0.6990 0.3555 0.7145

0.6 0.0742 0.1573 0.1035 0.1895 0.5905 0.9420 0.5555 0.9280

0.8 0.1022 0.2627 0.1330 0.2770 0.7510 0.9855 0.7275 0.9890

1.0 0.1422 0.3715 0.1630 0.3500 0.8475 0.9960 0.8170 0.9935

Case 2 0 0.0175 0.0265 0.0480 0.0430 0.0543 0.0517 0.0400 0.0540

0.2 0.0283 0.0508 0.0655 0.0590 0.1463 0.2843 0.1395 0.2760

0.4 0.0522 0.0953 0.0865 0.1240 0.3740 0.7240 0.3610 0.7365

0.6 0.0885 0.1955 0.1295 0.2070 0.6073 0.9323 0.5990 0.9260

0.8 0.1323 0.2953 0.1560 0.2925 0.7470 0.9873 0.7355 0.9860

1.0 0.1675 0.4070 0.1880 0.3955 0.8510 0.9980 0.8170 0.9935

Case 3 0 0.0213 0.0280 0.0480 0.0485 0.0463 0.0483 0.0450 0.0590

0.2 0.0600 0.1335 0.0765 0.1660 0.3237 0.6443 0.2905 0.6595

0.4 0.1935 0.4572 0.2245 0.4265 0.6970 0.9797 0.6780 0.9780

0.6 0.3445 0.7280 0.3220 0.6570 0.8773 0.9993 0.8340 0.9980

0.8 0.4758 0.8588 0.4290 0.7535 0.9237 0.9993 0.8985 0.9990

1.0 0.5480 0.9205 0.4750 0.8020 0.9527 1.0000 0.9335 0.9990

Case 4 0 0.0190 0.0275 0.0460 0.0540 0.0507 0.0533 0.0475 0.0500

0.2 0.0742 0.1465 0.1095 0.1915 0.3280 0.6583 0.3140 0.6600

0.4 0.2350 0.4950 0.2370 0.4420 0.6977 0.9783 0.6975 0.9760

0.6 0.3757 0.7445 0.3440 0.6495 0.8660 0.9993 0.8355 0.9985

0.8 0.4765 0.8585 0.4285 0.7425 0.9250 0.9997 0.9110 1.0000

1.0 0.5537 0.9147 0.4865 0.8095 0.9550 1.0000 0.9355 1.0000
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