数学英文写作与演讲

汤涛¹ 香港浸会大学数学系 丁玖² 美国南密西西比大学数学系

February 5, 2012

 $^{1}\mbox{E-mail: ttang@math.hkbu.edu.hk}$

²E-mail: Jiu.Ding@usm.edu

C 汤涛、丁玖

前言

数学的内容不光是人类知识宝库的重要组成部分,也在所有科学技术领域中有无穷无尽 的应用。因此,数学写作与数学演讲与一个数学人的学术生涯相伴一生。既然它们是思想传 递、学术交流的载体,提升数学学习和研究的这方面能力至关重要。

近些年来,国家对科技工作的重视和资助与日剧增,科技工作者做研究、写论文的劲 头也十足。英国《卫报》2011年3月28日报道,英国伦敦皇家学会 (The Royal Society of London) 最近的分析表明,中国有望在2013年超过美国成为科研成果发表的霸主。皇家学会 指出中国目前英语科研论文的数量仅次于美国,英国则排在第三位。这一段报道显示,中国 的英文科技论文数量在过去的十年里有着突飞猛进的进展;已经步入世界领先的地位。

在过去的二十年里,全世界数学领域的英文文章数量也有着巨大的增加。很多刊物的文章发表数量已经增加了两倍、五倍,甚至十倍以上;数学刊物的数量也在成倍增长。二十年前 SCI 的数学刊物不到五十个,现在已经翻了至少五倍,并且还在继续增长。由于种种原因(包括国内很多高校要求研究生毕业前要有几篇 SCI 文章发表),中国的作者群无形中给这些英文期刊提供了成千上万个投稿。有个数学期刊的主编告诉我们,他们刊物一年有一两千个投稿,其中一大半来自中国国内的作者。然而不争的事实是,虽然很多文章的学术质量还可以,但是由于英文写作太差,经常很快被退稿。

一个人用非本国语言写作而效果不良,是无可厚非的;不少中国学生由于英语非母语, 缺乏日常生活英语交流的环境、缺乏大量阅读英文原著的机会、缺乏科技英语论文写作的训 练,在尝试用英文进行专业写作方面困难重重,这些都是显而易见的事实。但这也不是完全 不可克服的。很多成功的例子都告诉我们,只要有心去摸索规律、系统训练、吸取教训、反 复提高,写一篇语言表达上乘的学术论文是完全可以的(固然,高质量的科研文章最主要还 是取决于研究成果;所以我们这里只能关心文章的语言质量)。况且数学英语写作相对比较 简单,一般有个半年至一年的训练就可以很有成效。

本书以《数学英文写作与演讲》为名,顾名思义,目的就是为了帮助青年学生和年轻的数 学工作者学会怎样写好数学文章、怎样做一个好的数学报告。它的主要读者对象是刚刚接触 数学英文写作的大学生、研究生和科研人员。当然,书中的内容对经常从事数学写作的大学 教师和研究人员也会有启发意义,尤其是那些关于写英文研究性论文和专业书的章节。

这本书中的内容主要是关于科技论文、尤其是数学论文写作的基本常识和注意事项,写作 中参考了欧美一些国家的作者关于英文数学写作的畅销书籍,有相当的一些内容是我们两位 合作者本人的观点、认识及经验之谈,所以并不一定是百分之百的有道理,谨供初学者们参 考。我们希望本书能起个敲门砖的作用,能协助那些初学科技英文写作者尽快地变得熟能生 巧起来,对此我们是信心十足的。

语言是思想的载体。由于写作或演讲应遵循的基本原则与所使用的具体哪国语言并无直接的关系,这本书的许多章节不光适用于英文数学写作或演讲,也同样适用于采用其它语言的 学术性写作或演讲,自然包括我们的母语-中文。

本书虽然主要面向数学工作者,但对于需要使用英文交流的其他理论科学研究者,比如计 算理论、理论物理,工程计算研究者,比如计算力学、计算科学,以及范围广泛的工程、技 术领域的工程师或科学管理人员都会有一定的参考价值。

本书面向的读者很多是大学生、研究生或初学科技英文写作者。对于学生来说,几年的学

校读书学习期间可以给你提供较长时间的写作摸索训练,你写的文章还可以经过导师的反复 修改,这些都是宝贵的机会,千万不要怕烦,怕花时间;有人指导是提高英文写作的一种最 佳形式。作者之一在英国读博士期间研究流体力学计算方法,写出的第一篇论文投到流体力 学较好的一个期刊《流体力学杂志》(Journal of Fluid Mechanics,缩写为 JFM);这个期刊 当时的主编叫 George Batchelor,是剑桥大学的一位教授。他不但对文章的结果感兴趣,对 英文的写作(包括文章结构、引言、结果的说明)也非常重视。作者的导师口述指导,但不 操笔修改,他显然是在给他的外国学生提供一个训练英文写作的实战机会,另一方面这篇文 章是博士论文的主要方面,自己主写也是理所当然的事。这篇最后被 JFM 发表的文章总共修 改了八次,历时一年,但副产品是大大提高了作者的英文写作能力。这一体会说明了一定要 珍惜被人指导的机会;这样会事半功倍的。

自然科学的发展往往是在推翻或纠正旧的理论基础上建立新理论的大厦,如哥白尼的地动 说推翻了统治人们思想一千五百年的托勒密的地心说,伽利略的比萨塔落体实验否定了亚里 士多德的错误想象,爱因斯坦的相对论是对牛顿运动定律的修正。但是,作为自然科学的共 同语言,数学的独特之处在于它不需要被订正,新的数学理论只是为旧的建筑添砖加瓦,而 无需连根拔起。在数学里,已证明为真的命题永远为真。正如美国卓越的犹太人科普作家阿 西莫夫所说的,"托勒密也许对天体系统给出了错误的描绘,但他为了计算而发展出的三角 系统永远保持正确。"(见本书第四章第三节)数学这个与众不同的特点也反映在它的语言 表达上:数学词汇的意义经久不衰,不为时代所动;数学概念的定义严密准确,无懈可击; 数学定理的证明服从逻辑规律,以三段论推理为其宗旨;数学写作的方式技巧,有章可循。 不难想象,数学概念的精确性和无歧义性,加上数学思维的周密性和美妙性,给数学的写作 提出了更高的要求,尽管最简单的数学写作通常是不难掌握的。这些要求就是:如何能让我 们的写作体现数学之美?如何能让我们的文章结构、遣词造句、思想流动、动机结论让人读 之犹如行云如水?如何能让表达之美和推导之美并驾齐驱、相辅相成?基于这些想法,有一 本实用的写作参考书对于初学者来说,会有一些帮助的。这也是我们写作此书的一个初衷。

纵观本书的内容可以发现,除了在最后一章我们集中讨论怎样讲数学,其它的七章里覆 盖了英文数学写作以及有关其它写作的方方面面,包括研究或综述性论文、教课书或学术专 著、申请或推荐信、审稿报告或书评等等。但是我们没有特别提及怎样写研究建议书这一重 要的论题。这是因为本书主要面向学生和英文学术写作起步者,而撰写英文研究建议书往往 是英语国家或地区的研究型大学教授所要做的事。他们的学术英文写作能力已足够地强,基 本上不需要一本初等书籍来教他们怎样写。不过,我们书中讲述的许多原则和技巧对研究建 议书的写作大有裨益。

在本书的写作过程中,得到香港城市大学陈关荣教授的支持。特别,他为书中的一节(第 三章第五节)提供了素材。作者感谢香港浸会大学、香港研究资助局的资助。作者之一丁玖 对香港浸会大学理学院及数学系对他参与本书写作的访问所给予的热情接待深表谢意。

本书作者虽然曾在英美大学获得博士学位,在多年英语环境大学的教学和研究生涯中 也积累了一些英文数学写作和演讲的经验,但远远不是这方面的专家。本书仅希望对初 学英文写作的年轻朋友们提供一些帮助;书中的错误或不当之处敬请读者不吝指教(电 邮 ttang@math.hkbu.edu.hk 或 Jiu.Ding@usm.edu)。此外,如果大家对提升这本书的质量和 功能有任何改进的建议,也欢迎告知作者,以便我们进一步学习和改进。

最后,我们想告诉我们的读者朋友:在多阅读、多练习的基础上,掌握技巧,熟练使用一 些典型句型和结构,可以成为写出好的科技论文的第一步。

Contents

1	数学	文章的结构	1
	1.1	文章的题目	4
	1.2	文章的摘要	8
	1.3	文章的引言	15
	1.4	文章的主体	24
	1.5	文章的结束语	29
	1.6	致谢部分	32
	1.7	参考文献与附录	35
	1.8	其它注意事项	38
	1.9	本章总结	41
2	数学	文章的词句	47
	2.1	数学基本词汇	50
	2.2	数学符号及其读法	62
	2.3	一些常用短语	70
	2.4	常用的数学语言结构	74
	2.5	有关证明的表达用语	84
	2.6	一些英语的连接词	94
	2.7	好与差和对与错	98
3	怎样	修改文章	103
	3.1	学会字句删减	105
	3.2	学会突出重点	112
	3.3	学会结构美容	114
	3.4	学会善用图表	121
	3.5	范文修改例讲	123
	3.6	避免学术抄袭	130

4.1 年当年市 135 4.2 写作过程 137 4.3 序言和目录 141 4.4 参考文献、索引和附录 145 4.5 书的出版 145 4.5 书的出版 147 文章投稿过程 149 5.1 投稿前的准备 151 5.2 投稿 156 5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲找巧 218 8.4 论文英聯 218	11	准备工作	135
4.2 与作也程 137 4.3 序言和目录 141 4.4 参考文献、索引和附录 145 4.5 书的出版 147 文章投稿过程 149 5.1 投稿前的准备 151 5.2 投稿 156 5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 192 7.3 审稿报告 201 7.4 书评 208 发样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲找巧 215 8.4 论文举辑 215	4.1	で世上IF · · · · · · · · · · · · · · · · · · ·	100
4.3 序言和目录 141 4.4 参考文献、索引和附录 145 4.5 书的出版 147 文章投稿过程 149 5.1 投稿前的准备 151 5.2 投稿 156 5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 215 8.4 论文答辩 211	4.2	与作过程	137
4.4 参考文献、索引和附录 145 4.5 书的出版 147 文章投稿过程 149 5.1 投稿前的准备 151 5.2 投稿 156 5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 215 8.3 演讲找巧 215 8.4 论文驾驶 215	4.3	序言和目录	141
4.5 书的出版 147 文章投稿过程 149 5.1 投稿前的准备 151 5.2 投稿 156 5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲找巧 215	4.4	参考文献、索引和附录	145
文章投稿过程 149 5.1 投稿前的准备 151 5.2 投稿 156 5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文笨辩 221	4.5	书的出版	147
文章投稿过程 149 5.1 投稿前的准备 151 5.2 投稿 156 5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文笨辩 221			
5.1 投稿前的准备 151 5.2 投稿 156 5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文菜辦 221	文章	投稿过程 1	149
5.2 投稿 156 5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218	5.1	投稿前的准备	151
5.3 根据审稿意见修改文章 159 5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218	5.2	投稿	156
5.4 文章的发表 166 数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218	5.3	根据审稿意见修改文章	159
5.4 《平时汉秋 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文繁融 221	5.4		166
数学普及文章写作 171 6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 187 7.2 推荐信 192 7.3 审稿报告 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲找巧 218 8.4 论文答辩 221	0.4	入于时及农	100
6.1 综述性文章 174 6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文签辑 221	数学	普及文章写作 1	171
6.2 读书报告与学位论文 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	6.1	综计性文章	174
0.2 读书報告书书面的书面的书面的书面的书面的书面的书面的书面的书面的书面。 178 6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	6.2	· 法出现上与受益协立	178
6.3 数学文化传播 181 6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 189 7.3 审稿报告 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	0.2		101
6.4 人物传记 185 其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	0.3		181
其它文体的书写 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	6.4	人物传记	185
其已文体的书与 187 7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 192 7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	甘户	之仕的长空	107
7.1 申请信 189 7.2 推荐信 192 7.3 审稿报告 201 7.4 书评 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	丹七		187
7.2 推荐信	7.1	甲请信	189
7.3 审稿报告 201 7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	7.2	推荐信	192
7.4 书评 208 怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	7.3	审稿报告	201
怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	7.4	书评	208
怎样讲数学? 211 8.1 基本原则 213 8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221			
8.1 基本原则	怎样	计数学? 2	211
8.2 演讲准备 215 8.3 演讲技巧 218 8.4 论文答辩 221	8.1	基本原则	213
8.3 演讲技巧	8.2	演讲准备	215
8.4 论文炫辩 991	8.3	演讲技巧	218
	8.4	论文答辩	221

4 怎样写书?

 $\mathbf{5}$

 $\mathbf{7}$

CONTENTS

Chapter 1

数学文章的结构

这本书主要讲的是怎样用英文写数学文章。写数学文章和写其它文章一样,关于一般写作 的基本要素同样有效。写英文文章同写中文文章一样,都有对语法、句法、修辞等语言及文 字写作的基本要求。但是正因为数学文章是一类特殊的学术性文章,它的写作自然有一些特 别的要求。

数学文章包括研究论文 (research paper)、综述报告 (survey)、审稿报告 (referee report)、 研究建议书 (research proposal)、书评 (book review)、阅读心得 (reading notes) 等等。无论 写哪一种数学文章,要写好它,作者动笔前要做到心中有数、动笔中恪守着言之有物、动笔 后不忘记仔细推敲。

在进入正题之前,我们先简单地谈一谈写文章前的一些准备工作以及写作过程应该遵循的 几项基本原则。

- 第一,科技论文的写作目的是交流学术思想和科学发现。除了日记的读者是自己一人之外,写文章的目的是让别人清楚地知道你想叙述和表达的东西。动笔前,你一定要明确知道文章为谁而写,你这篇文章要干什么,读者群是哪些,要告诉读者何种信息,在作者的头脑里一定要有个清楚的概念。无病呻吟、无的放矢,是写不出什么好文章的。
- 第二,要收集一些对你所要写的文章有关的材料,特别要有几篇最关键的文献。这几篇 关键文献一方面使你对目前这一研究课题的历史及发展有所了解,另一方面可以使你知 道一些重要的术语怎么用。灵活和正确运用学术术语,对一篇科技论文来说是非常重要 的。最好有一支彩笔,把关键文献上的一些关键词或关键句子划下来,以后你的文章中 有些难以说好的地方,可能正好用得上这些词或句子作为参考之用。整段整段地抄写别 人的文章是绝对不允许的,但从别人文章中选用几个词或一两个句子用自己的语言重新 表述,会能起到恰到好处的作用。
- 第三,文章要精确、清楚、简洁地表达你想说的东西。清晰思维能力与清楚写作能力是 相辅相成的。对于数学文章,基本概念的定义、主要定理的叙述、证明过程的推导、都 应该是水晶般的清晰可见,合乎三段论式的逻辑推理。把该说的事情说清楚、说明了、 说完全、不乱跳,说完后就应中止,切忌拖泥带水,更防画蛇添足。
- 第四,文章初稿写好后,要反复修改,不要冀希望一次成功。对初学者来说,一次成功 几乎是不可能的。即便是大文豪如鲁迅,也反复修改自己文章的初稿。美国已故著名 数学家、数学写作的高手和名师哈尔莫斯 (Paul Halmos, 1916-2006) 说过,他从不在未

读过六次以前发表一个词 (Every single word I publish I write it at least six times)。最 好大声朗读写好的初稿,揣摩语感、推敲文字、寻找感觉。如果感觉不对,就要对症 下药。比如,尽量避免在相邻两个句子里使用同一词汇,甚至读音相同者,当然定冠 词 the 和不定冠词 a 或需要讨论的一些名词除外。文章要多改几次,大到文章的结构, 小到标点符号,都要仔细咀嚼。写文章熟能生巧,但一开始时的多花时间,反复推敲, 是非常值得的。

第五,平生第一篇(甚至前几篇)英文文章写作之时,应该找一些有英文写作经验的人或英语为母语的人士帮忙修改一下,并能仔细琢磨那些句子别人修改的原因。通过别人的修改或意见来进行自我提高,是一个非常有效的提高写作水平的方法。古人语:熟读唐诗三百首,不会吟来也会凑。平时养成阅读国外英文学术书籍、期刊的习惯,对提高科技英文写作能力大有脾益。

哈尔莫斯把"要想说好某件事,一定要有某事说"(in order to say something well you must have something to say) 作为写作的 first principle (第一原则)。他宣称: Much bad writing, mathematical and otherwise, is caused by a violation of that first principle.(数学或 其它方面的许多坏写作都是因为违反那个第一原则而造成的。)他把"为谁而写"列为写作 的第二原则: When you decide to write something, ask yourself who it is that you want to reach.(当你决定写东西时,问问自己心目中的读者是谁。)比方说,你是写只让自己看的 日记?给远方朋友的信?还是浪漫的情书?给专家读的研究报告?还是大学生用的教科书?你的写作方式、考虑重点、内容布局、笔墨作色等等都是读者对象的函数。故哈尔莫斯总结 道: All writing is influenced by the audience, but, given the audience, the author's problem is to communicate with it as best he can(所有写作都被读者左右。但是,给定读者,作者的问题就是尽他所能与之交流。)

在刊登在一本名叫《怎样写数学》(How to write mathematics) [22] 六十四页小书中的一 篇随笔里,哈尔莫斯用一段话概括了数学写作的精髓:

The basic problem in writing mathematics is the same as in writing biology, writing a novel, or writing directions for assembling a harpsichord: the problem is to communicate an idea. To do so, and to do it clearly, you must have something to say, and you must have someone to say it to, you must organize what you want to say, and you must arrange it in the order that you want it said in, you must write it, rewrite it, and re-rewrite it several times, and you must be willing to think hard about and work hard on mechanical details such as diction, notation, and punctuation. That's all there is to it

写数学的基本问题和写生物、写小说或写键琴安装指南一样:交流想法。为了这样做并 做得明白,你必须有东西说,你必须有说的对象,你必须组织好你想说的一切,你必须 按你想说的次序安排它,你必须写、再写,并重复写几次,你必须愿意绞尽脑汁想,在 像措词、记号及标点符号这样的细节上猛下功夫。这就是一切的一切。

在这一章里,我们主要讨论一篇英文数学文章的主要结构,并通过具体例子来说明一些写 作时需要注意的事项。

一篇数学文章一般由下如几个部份组成:

•题目 (Title)

- 摘要 (Abstract)
- 引言 (Introduction)
- 主体 (Main body of the article)
- 结束语 (Conclusions)
- 致谢 (Acknowledgments)
- 参考文献 (References)
- 附录 (Appendix)。

文章的题目就是用最少的文字去描述文章的主要内容。因此,文章的题目一定要简单明 了,并能对文章的主要贡献起到画龙点睛的作用。据统计,一篇文章的全文如果被一个人读 过的话,那麽它的题目将会被五百个人读过。尤其是当今的信息时代,由於互联网的作用, 和 Science Citation Index (SCI) 的作用,文章的题目被浏览的机会可能更多。一个好的文章 题目可以帮助读者决定是否有必要去读文章的摘要,或进一步阅读文章的部份或整体内容。 可以说,文章的题目是文章的一句广告词。

文章的摘要目的就是简要地告诉读者这篇文章的主要内容,要研究什么问题,有什么新结 果或新发现。摘要要短而精,但也必须要提供足够的信息给读者,使读者仍有兴趣接下去读 文章的全文。文章的摘要应被看成是一篇有足够信息的微型文章。

文章的引言是引导读者进入文章主体的导向图,亦可视为加长了的摘要,对摘要要作更详 细的说明和扩展。

文章的主体是一篇文章中最主要、最重要的部分,它包括主要方法、定理、证明等。对于 应用或计算型的文章它还包括实验或计算结果。文章主体的精华部分在于给出新的结果,或 新的方法,并对结果或方法进行合理的分析或比较。这一部分占据了文章的大部分篇幅,要 尽可能抓住重点,即俗称的主题突出,不要东拉西扯,让读者抓不住问题面对的主要困难和 解决问题的主要思路和方法。

在下面的几节里,我们将一篇文章的组织部分作更为具体的分析。

1.1 文章的题目

前面已经提到,一般而言,一篇文章的题目会被很多人读到,而文章本身并不一定有多少 人细读。要让更多的潜在读者有兴趣阅读这篇文章,就要想方设法在文章标题上下功夫。所 以文章的题目一定要准确、精炼,并且尽量能够吸引读者的注意力。好的题目让读者难忘, 并激起继续阅读文章摘要甚至全文的欲望。不过,通过题目中短短的一两行字就能使读者知 道本文的主要目的和贡献,也不是很简单的一件事。

第一,文章的题目应能传递给读者直接明了的关于"这篇文章是干什么"的信息,它一般 不宜太长,也不宜太短。过长的题目里多含有一些无关紧要甚至无用的词,这些词很可能就 在题目的开头,像 Studies on, Investigations on 和 Observations on。应尽可能避免使用这 些词,因为它们本质上并没有告诉任何有用信息。然而,过短的题目容易让读者抓不住文章 的主旨,看不到它的主要论题或主要结果。

第二,除非写的是一篇综述文章 (review or expository article),文章的题目应比较具体、 明确,最好能反映文章的主要贡献,如

Hilbert's tenth problem is unsolvable 希尔伯特第十问题不可解

A proof of Minkowski's inequality for convex curves 闵可夫斯基凸曲线不等式的一个证明

Nonperiodic deterministic flows 非周期确定性流

经常,疑问式的题目会有扣人心弦的奇妙效果。比如,分形之父 Benoit Mandelbrot(1924-2010) 1967年发表在美国《科学》(*Science*)杂志上的著名论文 [21] 的题目

How long is the coast of Britain? 英国的海岸线有多长?

或美国分析学家 Ralph P. Boas (1912-1992) 于1981年发表在《美国数学月刊》(The American Mathematical Monthly) 上的文章 [5] 题目

Can we make mathematics intelligible? 我们能让数学易懂吗?

让读者一下子就对文章的内容好奇起来。波兰数学家 Mark Kac (1914-1984) 一篇题为 Can one hear the shape of a drum? (人能听见鼓的形状吗?) 的文章 [15] 1966年在《美国数学月刊》上登出后,反响巨大,未决数学问题一目了然,引人入胜。它的一个亮点便是其不见其物却闻其声的绝妙标题。这篇妙文使得作者将两枚奖章 (Chauvenet Prize 和 Lester R. Ford Award) 尽收囊中。1992年, Carolyn Gordon 等人 [12] 给了 Kac 的问题一个否定的回答,他们在《美国数学会通报》(Bulletin of the American Mathematical Society) 上的文章题目直接了当: One cannot hear the shape of a drum (人不能听见鼓的形状),与 Kac 二十六年前的文章题目遥相呼应。这在当时是轰动美国数学界的一大新闻。

第三, 文章的题目中不要泛指一个过大的方向, 像

文章的题目

5

Computational methods for the Navier-Stokes equations Navier-Stokes 方程的计算方法

Numerical analysis for fluid mechanics 流体力学的数值分析

Theoretical studies for the ordinary differential equations 常微分方程的理论研究

等等都不是什么好的选择。从这些题目读者基本不知道你的主要贡献是什么(这些可以是教 科书或专著的书名,但不应该是文章的题目)。还有一些题目,比如

An efficient numerical method for solving a class of delay differential equations 解一类时滞微分方程的一个有效数值方法

A new numerical method for solving optimization problems 求解最优化问题的一个新的数值方法

给于读者的信息量也是非常有限的。

另外,不同的研究领域会有不同的选择标题的基本规则或通常习惯。纯粹数学和应用数学 的题目取法不尽一样,应用数学和更为应用的工程学科的论文题目取法也有区别。最好能够 多参考同类文章的标题,再决定取什么样的题目。

下面我们列举一些好题目的简单例子,供读者参考。一些较原创性的工作,其论文的标题 可以比较简单明了:

例 1.1.1: An algorithm for the machine calculation of complex Fourier series 机器计算复傅里叶级数的一个算法 (这是非常有影响的第一篇快速傅里叶变换 (FFT) 的文章的标题。它指出了文章的主 要特点:算法、机器运算、及复数傅里叶级数。)

- 例 1.1.2: Good approximation by splines with variable knots 带有变量节样条函数的好逼近 (这是 de Boor 1973年的文章,提出了用变步长的方法来取得最好的函数逼近。)
- 例 1.1.3: Multi-level adaptive solutions to boundary-value problems 边值问题的多层自适应解 (这是 A. Brandt 1977年的文章,给出了用多重网格计算边值问题的思想和方法。)
- 例 1.1.4: Methods of conjugate gradients for solving linear systems 解线性系统的共轭梯度法 (这是 Magnus R. Hestenes 和 Eduard Stiefel 最早提出的用共轭梯度法求解线性方程组 的文章。)
- 例 1.1.5: A rapidly convergent descent method for minimization 用于极小化的一个快速收敛下降法 (这是 Fletcher 和 Powell 最早提出的用最速下降法求解优化问题的文章。)

- 例 1.1.6: Viscosity solutions of Hamilton-Jacobi equations 汉密尔顿-雅可比方程的粘性解 (这是 Crandall 和 P.-L. Lions 较早也较全面地研究汉密尔顿-雅可比方程的文章。)
- 例 1.1.7: Period three implies chaos
 周期三意味着混沌
 (这是李天岩和 J. Yorke 1975年给出混沌数学定义的文章。)
- 例 1.1.8: Yet another chaotic attractor
 另一个混沌吸引子
 (这是陈关荣和 T. Ueta 1999年给出新的奇异吸引子的文章。)

如果文章所在的领域某一方面已经有很多工作,而文章与这一方面密切有关,这时候题目 中比较详细一些的说明起的效果会更好。换句话说,要多加一些说明词,把背景说得更详细 一些。比如:

- 例 1.1.9: The optimization of convergence for Chebyshev polynomial methods in an unbounded domain
 无界区域切比雪夫多项式方法收敛性的最优化
 (关键词: optimization of convergence, Chebyshev polynomial methods, unbounded domain. 此文要做的事从题目上看就比较清楚了。)
- 例 1.1.10: On one-sided filters for spectral Fourier approximation of discontinuous functions 关于不连续函数傅里叶谱逼近的单边过滤器 (关键词: one-sided filter, spectral Fourier approximation, discontinuous functions. 信 息也是足够多了。)
- 例 1.1.11: Generation of finite difference formulas on arbitrarily spaced grids 任意分布网格有限差分公式的生成 (关键词: finite difference formula, arbitrarily spaced grids. 这里 arbitrarily 一词非常 重要,起到突出重点的作用。)
- 例 1.1.12: Boundary layer resolving pseudospectral methods for singular perturbation problems 奇异摄动问题的边界层解析伪谱方法 (关键词: boundary layer, pseudospectral method, singular perturbation problem. 同 样,这三个缺一不可的关键词把要研究的问题固定到一个较小的范围。)
- 例 1.1.13: Iterative and parallel performance of high-order compact systems
 高阶紧系统的迭代和并行性能
 (关键词: iterative, parallel, high-order, compact system. 这里提供的信息也是很多。)
- 例 1.1.14: Overcoming corner singularities using multigrid methods
 用多重网格法来克服拐角奇点
 (关键词: corner singularity, multigrid methods. 虽然关键词不多, 但意思也足够清楚。这种动名词加 using 的形式也是一种可行的标题做法。)

文章的题目

7

最后,我们举一个需要改进的文章标题的例子。

例 1.1.15: Some residual bounds for approximate eigenvalues and approximate eigenspaces 近似特征值和近似特征空间的一些残量界

这个题目用了两个 approximate,可以删去第二个。另外题目中看不出该文研究的是矩阵问题,故加上 matrix 一词更具体。建议改为

Some residual bounds for approximate matrix eigenvalues and eigenspaces 矩阵近似特征值及特征空间的一些残量界

作为本节的总结,我们指出标题是文章的脸面。对读者来说,文章的标题决定

- (1) 是否有继续阅读的必要;
- (2) 文章的主要贡献或创新点;
- (3) 文章的类型:综述性、理论性、应用性或实验性。

而对作者来说, 文章的标题

- (1) 要含有一定的信息量,使得读者可以很容易通过搜索引擎搜到你的文章;
- (2) 能够吸引读者的注意力;
- (3) 言简意赅地表述文章的贡献;
- (4) 和现有的标题有一定的区别。

1.2 文章的摘要

一篇文章的摘要部份非常重要,其目的就是要把文章的主要内容用精炼的语言总结起来。 读者一般通过阅读完摘要来决定是否有必要来阅读文章的全部或部份内容。论文摘要本身就 是一篇小小的文章 (minipaper),有其特殊的作用。

论文摘要应该

- 概括文章的主要目的、思想和结果;
- 尽可能简明扼要(很多数学杂志给出摘要的字数上限;在文章投稿前应阅读 杂志的作者须知),但又要有足够的内容;
- 用词精确、意思明确,尽可能让更多的人读懂你的叙述。我们常说研究中有 大同行(比如应用数学同行)或小同行(比如计算数学领域中的偏微分方程 数值解)。文章的主体是写给小同行看的,而摘要应该使大同行也能看懂。

有些作者常常把文章的引言 (Introduction) 或者结论 (Conclusions) 部分中的一些句子搬来,拼凑成一个论文摘要,这给人以雷同的感觉,是不值得建议的。

摘要一般在文章初稿写完后再最后完成。这时写摘要时,要重新开始构思句子,用与文章 主体部分不同的语词结构来概括文章所提供的主要信息,让读者在读完摘要后进入文章时依 然有耳目一新之感。

摘要一般一个段落即可,通常包含一百到三百个字。在保证传达足够信息的前提下,摘要越短越好,越精炼越好;不要花时间去描述细节。

1.2.1 一些好的例子

我们下面来看看一些标准的摘要。摘要当然不需要千篇一律,可以有很多花样。一般来说,纯数学的论文许多只是以证明一个主要定理为目的,故其摘要不必太长;而应用或计算数学的文章包含理论、方法和计算试验,考虑的方方面面较多,摘要上有时就要费点心血。我们不妨先读读两篇著名论文的摘要。第一篇的作者之一是2006年菲尔兹奖获得者陶哲轩,1994年菲尔兹奖获得者 Pierre-Louis Lions 是第二篇的作者之一。

例 1.2.1: (Annals of Mathematics, **167**, 2008, p. 481)

Title. The Primes Contain Arbitrarily Long Arithmetic Progressions

Abstract. We prove that there are arbitrarily long arithmetic progressions of primes. There are three major ingredients. The first is Szemeredi's theorem, which asserts that any subset of the integers of positive density contains progressions of arbitrary length. The second, which is the main new ingredient of this paper, is a certain transference principle. This allows us to deduce from Szemeredi's theorem that any subset of a sufficiently pseudorandom set of positive relative density contains progressions of arbitrary length. The third ingredient is a recent result of Goldston and Yildirim. Using this, one may place the primes inside a pseudorandom set of "almost primes" with positive relative density.

题目: 所有素数包含任意长等差数列

文章的摘要

9

摘要: 我们证明有任意长素数等差数列。有三个主要内容。第一个是Szemeredi定理,它断言 具有正密度的整数子集包括任意长的数列。第二个为某个转移原则,它是本文的主要新成分。 这容许我们从 Szemeredi 定理推出,任一个足够伪随机集的具有正相对密度的任何子集包含有 任意长的等差数列。第三个成分是 Goldston 和 Yildirim 的一个最近结果。利用它能把所有素数 放进一个具有正相对密度的"几乎素数"伪随机集。

例 1.2.2: (Annals of Mathematics, 130, 1989, p. 321)

Title. On the Cauchy Problem for Boltzmann Equations: Global Existence and Weak Stability

Abstract. We study the large-data Cauchy problem for Boltzmann equations with general collision kernels. We prove that sequences of solutions which satisfy only the physically natural a priori bounds converge weakly in L^1 to a solution. From this stability result we deduce global existence of a solution to the Cauchy problem. Our method relies upon recent compactness results for velocity averages, a new formulation of the Boltzmann equation which involves nonlinear normalization and an analysis of subsolutions and supersolutions. It allows us to overcome the lack of strong a priori estimates and define a meaningful collision operator for general configurations. **题目:** 波尔茨曼方程的柯西问题: 大范围存在性和稳定性

摘要: 我们研究带有一般碰撞核的波尔茨曼方程的大数据柯西问题。我们证明仅满足物理自然 先验界的解序列 L¹ 弱收敛到一个解。从这个稳定性结果我们推断柯西问题解的大范围存在性。 我们的方法依赖于最近关于速度平均的紧性结果,这是波尔茨曼方程涉及非线性正规化及次解 和超解分析的一个新构想。它使我们能够克服强先验估计的缺乏并对一般结构定义了一个有意 义的碰撞算子。

我们在下面举出更多的例子,有些地方给出了评述,供读者参考。

例 1.2.3: (Journal of the American Mathematical Society, 9, 1996, p. 605) Title. Splittings of Surfaces Abstract. The main result characterizes small actions of surface groups on R-trees (文章贡献).

- 题目: 曲面的分裂
- 摘要: 主要结果刻画了曲面群在 R-树上的小作用。

这篇十二页论文主要目的是证明作者1990年宣布的一个定理,故摘要也一语中的,非常精炼。

例 1.2.4: (Transactions of the American Mathematical Society, 186, 1973, p. 481)
Title. On the existence of invariant measures for piecewise monotonic transformations
Abstract. A class of piecewise continuous, piecewise C¹ transformations on the interval [0,1]
is shown to have absolutely continuous invariant measures (主要定理).
题目: 关于逐片单调变换不变测度的存在性
摘要: 本文证明: 一类逐片连续、逐片 C¹ 区间 [0,1] 上的变换有绝对连续不变测度。

该经典论文证明了一个定理,主要结果在一句话摘要中说得清清楚楚、简明扼要。但这 里 piecewise continuous 似乎多余,因为之后的 piecewise C^1 已隐含了它。

例 1.2.5: (Proceedings of the American Mathematical Society, **129**, 2001, p. 1207)

Title. On the definition of viscosity solutions for parabolic equations

Abstract. In this short note we suggest a refinement for the definition of viscosity solutions for parabolic equations (文章的目的). The new version of the definition is equivalent to the usual one and it better adapts to the properties of parabolic equations (主要结果). The basic idea is to determine the admissibility of a test function based on its behavior prior to the given moment of time and ignore what happens at times after that (思想方法).

题目:关于抛物方程粘性解的定义

摘要: 在这篇短文中我们对抛物型方程粘性解的定义精细化。新定义与通常的那个等价,但更 适应抛物型方程的属性。基本思想是在给定时刻前基于一个试验函数的行为来确定它的可受理 性,而不管在那时刻后发生什么。

摘要里给出了短文的目的、新定义的优点以及给出它背后的基本思想。

例 1.2.6: (Journal of Computational Physics, **31**, 1994, p. 607)

Title. Nonlinearly Stable Compact Schemes for Shock Calculations

Abstract. In this paper the authors discuss the applications of high-order compact finite difference methods for shock calculations (文章的目的). The main idea is the definition of a local mean that serves as a reference for introducing a local nonlinear limiting to control spurious numerical oscillations while keeping the formal accuracy of the scheme (方法的主要思想). For scalar conservation laws, the resulting schemes can be proven total variation stable in one-space dimension and maximum norm stable in multispace dimensions (一些理论结果). Numerical examples are shown to verify accuracy and stability of such schemes for problems containing shocks (计算结果和目的). The idea in this paper can also be applied to other implicit schemes such as the continuous Galerkin finite element methods (可能的推广).

题目: 激波计算的非线性稳定格式

摘要: 作者在文章里讨论高阶紧有限差分法在激波计算中的应用。主要思想是局部平均的定义,它用以引进控制伪数值振荡而保持格式正式精度的局部非线性限制。可以证明,所产生的格式对标量守恒律而言,在一维空间情形是全变差稳定的,在多维空间情形是最大范数稳定的。给出的数值例子对产生激波的问题验证了这些格式的精度和稳定性。本文的思想也可用于像连续迦辽金方法这样的其它隐式格式。

这是一个标准的论文摘要,从目的、方法、理论和实验结果,可能的推广都有谈到。并且用 词也很简单明了。不过这个摘要开头的三个词 In this paper 似乎多余,可以删去。

例 1.2.7: (SIAM Journal on Numerical Analysis, **36**, 1999, p. 719)

Title. A Fast and Accurate Numerical Scheme for the Primitive Equations of the Atmosphere

Abstract. We present a fast and accurate numerical scheme for the approximation of the primitive equations of the atmosphere (文章要干什么). The temporal variable is discretized by using a special semi-implicit scheme which requires only to solve a Helmholtz equation and a nonlocal Stokes problem at each time step; the spatial variables are discretized by a spectral-Galerkin procedure with the horizontal components of vectorial spherical harmonics for the horizontal variables and Legendre or Chebyshev polynomials for the vertical variable (解决问题的具体方法). The new scheme has two distinct features: (i) it is unconditionally stable given fixed physical

文章的摘要

parameters, and (ii) the Helmholtz equation and the nonlocal Stokes problem which need to be solved at each time step can be decomposed into a sequence of one-dimensional equations (in the vertical variable) which can be solved by a spectral-Galerkin method with optimal computational complexity (主要贡献,即提出的新方法的主要优点).

题目: 大气原始方程的一个快速精确数值格式

摘要: 我们提出用于逼近大气原始方程的一个快速精确数值格式。时间变量每一步用一个只需 要解一个亥姆霍兹方程和一个非局部斯托克斯问题的特殊半隐式格式来离散化; 空间变量由一 个谱-迦辽金程序来离散化,其水平分量是用于水平变量的向量球面谐波,垂直分量为勒让德或 切比雪夫多项式。新格式有两大明显特色: (i) 给定物理参数,它是无条件稳定的; (ii) 每一 时间步要求解的亥姆霍兹方程和非局部斯托克斯问题能分解成一系列一维方程(垂直变量), 它们可由具有最优计算复杂性的谱-迦辽金程序来求解。

在摘要里突出 (highlight) 方法的特点 (feature), 使读者一下子知道新的方法的优点, 会使有兴趣的读者对整个文章产生兴趣。

例 1.2.8: (SIAM Journal on Numerical Analysis, 38, 2000, p. 98)

Title. The Fast Multipole Method I: Error Analysis and Asymptotic Complexity **Abstract.** This paper is concerned with the application of the fast multipole method (FMM) to the Maxwell equations (文章要千什么). This application differs in many aspects from other applications such as the *N*-body problem, Laplace equation, and quantum chemistry, etc (此问题 和其它问题不同). The FMM leads to a significant speed-up in CPU time with a major reduction in the amount of computer memory needed when performing matrix-vector products. This leads to faster resolution of scattering of harmonic plane waves from perfectly conducting obstacles (这一研究引出的好处). Emphasis here is on a rigorous mathematical approach to the problem. We focus on the estimation of the error introduced by the FMM and a rigorous analysis of the complexity ($\mathcal{O}(n \log n)$) of the algorithm. We show that error estimates reported previously are not entirely satisfactory and provide sharper and more precise estimates (主要贡献, 主要在理 论方面).

题目: 快速多极子方法I: 误差分析与渐进复杂性

摘要: 本文涉及快速多极子方法 (FMM) 在麦克斯韦方程中的应用。此应用与其它应用在许多 方面不一样,如 *N*-体问题、拉普拉斯方程、量子化学等等。FMM 导致 CPU 用时显著加速, 大大减少计算机执行矩阵-向量相乘所需的内存空间。这导致调和平面波来自完美进行障碍散射 的更快求解。这里的着重点是对问题的严格数学处理。我们侧重于 FMM 带来的误差估计以及 算法 (*O*(*n* log *n*)) 复杂性的严格分析。我们证明,以往报告的误差估计不完全令人满意,因而我 们提供好得多并更精确的估计。

这也是一篇标准的摘要,关键词句 is concerned with, differs in many aspects from, leads to, emphasis is on, focus on, reported previously are not entirely satisfactory, provide sharper and more precise 等等,为文章给出了一个整体的刻画。

1.2.2 一些应注意的事项

第一,尽量避免在摘要里面出现数学符号,特别是一整行的数学公式。试图用叙述性的语 言来组成你的文章摘要。这对应用数学的文章尤其重要。 例 1.2.9: Abstract. In this paper, we consider the hyperbolic conservation laws

$$u_t + f(u)_x = 0, \quad x \in \mathbf{R}, \ t > 0$$

and the viscous conservation laws

$$u_t^{\epsilon} + f(u^{\epsilon})_x = \epsilon u_{xx}^{\epsilon}, \quad x \in \mathbf{R}, \ t > 0.$$

It will be proved that the error between u and u^{ϵ} is bounded by $\mathcal{O}(\sqrt{\epsilon})$ in the L^1 -norm. If f'' > 0 and u is piecewisely smooth, then the error bound can be improved to $\mathcal{O}(\epsilon)$. **摘要:** 在这篇文章里我们考虑双曲守恒律

$$u_t + f(u)_x = 0, \quad x \in \mathbf{R}, \ t > 0$$

及粘性守恒律

$$u_t^{\epsilon} + f(u^{\epsilon})_x = \epsilon u_{xx}^{\epsilon}, \quad x \in \mathbf{R}, \ t > 0.$$

将证明 u 和 u^{ϵ} 之间的误差在 L^{1} -范数下有上界 $\mathcal{O}(\sqrt{\epsilon})$ 。若 f'' > 0 且 u 是逐片光滑的,则误差 界改善为 $\mathcal{O}(\epsilon)$ 。

用下面的叙述,我们就能避免数学公式,并能表达同样的意思。

Abstract. It is proved that for scalar conservation laws the rate of convergence of viscosity solutions to the inviscid solution is one-half. If the flux function is strictly convex, and if the entropy solution is piecewise smooth, then the rate is improved to one.

摘要: 本文证明对标量守恒律, 粘性解收敛到非粘性解的收敛阶是 1/2。如果流函数是严格凸的, 且熵解逐片光滑, 则它改善为 1。

第二,一些摘要里需要引用别人的文章(比如说你的工作是某一篇文章的延续,或某文的 结果是你这篇文章的重要源泉),那么在你的摘要里可以写上。但不要只写上引文在参考文 献里的序号(比如说【10】,虽然【10】在参考文献里会给出)。这点的主要原因是一篇文 章的摘要经常会被单独拿出来(比如说在研究基金的申请材料里,在一些杂志的网页里), 而这时候参考文献并不会跟随在后。因为这些原因,如确实需要,应给出文章的全部信息 (除了文章的标题)。举例如下:

例 1.2.10: (SIAM Journal on Numerical Analysis, 33, 1996, p. 1484)

Title. Local Error Estimates for the Galerkin Method Applied to Strongly Elliptic Integral Equations on Open Curves

Abstract. Saranen [*Math. Comp.*, 48 (1987), pp. 485–502] proved local estimates in Sobolev norms for the Galerkin method applied to strongly elliptic equations on smooth closed curves in the plane. We extend his results to the case of open curves. Of particular interest are weakly singular and hypersingular integral equations on a slit. An interesting outcome from our result is that we can judge the orders of convergence of the local errors in some norms that do not exist in the global sense.

题目: 迦辽金方法用于开曲线上强椭圆型积分方程的局部误差估计

摘要: Saranen [*Math. Comp.*, 48 (1987), pp. 485-502] 对用于光滑闭曲线上的强椭圆型方程的 迦辽金方法证明了索伯列夫范数下的局部误差。我们将他的结果推广到开曲线。特别有趣的是 裂缝上的弱奇异和超奇异积分方程。我们结果的一个有趣结果是我们能判断全局意义上不存在 的某些范数下局部误差的收敛阶。 文章的摘要

本文是要推广 Saranen 文章的结果,所以一开始就指出 Saranen 文章的成果非常合理。

例 1.2.11: (SIAM Journal on Scientific Computing, **23**, 2001, p. 1000)

Title. The Random Projection Method for Stiff Detonation Capturing

Abstract. In this paper we present a simple and robust random projection method for underresolved numerical simulation of stiff detonation waves in chemically reacting flows. This method is based on the random projection method proposed by the authors for general hyperbolic systems with stiff reaction terms [W. Bao and S. Jin, *J. Comput. Phys.*, 163 (2000), pp. 216–248], where the ignition temperature is randomized in a suitable domain. It is simplified using the equations of instantaneous reaction and then extended to handle the interactions of detonations. Extensive numerical experiments, including interaction of detonation waves, and in two dimensions, demonstrate the reliability and robustness of this novel method.

题目: 捕获刚性爆轰波的随机投影法

摘要: 在这篇文章里我们给出用于化学反应流中刚性爆轰波数值模拟的一个简单却强功能的随机投影法。此法基于作者提出的对付具有刚性反应项的一般双曲系统的随机投影法 [W. Bao and S. Jin, *J. Comput. Phys.*, 163 (2000), pp. 216–248]; 在那里点火温度在一个合适的区域被随机化。利用瞬时反应方程被简化然后推广到处理爆轰反应。二维情形广泛的数值实验,包括爆轰波反应,证明了这个新方法的可靠性和强大性。

本文是要用到作者自己以前文章的方法,所以在摘要里把以前的那篇文章点出来,是合乎情理的。引自己的文章,正确的用法是... proposed by the author(s)...。

第三, 文章的摘要里要点出文章的主要结果, 这可能会引起别人对你的结果的注意。也就 是说, 把你的结论部分简明扼要地点出来, 并尽可能给出充分的信息, 有些句子, 像

A numerical comparison of these methods is presented 这些方法的一个数值比较被展示

和

Some numerical experiments have been carried out 一些数值试验已被进行

这样的,不能给读者以足够的信息。除非文章是综述性的文章,引言里一定要指出你的文章 有新的贡献(新的理论、新的方法、新的发现等)。有些已经发表的文章,摘要看起来还是 太简单。比方说:

- 例 1.2.12: (Journal of Computational Mathematics, 11, p. 178)
 Abstract. This paper develops an optimal-order multigrid method for the TRUNC plate element.
 摘要: 本文为 TRUNC 板单元开发一个最优阶多重网格法。
- 例 1.2.13: (Discontinuous and Continuous Dynamical Systems, 7, p. 801)
 Abstract. The method of generalized quasilinearization is extended to semilinear degenerate elliptic boundary value problems.
 摘要: 广义拟线性化方法被推广到半线性退化椭圆型边值问题。

以上的摘要似乎过於简单,使别人很难感觉到你的具体贡献。如果只读摘要,读者不知道你 的文章用了什么方法,得到什么结果。

第四,摘要最好不要以像 In this paper 或 This paper 这样的短语开头。这些短语完全多余,因为它们没有任何实质性内容。但是,它们经常出现在许多文章的摘要里,如本节里的个别例子。为防止此类现象发生,一些期刊在作者须知里禁止使用这些短语。

如果摘要非常短,比如只有两到三个句子,或全部摘要只是一个段落,叙述时最好只用一个固定的人称,通常普遍使用第三人称。对于较为详细的摘要,可以不必拘泥于此,如上面的例 1.2.11。但是一般而言,在摘要里尽可能不要第一人称和第三人称混用,尤其在同一个段落里;最好只使用第三人称。最理想的做法是在整篇文章中也不混用各种人称。

最后,摘要里面的语言要简单清楚,尽量用短句,而不要写太长太难懂的句子。很多杂志 的题目和摘要可能被翻译成很多语言,太难读的长句子很可能被错误翻译。另外,任何一篇 文章都要避免错别字,摘要部份尤其重要。既要避免叙述上的不准确,也要避免英语文法的 错误。摘要或引言中出错,会给审稿人和读者一个作者写作过於粗糙的印象。

作为本节的总结,我们指出摘要是文章的心脏。它一般要回答:

- 1. 本文要干什么? 本文涉及的问题是什么?
- 2. 研究的问题如何解决的? 即方法是什么?
- 3. 主要的结果是什么?问题彻底解决还是部分解决了?
- 4. 研究结果的意义? 对科学或对读者有多大帮助?

对读者来说,一个好的摘要意味着清晰明了。它应该:

- (1) 简明扼要地阐述了文章的结果和亮点;
- (2) 让读者明确判断文章对自己是否有意义,是否有必要读下去;
- (3) 让读者知道文章的难易程度。

而对作者来说, 文章的摘要

- (1) 易于被读者搜索到(因为摘要比标题含有更多的关键词);
- (2) 把文章的贡献更进一步(相对于题目)或更清晰地描述出来。

文章的引言

15

1.3 文章的引言

词汇是文章的建筑材料,犹如建造房屋的砖块。优美的语言让内容丰富的文章锦上添花。 正如唱工再好的京剧演员也需要化妆得体,一篇文章,不管结果多么好,都需要一定的包装,而包装的一个主要部分就是引言。好的科技杂志尤其注重文章的引言的质量。引言应该 比较全面地、准确地并且客观地介绍文章中将要讨论问题的背景材料和简要发展,人们(包 括自己,如果以前做过这方面的工作)对此已做的贡献,写这篇文章的动因,以及本文的主 要结果。一般来说,引言部分要相对简明扼要,几百个字即可,但又不要过于简单或片面。

引言的客观性非常重要。一方面,作者对自己工作的概括叙述要适中,对自己贡献的评价 要掌握分寸,语气要平和,不要自我吹嘘,如下面的句子

Our new result is extremely important toward the proof of von Neumann's conjecture 我们的新结果向冯·诺依曼猜想的证明是极其重要的

就可能是夸大之言。正如华罗庚 (1910-1985) 曾告诫的,文章在自己,评价在别人。另外,不 要随便贬低别人的工作。在引用他人的论文贡献时,尤其在比较结果时,不要咄咄逼人地批 评别人,充当裁判。评判别人的事可以留到写审稿报告或书评时再做。总之,在写文章时, 语言上的绅士风度会给你赢来同行的尊敬。如果你看到下面句子中的文献【3】就是你自己发 表的论文,你就会理解写文章时为什么要谦虚谨慎:

The result of this paper is most general, a trivial consequence of which is the main result of [3].

这篇文章的结果是最一般的,它的一个平凡推论是【3】的主要结果。

即便发现了别人的文章有错,在指出时也要语气委婉,切忌盛气凌人,锋芒毕露,如

The conclusion of the main theorem of [3] is completely wrong, because the key inequality in the proof is unfortunately not correct.

【3】的主要定理的结论完全不对,因为证明中的关键不等式不幸是错的。

还有一点需要指出的是,引言中不要把其他人甚至自己以前的文章句子原封不动地直接移 植过来。如果整段整段地照抄不误,那就是不能容许的学术道德问题了。如我们后面还要强 调的,引用别人说过的句子,一定要加上引号,并注明出处,把被引用的原始论文或专著放 在参考文献当中。

1.3.1 引言的开头

就像第一次见面的约会男女会被对方的第一印象所左右,一篇文章的最重要部分应该是它 的第一句话。"好的开端就是成功的一半"这句行动的格言也适用于文字的表达。写得好的 文章第一句就会像磁铁一样地吸引读者,令他们毫不犹豫地继续读下去。

最糟糕的(也是时常看到的)的开头可能是先给出一堆数学符号和定义。这样做并不是不 允许,纯数学文章里有时看到这样的形式,因这类文章用到的概念和记号可能较多,一开始 需要加以引进。但是一般而言应该避免在文章的一开头就罗列令人生烦的符号定义。最好的 引言应该这样开始:先作一些较为通俗浅显的描述,这样会给读者一个容易的起头,以便他 们轻松自如、有条不紊地登堂入室,进入角色,并能提高继续读下去的兴趣。当读者在文章 主体中碰到数学符号和概念时就会从容不迫,轻松应付。这和后面将要讨论的怎样做数学演 讲的原则是一致的。

文章引言一开始就应该把你所关心的问题提出来,开门见山、直奔主题,不要不着边际地 叙述与文章的中心关系不大的泛泛而谈之物。要用直接了当的、使较多读者都能看懂的语言 把问题指出来。比如一篇关于华林问题推广的文章是如此开始的:

例 1.3.1: (Transactions of the American Mathematical Society, 358, p. 5523)

Title. Singularities of Linear Systems and the Waring Problem

Introduction. Edward Waring stated in 1770 that every integer is a sum of at most 9 positive integral cubes, also a sum of at most 19 biquadrates, and so on. Later on Jacobi and others considered the problem of finding all the decompositions of a given number into the least number of powers, [Di]. In this paper we are concerned with a similar question for general homogeneous forms.

题目: 线性系统的奇点和华林问题

引言: 1770年爱德华·华林说每一个整数是至多 9 个正整数的立方和,也是至多 19 个 双二次数之和,等等。后来雅可比及其他人考虑了找到将一给定数分解成最少数目幂次 和的所有分解法这一问题【Di】。本文我们所关注的是对一般奇次形式的类似问题。

这三句开场白简单易懂,从古典华林问题,到雅可比的整数分解问题,到作者要研究的更抽 象问题,一下子指明了文章的意图。下一篇关于多重网格的文章的开头是:

例 1.3.2: (Computing, 56, p. 215)

Title. Optimal Multigrid Preconditioning

Introduction. Among various techniques for solving partial differential equations, multigrid methods have proven to be one of the most efficient approaches. The efficiency of those methods, however, depends crucially on appropriate underlying multilevel structures. As such multilevel structures are not naturally available in most unstructured grids, multigrid methods are in general not easy to apply.

题目: 最优多重网格预处理

引言: 在解偏微分方程的各种技术中,多重网格法已被证明是最有效处理之一。然而,这些方法的有效性本质上依赖于合适的基础多层结构。因为在大部分非结构化网格 中这样的多层结构不能自然获得,多重网格法一般来说不易使用。

这样一开头就把你所关心的问题和困难指出来了。另一篇文章的开头也把文章的写作目的立 刻作了引人入胜的交代:

例 1.3.3: (BIT, 23, 1983, p.209)

Title. How and how not to Check Gaussian Quadrature Formulae

Introduction. The preparation of this note was prompted by the appearance, in the chemistry literature, of a 16-digit table of a Gaussian quadrature formula for integration with measure $d\lambda(t) = \exp(-t^3/3)dt$ on $(0, \infty)$, a table, which we suspected is accurate to only $1 \sim 2$ decimal digits. How does one go about convincing a chemist, or anybody else for that matter, that his Gaussian quadrature formula is seriously defective?

文章的引言

题目: 怎样检查或不检查高斯求积公式

引言: 化学文献中出现的 $(0,\infty)$ 区间上关于测度 $d\lambda(t) = \exp(-t^3/3)dt$ 积分的一个十 六位数字高斯求积公式表促使我们写成这篇注记。我们疑心这张表只有一到二位小数点 的精度。谁能让一个化学家或类似的其他人信服他的高斯求积公式有严重缺陷?

这样的开头一开始就让读者明白作者关心的问题所在,也让读者决定是否有兴趣读下去。

前面谈过,引言的一开头就引进数学符号不太好,但有时适当地给出一些一目了然的简单 符号可使后面的行文变的容易。下面就是一个这方面的例子。

例 1.3.4: (Mathematics of Computation, **33**, 1979, p. 1289)

Title. Estimating the Largest Eigenvalue of a Positive Definite Matrix

Introduction. Let A be a positive definite matrix of order n with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$ corresponding to the orthonormal system of eigenvectors x_1, x_2, \ldots, x_n . In some applications, one must obtain an estimate of λ_1 without going to the expense of computing the complete eigensystem of A. A simple technique that is applicable to a variety of problems is the power method.

题目:估计正定矩阵的最大特征值

引言: 令 A 为一正定矩阵,具有特征值 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$,且对应的正交归一特征向量系统为 x_1, x_2, \ldots, x_n 。在一些应用中人们必须得到 λ_1 的一个估计,而不以计算 A 的完全特征系统为代价。可用到各种各样问题的一个简单技术是幂方法。

在上面引文接下来的四句话里,作者给出了 power method 的定义,说明这一方法的理论 已经被很好地理解,并注意到这一方法的收敛性依赖于两个因素。然后分析了这两个因素。 这样的开头直奔主题,没有废话。

总而言之,引言的开头应该实事求是、清楚明确,避免大话、套话。

1.3.2 引言的中间

这一部分有多种写法,全凭作者自由发挥,但一般说来包含以下几个方面:

- 1. 定义问题 (define the problem);
- 2. 解释准备解决什麽问题 (explain what the work attempts to do);
- 3. 总结以前取得的主要成果及不足之处 (summarize the results achieved, progress made and unsolved problems);
- 4. 简介一下你解决问题主要的手法 (outline the plan of attack)。

除极少数天才式的开创性工作以外(例如柯尔莫果洛夫(A. Kolmogorov, 1903-1987)有十 五篇论文没有任何参考文献可列),一般的科技论文都是建立在已有工作的基础之上,如一 个定理在更广情形下的推广、一类方法的改进或推广、某个算法的收敛性证明以及收敛速度 估计,或其它。总结以前取得的主要成果,也就是说简单地回顾和本文相关的工作和发展, 是相当必要的。在这里,最主要和最相关的文献一定要提到,这也间接地表示你对这些非常 相关的工作是了解的,你的工作并不是在重复别人的工作。 这一回顾过去的部分,也不要过分东拉西扯,说些与自己的工作无直接关系的历史发展。 主要是回顾和本文密切相关的工作和成果。特别是那些下文将要用到的主要结果和方法,这 里应该提及。

指出写此文的动因 (motivation) 和目的 (purpose) 也是很必要的。以前工作的不足、遗留的困难,目前的处理方法不够合理、或不够有效、或不够简单,都可能成为你写此文的原因。原因当然不仅仅是这些,但必须有一个合理的原因才可能导致你动笔写作。下面我们给出几个简单的例子。

例 1.3.5: (Proceedings of the American Mathematical Society, 134, p. 3268)

Title. A Weyl type formula for Fourier spectra and frames

The main purpose of this paper is (给出目的) to prove a Weyl type estimate (see e.g. [9, Ch. 5] for a description of the classical Weyl asymptotics in the context of Riemannian manifolds (历史渊源)) for $\#\{\Lambda \cap R \cdot K\}$, where K is a convex body in \mathbb{R}^d , symmetric with respect to the origin, in the case when E_{Λ} is an orthogonal basis for $L^2(\Omega)$. In analogy with the classical Weyl formula we ask whether

$$#\{\lambda : \|\lambda\|_K \le R\} = c_{\Omega,\Lambda} R^d + o(R^d),$$

where $\|\cdot\|_{K}$ is the norm induced by K (提出问题).

It turns out that the answer is yes, and under some additional assumptions we obtain more quantitative estimates on the error term. We shall see that our estimates imply both (1) and (4) at the same time, thus presenting a unified description of geometric properties of spectra (主要结果).

题目: 傅里叶谱和框架的外尔型公式

本文主要结果是在 E_{Λ} 为 $L^{2}(\Omega)$ 一直交基的情形证明了关于 #{ $\Lambda \cap R \cdot K$ } 的一种外尔型 估计(例如,黎曼流形背景下的经典外尔渐进可见【9,第五章】),其中 $K \in \mathbb{R}^{d}$ 中 关于原点对称的一个凸体。与古典外尔公式相似,我们试问

$$#\{\lambda : \|\lambda\|_K \le R\} = c_{\Omega,\Lambda}R^d + o(R^d)$$

是否成立,其中 $\|\cdot\|_{K} \in K$ 所诱导的范数。 事实证明,答案是肯定的,并且在某些额外假设下我们得到关于误差项更多的定量估 计。我们将看到,这些估计同时隐含 (1) 和 (4),因而给出了谱几何性质的一个统一描述。

- 例 1.3.6: ... However, in spite of quite a number of contributions dealing with these effects, there are no calculations taking into account all influences. To fill this gap (这里给出了原因), we present a highly accurate numerical method 然而,尽管在处理这些效果上有相当多的贡献,没有计算把所有影响考虑在内。为填补这些空白,我们推出一个高精度数值方法
- 例 1.3.7: In this work we will propose a boundary element method for solving the linear Poisson-Boltzmann equation for two proteins based on a single-layer formulation of the equations. This gives a simpler set of equations on the boundary and hence a more efficient starting point for solving them than the direct formulation of the boundary integral equations

文章的引言

based on Green's theorem used in previous studies (这里给出了原因). More importantly, this will allow us to use a method based on the cell multipole algorithm to rapidly evaluate the force and ...

在这项工作里我们将提出一个基于方程单层形式求解两个蛋白质的线性泊松-玻尔兹曼 方程的边界元方法。这给出边界上的较简单方程组,因而为求解它们给出比先前研究中 采用的基于格林定理的边界积分方程更有效的一个出发点。更重要的是,这将容许我们 利用基于细胞多极子算法的方法来迅速评估力和

总而言之,引言的中间应该概括你文章的主要贡献、可能达到的有意义的结果,以及得到 这些结果的方法和技巧。这个部分应当实实在在,避免过于花哨。

1.3.3 引言的结尾

除非你的文章比较短,或作者不拘一格地在引言中间灵活机动地插入各节大意(例1.3.5就 是如此),我们建议在引言的结尾处简单写上本文的组成部份。一般的作法是对于文章引言 后面的每一节内容写上一句话,概括地告诉读者这一节是干什麽的,一般以

An outline of this paper is as follows 文章的概要如下

或者是

This paper is organized as follows 文章组织如下

或其它句型来作为引言最后一段的第一句。

这一部分最好不要把每一节的题目简单地罗列在一起,这样的做法不光是偷懒之举,而且 有重复之嫌。应该用不同的语句给出每一节大意一个简单的小结。下面举几个例子:

例 1.3.8: (Transactions of the American Mathematical Society, **357**, p. 3462)

Title. How to Obtain Transience from Bounded Radial Mean Curvature

1.3. Outline of the paper. We devote Section 2 to a discussion of those aspects of warped products and model spaces which will be instrumental for our comparison analysis. The general setup for the comparison techniques is then constructed in Section 3. The basic comparison inequalities for the Laplacian are reviewed in Section 4, and in Sections 5 and 6 we define the capacity of general domains and explicitly calculate the modified (drifted) capacity of radially symmetric domains in model spaces. A first glimpse of the ensuing comparison result is given in Example 6.4. The local version of our main result is then established in Section 7. Finally the proofs of Theorem A and its corollaries are presented in Sections 8 and 9, respectively.

题目: 怎样从有界径向平均曲率获得顷刻?

1.3. 文章概要: 第二节用来讨论翘曲积和模型空间有助于我们的比较分析的那些方面。比较技术的一般设置将在第三节中构造。用于拉普拉斯算子的基本比较不等式在第四节作一综述,而在第五、六节我们将定义一般域的容量并明确计算型空间里径向对

称区域的修改(漂移)容量。随之而来的比较结果在例 6.4 中给出初窥。然后第七节建 立了我们的主要结果的局部形式。最后,定理 A 及其推理的证明分别在第八、九节展 现。

例 1.3.9: The present paper is built up as follows. The physical, mathematical and numerical aspects of the Lagrangian scheme are treated in Section 2, while the extra features needed to incorporate the scheme into a monotonic multi-dimensional Euler's method are presented in Section 3. Numerical results for shock tube flow and for supersonic flow in a wind tunnel with a step are given in Section 4. Finally, Appendix A adds some mathematical and numerical support to the earlier discussion of the interaction of gas slabs, while Appendix B discusses various ways to find a representative slope value for a distribution inside a slab.

此文如下构成:第二节处理拉格朗日格式有关物理、数学及数值的几个方面,而将此格 式与单调多维欧拉法结合一起所需要的额外特性将在第三节中展示。激波管流和风洞超 音速流的一步数值结果将在第四节中给出。最后,附录 A 中加上的是早先讨论的气砖 相互作用之数学及数值支持,而附录 B 则讨论找到管内代表性斜率值分布的各种方法。

例 1.3.10: The paper is organized as follows. The variational form for w and extraction formula for λ are developed in Section 2. We establish the well-posedness of the variational form in Section 3; the finite element method and its error analysis are given in Section 4; proofs of two lemmas involving lengthy computations are presented in Section 5. 文章如下组成: v 的变分形式及 λ 的提取公式将在第二节中开展。在第三节我们建立变 分形式的适定性。有限元方法以及误差分析在第四节中给出。涉及很长计算的两个引理 的证明则放到第五节内。

例 1.3.11: This paper is organized as follows. In Section 2, we outline the method of our numerical solution and define the various approximate theories that we shall consider. Results and the basis for choosing any particular approximation are summarized in Section 3, which can be read without knowledge of the details of our numerical method presented in Section 4. Numerical experiments are then presented in the final section, showing that our proposed approaches are both more robust and orders of magnitude more efficient than existing methods. 本文结构如下: 第二节我们概述数值求解的方法并定义将要考虑的各种逼近理论。一些

本文站构如下: 第二节我们视远数值示解的方法开定文符安考虑的各件通近程记。 经 结果和选择特别逼近的依据在第三节总结。这些总结无需了解第四节中详细给出的数值 方法就能阅读。最后一节呈现数值试验结果,它们显示我们提出的处理方法比现有的更 有力且量级更有效。

以上的四个例子,大体上包括了引言部分结尾的 outline 部分。这一部分当然有其它写法,但基本上大同小异。应当指出,许多数学研究论文、尤其是纯粹数学领域的,不会如上 形式化地结束引言节,而是不落俗套地展示结尾的多样性。另一方面,篇幅很长的研究性或 综述性文章有时会像书一样给出目录,各章节的内容概要看上去一清二楚,就不必拘泥地再 像这里在引言的末尾画蛇添足地写上每一节干什么。

总而言之,引言的结尾对每小节内容的概括应像报纸上的标题新闻那样醒目,但同时避免 与后面的小节标题重复。 文章的引言

具体分析了引言中各个部分写作的基本要素后,我们再次强调引言应该没有多余的话,尽早把读者引入文章的核心。Higham 有个很好的建议([13],第 88 页)。他说: "改进引言的一个可行方法是删去第一句或前几句,因为它们常是无关紧要的泛泛而谈。"他举的例子是:

Polynomials are widely used as approximating functions in many areas of mathematics and they can be expressed in various bases. We consider here how to choose the basis to minimize the error of evaluation in floating point arithmetic. 多项式在数学的许多领域里用来逼近函数,且能用各种各样的基底来表示。这里我们考

多坝式在数字的许多领域里用米理近函数,且能用各种各样的基底米表示。这里我们考察怎样选取基底以极小化浮点运算赋值的误差。

上述第一句是众所周知的常识,不必再提,第二句才说文章试图想解决的问题。Higham 把这两句话压缩成一句,并且用的是吸引人的疑问式:

In which basis should we express a polynomial to minimize the error of evaluation in floating point arithmetic?

我们应当用什么基底来表示一个多项式以极小化浮点运算赋值的误差?

中国学者学术论文之引言部分常见的一个问题就是一开始讲的是人人知道的大道理。希望上面的简单例子对我们有所启发。

有时,引言部分可以等到文章的主体部分完成后再写,但一开始时可以先给出几个提纲, 在写作过程中还可以不断添加一些注释及一些体会,供最后写引言部分时参考。一个很好的 引言可以帮助作者更容易理解你的文章,同时也帮助你总结你的研究结果。通过这个总结, 你可以看出你的工作是否作出了贡献,是否可以带来后续工作。从这个角度来说,花点时间 写好引言是非常值得的。

1.3.4 引言中的常见词

在数学论文中,有些词型和句型经常出现,我们在第二章也会介绍一些这样的词型和句型。这里我们简单介绍一下在引言中常见的一些词组和习惯用法。

下面的词型和句型可能出现在引言的开头几段。

 \ldots methods have attracted considerable attention in the \ldots community, especially for the \ldots

...... 方法在 的研究群体中已引起极大的注意, 特别对 而言。

... is still a controversial issue in the ... community. 在 的研究群体中依然是一个争论之处。

In recent years, there has been tremendous interest in developing 近年来在发展 方面已有巨大的兴趣。

In the past two decades, a great deal of mathematical effort in \cdots has been devoted to the study of ...

在过去的二十年中,大量的数学工作已用来研究

There have been extensive study and application of ... 对于 已有大量研究和应用。

Limited work has been done in ... 关于 已有一些有限工作。

We are concerned in this paper with the 本文我们关注

There has been renewed interest in this technique, originated by Smith 100 years ago, for ...

对这个一百年前起始于 Smith 的技术用于 ······ 方面已有复苏的兴趣。

It should be pointed out that a number of issues related to ... are still unclear. For example ...

应当指出,与......有关的许多问题仍然不清楚。例如,.....

下面的词型和句型可能出现在引言的讨论部分。

A key issue for the … study is the … 研究 … 的关键点是 … …

The main difficulties in ... are 的主要困难是

This has been proven successful, for instance, in solving ... 例如,这在求解 方面已证明成功。

There are some limitations to this approach to ... 关于 的这个处理有一些局限性。

A related problem was studied by ... 一个相关问题曾被 探讨。

The main purpose of this paper is to ... 这篇文章的主要目的是

There are two main motivations for the study of the ... 有两个动因来研讨

The objective of this paper is twofold. The first one is to ... The other is to ... 本文有双重目的。一是 另一是

文章的引言

23

An alternative to solving ... equation is to solve the following equation. 解 方程的另一途径是解下列方程。

Alternative methods to derive ... are to use ... 获得 的其它方法是用

We emphasize that ... 我们强调

作为本节的总结,我们指出引言是文章的手脚。好的引言应该关注四个为什么:

- 1. 为什么现在要研究这个课题? (Why now? 即时效性)
- 2. 为什么这个问题? (Why this? 即有什么挑战性?)
- 3. 为什么用你提出的方法? (Why this way? 即你的方法的优越性)
- 为什么读者会对你的方法或结果感兴趣?(Why should the reader care?即对 读者的吸引力)比如问题是否有新意,文章结果是否比别人的好,是否有新 发现;这些都有可能吸引读者。

1.4 文章的主体

文章的主体是文章最重要的部分,它全面给出作者的研究成果和新结果的论证、推理过程,或新方法的构造过程和理论分析、数值实验。一般而言,文章的第一节"引言"和最后一节"结束语"之间的所有小节构成主体部分。

文章主体部分可以有多种组成结构,我们在下面分几种情形讨论。

1.4.1 理论性较强的文章

这一类文章一般可由以下几部分组成:

- Preliminaries (预备知识)
- Main results (主要结果)
- The outline of proofs (证明方法)
- Extensions (延伸)

Preliminary 部分主要是引进符号说明和概念定义。理论性强的文章抽象的记号 (notation) 比较多,有时也比较难理解,所以必须单独有一节详细加以引进和解释。在这一节里, 有些已知的但对自己这篇文章很有用的结果可能也需要单独引出来,写成诸如引理 (Lemma) 这样的形式。如此做是为下一节作准备,并能区别什么是你的文章的主要新结果,什么 是以前的结果。

在文章下一节主要定理部分 (Main results),可以引出你的主要结果,并加以分析和 讨论。为了使读者能理解你的结果的重要性,和你得出这些结果主要的思路,详细证 明 (Proofs) 不一定要马上加进来,它们可以放在再下面一节或放在附录 (Appendix) 里。

一些注意事项:

- 有些初学写作的作者在主要结果这一节里引出了太多的定理,有的一篇十页 左右的文章居然有十多个定理和引理,并且每个定理都加了太多的条件,这 种文章读起来让人抓不住重点,提不起兴趣,最好是抓住重要的一些结论写 成一、两个定理,至多三、四个,而把其它不重要的结论或推论省去,或略 作讨论。
- 有些文章在给出定理的叙述之前作了较详细的推导,并在推导过程中引进了 很多条件。可是把这些推导的结果写成定理时,往往会把这些条件忘掉。这 是很不可取的。一个定理,往往会被看成很重要,其结论尤其重要,但这些 结论往往是在一些假设 (assumptions) 或条件 (conditions) 下成立的。所以在 定理的叙述中条件和结论都要完全。

写作时还应该:

文章的主体

- (1) 避免使用太多的引理,除非是技巧性很强、证明很复杂的长文。通常顶多三个引理就够了。有些假设、内容相差不远的引理可以"拼凑"在一起,将不同结果用数码(i)、(ii)或1、2等标出,减少不同引理中同一部分的重复书写。证明定理时需要用哪个部分就引用那个部分。
- (2) 避免将所有引理放到一起。正确的做法是将他们依次置于证明时需用它们的 定理之前,这样的好处是方便读者阅读理解。

1.4.2 计算或应用数学的文章

这一类文章一般可由以下几个部分组成:

- The problem or governing equations (问题或主要方程);
- The Numerical method or experimental method (数值方法或试验方法);
- Theoretical analysis (理论分析);
- Numerical results (数值结果);
- Conclusions (结束语).

一般来说,计算科学主要是针对一些典型的力学问题、工程问题或实际问题,比如说空气动力学、固体力学、弹性力学、生命科学、材料设计、结构优化等等进行研究。这些问题总是和一些微分方程 (differential equation)、积分方程 (integral equation)、算子方程 (operator equation)或数学规划 (mathematical programming) 联系在一起,所以应该有一节引入这些方程或问题,介绍相应的符号,并能对方程里的未知函数和已知函数或目标函数里的向量所对应的物理意义加以解释。有时,对你所考虑的特定的问题,适当的方程简化也很有必要,这些数学运算也可以在这一节完成。

例 1.4.1: The Poisson-Boltzmann equation for the electrostatic potential ψ in a symmetric 1 : 1 electrolyte characterized by a Debye screening parameter κ has the form

 $abla^2 y = \kappa^2 \sinh y,$ outside the spheres, $abla^2 y = 0,$ inside the spheres,

where $y = (ze\psi/k_BT)$ is the scaled nondimensional potential. 由德拜筛选参数 κ 刻画的对称 1:1 电解质中静电势 ψ 的泊松-玻尔兹曼方程具有形式

$$abla^2 y = \kappa^2 \sinh y, \qquad 球面外,$$
 $abla^2 y = 0, \qquad 球面内,$

其中 $y = (ze\psi/k_BT)$ 是缩放无量纲势。

例 1.4.2: The existence and computation of absolutely continuous invariant measures associated with nonsingular transformations are two important problems in the application of ergodic theory to physical sciences. The density of such an invariant measure is a fixed point of the corresponding Perron-Frobenius operator. If S is a nonsingular transformation from a σ -finite measure space (X, Σ, μ) into itself, then the corresponding Perron-Frobenius operator $P_S : L^1 \to L^1$ is defined via

$$\int_A P_S f d\mu = \int_{S^{-1}(A)} f d\mu, \ \forall A \in \Sigma$$

for all $f \in L^1$.

非奇异变换所对应的绝对连续不变测度的存在性与计算是遍历理论用于物理科学的 两大重要问题。不变测度的密度是相关的佩农-弗罗比尼斯算子的不动点。若 $S \in \sigma$ -有限测度空间 (X, Σ, μ) 到其自身的一个非奇异变换,则对应的佩农-弗罗比尼斯算 子 $P_S: L^1 \to L^1$ 对所有的 $f \in L^1$ 由下式

$$\int_A P_S f d\mu = \int_{S^{-1}(A)} f d\mu, \ \forall A \in \Sigma$$

定义。

对于一篇关于计算方法的文章,数值格式 (numerical schemes) 这一节应该是你文章的关键。在这一节里的内容,往往可能是你的文章的精华。但从写作的角度来说,这一节往往并不难写,因为它的内容比较具体。如果初次写作缺乏经验,可以参考相关文章的某些相关部分得到启发。

数值结果 (numerical results) 部分往往看起来容易,做和写都不一定容易。首先,选好 用来计算的例子,是非常重要的。很多学术问题 (academic problem) 都有一些标准的参照问题 (benchmark problems),这些例子可以选用。但最好能选用一些有一定难度的参照问题。 不然的话,太简单的问题(比如很多一维的算例)也没有什么意思,不能说明问题,显示不 出新提出的数值格式的优越性。最好的数值例子包含如下的关键信息:新的算法大大优于目 前已有的其它算法。

很多关于数值方法的文章包含了数值实验的结果、观察和结论,其目的主要是要说明以下 几个问题或其中的部分:

- 有助於对计算方法本身有更深的认识;
- 通过计算结果和其它相关的结果进行比较;
- 确定理论预测结果的正确性;
- 有些计算格式里有些人为定义的参数 (user-defined parameters),数值实验可 以理解怎样选取这些参数;
- 考察某些软件的可行性和可靠性。
- 计算里发现一些比理论分析数值结果更好的东西,可能导致下一步理论分析 及后续性工作。

比其它方法更准确、更好的计算结果绝对可以增加文章的价值,并能使审稿人有兴趣尽快 接受你的文章。适当地设计你的数值实验及有效地报告计算结果是非常有用的。

在数值结果的写作方法上,以下几点要值得注意:

文章的主体

- 1. 描述数值实验过程时,要尽可能详细,把所用的参数值 (parameters) 和方法 尽可能细致地描述出来,尽可能使读者在读完文章后可以重复计算出你的结 果 (reproduce your results)。
- 尽可能用图像 (figures) 或图表 (tables) 来表述你的结果。如果可能,和以前 的或其它方法的结果进行比较。
- 尽量使用一些大家都采用的算例。好的算例应该描述问题解的众多特性,包含了解决问题典型的困难,和实际问题联系很紧,最好是知道精确解(当然这最后一点一般情况下几乎是不可能的)。
- 最好能对数值试验进行一些评述:讨论你的计算结果(和方法)的优点;和 别人结果(及方法)的比较;有什么有意义的观察(observations);和理论预 测的关系等。最好不要仅仅列出一些数据,而没有任何解释和分析。
- 初学者在写数值实验部分时,最好能找到和你这一节相关的一些发表在对英 文写作把关较严的期刊上的文章,观察一下别人是怎样写的。

还应该注意的是文章中避免使用太多的图表。有的图表可以合在一起以节省空间,并更利 于数值结果相互比较。

1.4.3 报告计算结果的常见用法

在报告数值结果时,有些常用的说法。在下面我们将列举一些,仅供参考。首先是一些表达图象或图表的常用表达方式。相关的句子里经常有 shown, given, display, present, illustrate 等单词。

- 例 1.4.3: Figure 2 shows the structure of the exact solution of this Riemann problem. 图 2 显示这个黎曼问题精确解的结构。
- 例 1.4.4: Results of these calculations are given (或 shown, presented, plotted) in Figs. 1 and 2. 这些计算的结果由图 1 和图 2 给出。
- 例 1.4.5: Fig. 6 shows a comparison between the integration methods versus the dimensional step size.
 图 6 显示积分方法和维数步长之间的一个比较。
- 例 1.4.6: The two basis functions are distinct quadratic functions as illustrated in Figure 5.2. 两个基函数为相异的二次多项式函数,如图 5.2 所示。
- 例 1.4.7: The density as a function of x is shown in Figure 3.2. 密度作为 x 的函数在图 3.2 中显示。

注意在上面的文字里,图像有时用 Figure,有时用 Fig.。这两种用法都可以,但是在同一篇文章里必须保持一致。也就是说,如用 Figure,则整篇文章就不再混用 Fig.这一缩写。 另外,字母 F 必须大写。

下面的描述稍微复杂一点,多了一些介绍背景或条件的词或句子,但模仿起来也并不难:

- 例 1.4.8: Figure 4.1 shows a computed solution to the Burgers' equation using a high-resolution method with a time step that satisfies the CFL condition.
 图 4.1 显示 Burgers 方程用时间步长满足 CFL 条件的高分辨率方法获得的一个计算解。
- 例 1.4.9: Computational results are shown in Figure 3.1, illustrating the oscillations that appear in this case, again with the first-order Godnunov method. 计算结果在图 3.1 中表示,说明在这一情形再次随一阶 Godnunov 方法出现的振荡。
- 例 1.4.10: These are seen much more clearly in Figure 3.2, which shows the same solution on a different scale. 这些在图 3.2 中更为清楚地看到,显示在不同尺度下的相同解。

在比较图像时,有时会需要表达彼此很接近,或相差得很远的结果。下面将给出几个例子 加以说明。

- 例 1.4.11: Graphically, there is no observable difference between the interactions in these cases, showing that the effect of the presence of walls is not important under these conditions. 从图形上看这些情形没有相互作用之间的可观察差别,证实墙壁存在的影响在这些条件下不重要。
- 例 1.4.12: As can be seen, there is a good agreement between the present result and the reference computation.
 如能看到的那样,目前的结果与参考计算之间有好的吻合。
- 例 1.4.13: The streamlines for different values of the parameters, shown in Fig. 3, are in good agreement with the results published by Li et al. [6] and Zhang [8]. The difference on the separation points between our results and the results published in these two papers is less than 5%.

如图 3 所示,不同参数值的流线与李等人【6】以及张【8】发表的结果相当吻合。我们的结果和那两篇论文发表的结果关于分离点的差异小于 5%。

我们常看到很多初学者在文章中虽然给出了图像,但并没有给出应有的解释、比较、或推 测。这就使画图的意义失去了很多。一般说来,尽量只给出非常必要的图像,可有可无的图 像尽可能免掉。 文章的结束语

29

1.5 文章的结束语

结束语又称为结论,它构成文章主要部分结束后、文章结束前的最后一节。一个自然的问题是,摘要 (Abstract)、引言 (Introduction) 和结束语 (Conclusions 或 Concluding remarks) 到底有什么不同? 基本上来说,结束语部分应只和前两部分有少许的重合 (overlapping), 大部分内容应该是不一样的。

1.5.1 结束语应该有什么内容?

结论节应该包含以下的信息:

- 非常简短地给出文章的主要贡献 (Provide a summary of the main contribution)。注意要简短 (Keep the summary short),并且不要重复引言或摘要里 面的词,尽量用一些同样意思的替代词 (Use fresh wording)。这时可以再重复 一下你的结果的重要性 (Emphasize the importance of your results)。
- 解释一下你引言里提到的问题和疑问。经过整个文章的论证过程,在结束 语部分也许可以谈论部分答案了 (Turn back to something discussed in the Introduction)。
- 指出由于某些原因(比如篇幅的原因),文章没有考虑的其它方面或更一般的问题,并说明本文的方法是否可以推广到这些情形。
- 谈论一下你的这个工作可能带来的影响,以及可能会对解决其它相关工作的 益处 (Explain the implications of your research)。
- 展望下一步,后续工作可以做什么 (Identify the next step or look to the future)? 如果合适,讨论一些和本工作相关的 conjectures。

1.5.2 结束语的注意事项

- 不要过分谦虚,在结尾处说文章水平不高之类的 (Don't say something like "I apologize for the poor quality of my paper");
- 不要提什么新的难以解决的问题 (Don't ask many difficult questions);
- 不要引入全新的想法 (Don't bring up completely new ideas);
- 不要改变整篇文章已经形成的语言风格 (Don't change the tone or style of your writing);
- 不要提出和文中任何部分矛盾的结论或观点 (Don't contradict any part of your paper);
- 不要口气太大,不要夸大成果 (Don't make exaggerated claims);
- 不要逐字重复引言,需要时换种说法 (Don't restate the Introduction word for word)。

1.5.3 结束语中的一些常用词

下表列出的一些词语在结束语里常见到:

毕竟	after all	如已所述	as has been said
事项	as matters stand	无论如何	at any rate
即使入城	even so	最后	finally
由于这些理由	for these reasons	简言之	in brief, in short
一句话	in a word	总之	in conclusion
得出结论	in drawing to a close	确实	indeed
一般而言	in general	换言之	in other words
回想起来	in retrospect	总言之	in summary, to summarize, to sum up
总体上	on the whole	或简短地	or briefly
既然如此	such being the case	总括而言	to conclude
复述	to recapitulate	重复一遍	to repeat
现可看出	we now see	足够	it is enough

Table 1.1: 结束语中常用词语

有些常用的词,比如象 in summary, to summarize, in conclusion, to conclude 等经常在文章的结尾处见到;但若在同一节不停使用,可能会使读者感到老调重弹,缺少新意。 以下让我们看一看某些例子:

例 1.5.1: (Journal of Computational Chemistry, 14 (1)(1993), M. Holst and F. Saied) Title. Multigrid Solution of the Poisson-Boltzmann Equation

Conclusions. The first conclusion to be drawn from the numerical evidence presented earlier is that the multigrid method is the most efficient method for the two test problems with a grid size of $65 \times 65 \times 65$. Secondly, the advantage of multigrid grows with the problem size, as it demonstrates optimal order behavior for our test problems. (评论: 这一段非常简略地总结一下本文的贡献。)

A point that should be stressed is that the SOR and CG results reported here are based on highly optimized codes, and these codes ran close to their maximal rates on both architectures. Based on earlier results [15, 16], we expect a fully optimized multigrid method to run at rates comparable to the smoothing iteration alone on architectures such as those considered here. Thus, we expect that the multigrid method can achieve nearly the peak rate obtained by the SOR iteration. As a consequence of these points, it should be pointed out that the results presented here for the multigrid method are conservative, and gave only an indication of its potential for the LPBE. (评论: 这一段 讨论由于本工作可能导致的更进一步的结果。)

Finally, while we have considered only the LPBE in this paper, the multigrid method can be extended to nonlinear problems through either a combination of Newton's method and the linear multigrid algorithm presented here, or a nonlinear multigrid algorithm [13]. These methods have been used successfully for nonlinear problems in computational fluid mechanics [28] and semiconductor device simulation [29], and their application to the NPBE will be investigated in a future paper. (评论:这一段讨论更进一步的推广。这一段是不可能放到 Abstract 或 Introduction 部分的。) 题目: 泊松-玻尔兹曼方程的多重网格解

结论: 从先前展示的数值证据得到的第一个结论是,多重网格法对这两个试验问题是 最有效的方法,其网格尺寸是 65×65×65。第二个是,多重网格的优势随问题尺寸的 递增而加大,正如它对我们的试验问题展示了最优阶。

需要强调的一点是,这里报告的 SOR 和 CG 结果是基于高度优化的程序,且这些程序 在这两种架构上以近乎最大速率运行。根据早先的结果【15,16】,我们期望在像此处考 虑过的那些架构上单独能与平滑迭代相比的一个完全优化的多重网格法。这样,我们期 待多重网格法差不多能达到 SOR 获得的顶峰速率。作为这些论点的结果,应当指出这 里展现的多重网格法的结果是保守的,仅仅给出它对 LPBE 潜力的一个迹象。

最后,尽管这篇文章只考虑了 LPBE,多重网格法能通过牛顿法和线性多重网格算法的 组合或非线性多重网格算法【13】而推广到非线性问题。这些方法已成功用于计算流体 力学的非线性问题【28】和半导体器件模拟【29】。它们对 NPBE 的应用将在未来的 文章中探索。

例 1.5.2: **Conclusions.** What we have seen from the above is the convergence of a piecewise linear approximation method for the class of Li-Wang piecewise monotone mappings of the unit interval. (评论: 一句话总结一下本文的主要结果。) A different technique can be used to prove the convergence of the algorithm for the class of piecewise convex mappings of an interval, and the resulting paper will be published elsewhere. (评论: 预告读者作者另一篇有关文章。)

结论: 我们如上已经看到的是逐片线性逼近法对一类单位区间的李-王逐片单调映射的 收敛性。用不同的技术可以证明此算法对于区间上的逐片凸映射类的收敛性。相应的文 章将在另处发表。

有些作者在文章的结束语部分会预告读者其进一步工作可能导致的后续文章。如此断言需要小心,因为有时这样的未来文章并未如期诞生,或遥遥无期,甚至永不出现。除非有百分 之百的把握,不要轻易打包票,以免一言既出驷马难追。

1.6 致谢部分

很多文章的结束语后在结尾处都有一个简单的致谢部分 (Acknowledgments; 英式英语拼为 Acknowledgements)。致谢的对象主要包括给文章写作提供过意见或提供过帮助的人或机构。为研究提供了资助的机构大多数时候必须表示感谢。很多研究基金规定获资助者在所写的相关文章中必须清楚表明获其资助,有时还需列出所获基金号码。

匿名审稿人不必在致谢中提及,因为审稿是他(她)提供学术服务的工作一部分。但是, 如果审稿人对改进文章的质量有较大的贡献,比如对某定理提供了更短或更漂亮的证明,或 对文章的英文从头到尾修改了一番,那他们值得致谢。

感谢用语应简单、用词要精炼。例如, I would like to thank 可缩短成 I thank。

下面我们给出几个例子。一般说来致谢部分和下面的例子差不多相仿,或者将它们作一些 有机组合。

- 例 1.6.1: Acknowledgments. The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged. (这是一个标准的句型,经常可以见到。)
 致谢: 衷心感谢加拿大自然科学和工程研究局的资金支持。
- 例 1.6.2: Acknowledgments. The author gratefully (非常感激地) acknowledges the support of the National Science Foundation (NSF) under grant number DMS1234567.
 致谢: 作者非常感谢国家科学基金会(基金号为 DMS1234567)的支持。
- 例 1.6.3: Acknowledgments. This work was supported in part by the US Department of Energy under Contract #P-WENG04-05. 致谢: 这项工作部分由美国能源部资助,合同号为 P-WENG04-05。
- 例 1.6.4: Acknowledgments. This work was supported in part by the National Natural Science Foundation of China under grant number 12345678.
 致谢: 这项工作部分由中国国家自然科学基金会资助,基金号为 12345678。
- 例 1.6.5: Acknowledgments. We are grateful to the two anonymous (匿名的;此词不可用中文 式的习惯语 unknown 代替) referees for useful comments and suggestions。 致谢: 非常感谢两位审稿人有用的评论和建议。
- 例 1.6.6: Acknowledgments. We are grateful to Prof. M.-C. Zhang of Tsinghua University for many useful discussions. The second author would like to thank Prof. K.-C. Sun for his hospitality during his visit to Peking University. Part of this work was carried out while this author was visiting Peking University. **致谢:** 非常感谢清华大学张默存教授许多有益的讨论。第二作者感谢孙克昌教授在访

玫粥: 非常感谢有半八字派款待教投计多有益的讨论。第二件者感谢孙兄自教设在历 问北京大学期间给予的热情接待。文章的部分工作为该作者在北京大学访问期间进行 的。

例 1.6.7: Acknowledgments. The author is greatly indebted to Prof. K.-C. Sun for many useful discussions and for (这里的这个 for 不能丢掉) the guidance over the past years.
 致谢: 作者非常感谢和孙克昌教授多次有意义的讨论以及他这几年的指导。

致谢部分

例 1.6.8: Acknowledgments. The author wishes to express his sincere appreciation to all those who made suggestions for improvements to this paper. Particular thanks go to Professor K. Wang who critically read the paper and made numerous (此处 numerous 比 many 更重一些。) helpful suggestions.
 致谢: 作者真诚感谢给于本文提出建议和改进的所有那些人。特别感谢王柯教授,他

以批评的眼光通读全文并提出许多有用的建议。

- 例 1.6.9: Acknowledgments. The author is indebted to Dr. J. Smith for many helpful discussions, and to Dr. S. Fisher for correcting two errors in an earlier version of the paper.
 致谢: 作者感谢 J. Smith 博士很多有帮助的讨论,以及 S. Fisher 博士修正了论文早期的两处错误。
- 例 1.6.10: Acknowledgments. The authors would like to thank Dr. J. Smith for valuable comments, and the Nanjing University Research Fund as well as the US National Science Foundation for the financial support.
 致谢: 作者感谢 J. Smith 博士有价值的评论,以及南京大学研究基金和美国国家科学基金会的资助。
- 例 1.6.11: Acknowledgments. I am indebted to N. Smith and M. Wang for advices that both influenced the course of this research and improved its presentation. I also thank M. Fox for his helpful comments.
 致谢: 我感谢 N. Smith 和王明对这一研究深有影响并改善它的表达给于的指导,同时

致谢: 我感谢 N. Smith 和王明对这一研究深有影响并改善它的表达给于的指导, 同时 感谢 M. Fox 有帮助的评述。

对于一些教科书、专著或学位论文,感谢部分可能会长点,感谢的人会多点。下面举两个 典型的例子。

例 1.6.12: Acknowledgments. My deepest gratitude goes first and foremost to Professor AAA, my supervisor, for her constant encouragement and guidance. She has walked me through all the stages of the writing of this thesis. Without her consistent and illuminating instruction, this thesis could not have reached its present form. Second, I would like to express my heartfelt gratitude to Professor BBB, who led me into the world of mathematics. I am also greatly indebted to the professors and teachers at the Department of Mathematics: Professor CCC and Dr. DDD, who have instructed and helped me greatly in the past three years. Last, my thanks would go to my beloved family for their love and confidence in me all through these years. I also owe my sincere gratitude to my friends and my fellow classmates who gave me their help and time in listening to me and helping me work out my problems during the difficult course of the thesis.

致谢: 我首先对导师 AAA 教授致以深深的感谢,感谢她不断的鼓励和指导。她在这 篇学位论文写作的所有阶段从头到尾指引我。没有她一致和有启发性的教导,本文不 可能以现状面世。其次,我想对 BBB 教授表达我衷心的谢意;他将我带入数学的世 界。我也非常感激数学系的教授和老师们,尤其是过去三年内教我课并给我很大帮助 的 CCC 教授和 DDD 博士。最后,我感谢我亲爱的家人,这些年来他们给于我爱和信 心。对我的朋友和同学我还欠一份诚挚的谢意。他们不吝赐教、不吝时间与我交流,在 我困难的学位论文写作过程中帮助我解决问题。 例 1.6.13: Acknowledgments. This research project would not have been possible without the support of many people. The author wishes to express her gratitude to her supervisor, Prof. AAA who offered invaluable assistance, support and guidance. Deepest gratitude is also due to the members of the supervisory committee, Dr. BBB and Dr. CCC, without their knowledge and assistance this study would not have been successful. Special thanks also go to her postgraduate friends, especially DD, EE and FF, for sharing the literature and friendship. The author would also like to convey thanks to the financial support provided by GH University. Finally, the author won't forget her beloved family members, for their understanding and endless love through the duration of her studies.

致谢:若无许多人的支持这个研究计划可能不会存在。作者希望表达对她导师 AAA 教授的感激之情。他提供了宝贵的帮助、支持和引导。对指导委员会成员 BBB 博士和 CCC 博士我也深表谢意。没有他们的知识和帮助这项研究不可能成功。还要特别感谢她的研究生朋友,尤其是 DD、EE 和 FF。他们与她共享文献和友谊。最后,作者对她亲爱的家庭成员在她求学过程中给予的理解和无尽之爱永志不忘。

参考文献与附录

35

1.7 参考文献与附录

那些与文章内容有关、并在文章中引用的论文和书应被放在参考文献的名下。读者阅读正 文之前经常先浏览一下参考文献列出的资料看看是否熟悉,是否与自己的兴趣有关,以决定 是否将文章读下去。如此看来,参考文献的制定很有意义。

参考文献中列出的文章必须包括如下信息:作者名 (authors)、文章名 (article title)、杂志名 (journal title)、卷数 (volume number)、分册数 (issue number)、出版年 (publication year)、页数 (page numbers)。杂志名往往只写出其公认的简写形式,在其中介词等非关键词基本省略,如 Journal of Mathematical Analysis and Applications 在参考文献中可写成 J. Math. Anal. Appl.。Volume 一般写成 Vol., Number 则为 No.。这些约定俗成的习惯写法在学术期刊上到处可见。另外,美国工业与应用数学协会 (Society for Industrial and Applied Mathematics) 的缩写为 SIAM,它旗下有不少杂志和其它出版物。例如它的《科学计算杂志》杂志可简写成 SIAM J. Sci. Comput.,甚至缩写成 SISC。美国的《数学评论》(Mathematical Reviews;缩写为 MR)杂志及其网站(可从美国数学会 (American Mathematical Society,简称 AMS) 网站 www.ams.org 中的 MathSciNet 进入)有数学杂志名称的标准缩写表。

参考文献中的书的信息要提供:作者名、书名 (book title)、出版社名 (publisher)、第几版(如非初版) (edition information)、出版地(有时可省掉) (publication city)、出版年。

如果参考文献中列出会议论文集内的文章,则除了包含作者名、文章名、出版年以及页数 外,还要给出论文集的书名以及编辑者 (editors) 的名字。

有时, 文章中引用了某人的博士或硕士论文, 那么在该文献的排列处告诉这篇学位论文所 属的大学名称。例如,

R. Murray, Discrete Approximation of Invariant Densities, Ph.D. thesis, Cambridge University, Cambridge, England, 1997.

当引用与你文章的新结果密切相关的前人工作时,光光提及该文献是不够的,因这样做读 者不知那篇论文的贡献为何,问题的困难处在哪里,以及你自己的工作与别人工作的异同。 你必须同时给出作者名,并简述其与你文章有联系的主要贡献及未解决问题,作为你目前工 作的出发点。

有两种主要的文献引用方法。一种只给出参考文献中的号码,通常放在方括号内,在数学 文章中比较常见,如 the stability problem was first considered in [7] (稳定性问题在【7】中 第一次考虑)。另一种给出作者名(通常只写上姓)和出版年份,称为哈佛引用法,如 the stability problem was first considered by Bellman (1973) (稳定性问题由贝尔曼 (1973) 第一 次考虑)。在哈佛引用法中,如果引用同一作者同一年份的几篇论文,可在年后加上 a, b, c, d 等区别开来,如 The idea of variation was introduced by Smith (1973a) and was applied to the convergence analysis in Smith (1973b). (变分思想由史密斯 (1973a) 引进并在 史密斯 (1973b) 中用到收敛性分析上。)

参考文献的标号在引文中出现的地点应以读之流利及位置贴切为准。例如, This bound was found [10] to be sharp 比 This bound was found to be sharp [10] 为佳。为了方便读者 需要, 有的时候更好的做法是把所引文献的作者也一道公布, 如 This bound was found by Courant [10] to be sharp。若也想增加读者对几篇参考文献的历史感, 可以再加上年份。这

就相当于两种引用法一起使用,像 Simplicial fixed point methods have been developed by Scarf (1967) [14], Eaves (1970) [3], and Todd (1976) [16]。碰到几个作者的情形时,一般遵循如下惯例:两个作者时名字一起写出,如 see Jones and Zhang [5] 或 see Jones and Zhang (1994)。如有两人以上,第一次引用时列出所有作者名,以后的每次引用只列第一作者的名字再加上 et al. (等人),如第一次引用时可写 see Kellog, Li and Yorke (1974),然后每次引用写 see Kellogg et al. (1974)。小心: et al. 不能写成 et al 或 et. al. 或 et. al。另外要注意, etc. 的意思是"等等、等事、等物",即 and so on;如要表示"等人"则应用 et al.,与短语 and others 同义。顺便提一下, i.e. (即)和 e.g. (例如)的两个点号都不能丢。

当正文中同时引用几篇文献时,应以标号的递增次序排列,而不是按文献的出版年份为 序,如 Several proofs have been given by [4], [8], [12]。此外,比较好的方法是将它们在参考 文献内的标号放在同一个方括号里,而不是分别写出。如写成 We refer the reader to [3, 5, 9],而不是 We refer the reader to [3], [5], [9]。

假如你引用一本书或一篇长文中的某个重要结果并且希望读者能快速地了解它的细节,你 在引用的同时最好也给出原始文献中所在的页码、小节号、或定理号等。例如, by Banach's Lemma ([7]; Theorem 4.5.3)。

不同杂志的出版社有其自己的参考文献书写规格。在决定文章投向哪个期刊时,应该浏览 那个杂志对稿件、特别对参考文献的格式要求,并根据这些具体要求重新审定文章中的参考 文献。平时要养成一个好习惯,经常收集与自己的研究有关的最新文献出版信息,放在一个 可以取名为 Reference.bib 的专用参考文献文件,需要时加以选用。它可以"不修边幅",但 也无伤大雅,正式放进文章后统一格式,重新加工成型。

下面列出同一篇论文在不同出版社印刷的杂志内参考文献中的书写格式:

AMS: C. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. **27**(1948), 379-423.

Elsevier: C. Shannon, A mathematical theory of communication, *Bell Syst. Tech. J.* 27:379-423(1948).

IMA: Shannon, C. 1948 A mathematical theory of communication. *Bell Syst. Tech. J.* **27**, 379-423.

SIAM: C. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27(1948), pp. 379-423.

Springer-Verlag: Shannon, C. (1948) A mathematical theory of communication. Bell Syst. Tech. J. 27, 379-423.

World Scientific: C. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27(1948), 379-423.

我们如下列出其它一些需要注意的事项:

• 了解几种与你工作有关的学术团体、杂志及其出版社的出版物信息,如 SIAM, IMA, JFM, Elsevier, Springer-Verlag, World Scientific。

参考文献与附录

37

- 所有参考文献的写法要有一致性 (consistency)。比如,所有作者的姓和名的次序要一致。在英文中一个人的全名有两种写法,一是姓在后、名在前,另一是姓在前、名在后,但它们之间用逗号隔开,如 Mary Carpenter 或 Carpenter, Mary。
- 给出足够的、正确的信息, 年、卷数、作者名、杂志名, 缺一不可。
- 参考文献最好是原始论文。如果原文不可得,或未读过,必须引用间接引文时,要至少 要读过它的 Abstract。如没见过原文,可参看至少两篇引用那篇文章的论文。这样做可 避免引文并不包含要引用的信息。
- 有少数杂志的名字随着时间的进程中途会改变,如 SIAM J. Sci. Comput. 在1993年前 名字为 SIAM J. Sci. Stat. Comput. (SISSC (1980-1992); SISC (1993 -))。
- 每个参考文献都已在正文中被引用。有些文章列出很多文献,但仅有部分在正文中引用,这是不可以的。未被引用的文章不能堂而皇之地位于参考文献之内。有时这会涉及 到学术品行问题。文章被接受后并编排时,有些杂志 (如 SIAM, AMS) 会仔细检查参考 文献是否与正文中引用部分一一对应。不合格者会让作者要么在正文中引用,要么删去。
- 参考文献的多寡要恰当:不要漏掉重要和必要的文献,但也不要罗列多余的或与你文章 关系不大的文献。列出的文献应该包含文章所在的子领域内几篇关键性的论文,并在正 文中提及它们,证明你对该领域的历史和现状了如指掌。
- 尽量不要引用很难找到的文献,因为读者不易读到它们。另外,因为英文文章的读者多 为不懂中文的外国人,除非开创性的论文,一般不必引用中文文献。
- 数学文章的参考文献顺序按照第一作者的英文字母自上而下排序。但其它学科不尽而然,比方说,物理文章的参考文献排序与正文中引用次序相一致。此外,数学文章除列出杂志名及文章首页至末页页数,同时也列文章题目,而物理、化学等其它学科文章一般不列文献题目。
- 如上所述,杂志名的主要词汇要用缩写,但同样杂志的缩写方式应该前后一致。
- 如果用 T_EX 或其变种 LAT_EX 及 AMS-LAT_EX 写作论文,在引用处使用命令 \cite{xx}, 其中 xx 是参考文献文件中被引用文献的代号。例如,如要引用代号为 tang2010 的文 章,在正文的源文件中引用处输入 \cite{tang2010}。

最后,我们讲一下附录的用途。附录对于研究性论文不是必须的。许多数学文章,尤其 是纯粹数学方面的,不包含附录。这是因为大部分数学定理的证明需要放在定理的内容下方 一起阅读,而且几乎所有的数学工作者如果不读证明就好像很难承认定理的正确性。另一方 面,很多数学教科书或专著都带有一个或多个附录,见本书第四章第四节对此所作的讨论。 因为所有形式的附录之功能大同小异,我们这里仅仅笼统介绍一下论文中附录的作用。

数学文章的附录装的主要是作者不想放在正文内那些冗长复杂的定理证明。如果将这些证明放在正文中定理的叙述之下,可能让一些读者望而生畏,读不下去,既容易打断他们的阅读思路,甚至也会挫伤他们将论文读到底的勇气。尤其是一些应用学科的文章,只求结果,不问推导的读者大概对证明兴趣不浓,这时,附录就起了双重的作用:一方面对定理推理过程也想全面了解的读者,会仔细弄懂附录里证明的方方面面;另一方面,那些暂时不看证明的人有朝一日也许会更上一层楼,埋首于繁复的证明之中,说不定数学的灵感从中而出而有了新的发现。

正因为此,尽管刚开始只有一部分人读附录,作者也要将它写得至少和正文一样好。它不 应当因放到文章正文的后面而受到轻视。

1.8 其它注意事项

1.8.1 文章的署名

目前流行的文章署名有两种:

1. 按对文章贡献的大小排署名, 贡献最大的排第一位, 并依次类推;

2. 按作者的英文姓氏 (family name 或 last name) 字母顺序来排名。

一般来说,工程学科和实验科学采用第一种方式较多,而纯粹数学和应用数学方向的多采 用第二种。作为第一作者会有一些好处,比如说文章被别人引用时,经常只有第一作者的名 字出现(比方说,Liu et al. (1990))。有些文献索引仅能查到第一作者。目前国内很多大学 和研究机构会根据论文排名次序的先後予以奖励,虽不尽合理,但却是事实。

英文数学论文作者排名按姓氏笔画为序,基本上已成惯例,如是反序,则表明有关作者的贡献微乎其微。举例来说,英文姓 An (安)的第一作者与姓 Zou (邹)的第二作者合写的数学研究论文,并不说明第一作者就是贡献第一,或者说第二作者在论文中的角色也是靠后。至少对数学论文而言,按作者排名决定贡献大小这样的想当然就大错特错了。但如果作者 An 排在作者 Zou 之后,通常的解释是 Zuo 的贡献比 An 大得多,除非另有隐情。

还有一点需要注意,写平生第一篇英文文章时,一定要决定好你的名字和其缩写的英文 形式,确定好以后就基本上不再改变,既保持一致,又便于查询。比如你的名字叫张伟刚, 这将会有几种形式的英文写法: Zhang Weigang, Weigang Zhang, Wei-Gang Zhang, W. Zhang 或 W.-G. Zhang。我们的建议是:

- 1. 最好不用 Zhang Weigang,因为这样的话很多外国同行会以为你姓 Weigang。
- 2. 可用 Weigang Zhang 或 Wei-Gang Zhang,但缩写形式最好用 W.-G. Zhang。英文缩写 是 W. Zhang 的作者可能有很多,但名字为 W.-G. Zhang 的一般来说会少很多。这在查 文献索引,及让你的名字更具一些特殊性等方面会有一些帮助。
- 3. 在你的第一篇论文发表时,一旦确定你的名字的英文形式(比方说W.-G. Zhang 或Wei-Gang Zhang),以后写文章署名时应尽量保持一致。你未来可能会在中文名字之外,为了外国学术同行或朋友称呼你时发音方便起见,加上一个西方人名(first name 或 given name)(比如,Steve Wei-Gang Zhang),但在之后的科技文章签名处,这个 Steve 或 S. 不要和你的固定英文名字放在一起,以免被误认为是另外一人。

文章完稿后,在它上面除了作者的署名外,还需写上所有作者的单位名称、通讯地址以及 电子信地址,加上上面已经讨论过的摘要和致谢、下面将要进行讨论的最后完成日期、关键 词、美国数学会数学学科分类号等。

一个技术性的注意事项是一篇文章经过审稿后,一般就不能随意加上或减去某个共同作者。如非此不可,也要有充分的理由,及时向杂志编辑详细解释清楚并得到他(她)的许可。

最后我们想要强调的是,切切不可未经同意就把别人的大名(比如你的论文指导老师)加 到你的文章的署名处单方面拿出去投稿,尤其当此人对该文没有实质性的贡献时。要知道, 文章作者一旦署名,署上去的也有责任二字。当论文被发表甚至获奖后,这给所有作者带来

其它注意事项

39

了荣誉,但当文章出了问题,比如说被批评有抄袭之嫌时,则作者们不能推卸责任,尤其是 署名在上的导师不应该把责任一股脑儿地推给学生,除非这个学生真的是擅自挂上大名鼎鼎 的导师大名以给老师一个惊喜或谋求快速发表而后者一直蒙在鼓里。所以,作者署名是个严 肃认真之举。我们要大力提倡实事求是的作风,坚决反对不求贡献但求署名的学术不端行 为。

1.8.2 文章的日期

文章初稿写成的日期最好要注明,之後每次修改完成的日期也建议写明。这有几个好处。首先,你对自己文章的写作过程和时间非常清楚,对不同时期的修改内容了如指掌。 其次,你的文章寄给别人后,他人需要知道这篇文章是什么时候完成的,是第几稿。这样 别人在引用这篇还没发表的文章时也可以注上写作的时间 (... 2001, unpublished) 或 (... 2001, Private Communication)。

文章的日期一般可写在作者名字之后一行。

1.8.3 文章的关键词和学科分类

很多杂志需要作者提供关键词 (Keywords)。关键词顾名思义是文章的关键之词,因而不 宜太多,"关键"多了就会失去"关键"的意义,就像太多的特等奖就让人不稀罕了一样。 关键词一般要在十个以下(除非是一篇长文或用到的重要概念特别多,如下面的例 1.8.2), 它们是为了让美国《数学评论》等数学论著归档服务机构能把你的论文放到其分门别类数据 库中的正确位置。科学引用指标检索工具 SCI (Science Citation Index) 利用关键词来来给文 章分门别类,而读者则根据关键词从事与他研究或兴趣有关的文献搜索。

在当今的计算机信息时代,关键词非常重要,因为很多读者可能通过关键词寻找他有兴趣的相关文章,所以选用关键词也不能太马虎、草率。关键词的遗漏可能导致检索困难或引用 不足,容易减少别人对这篇论文的关注程度,因而也可能会造成作者的工作影响力降低。

关键词不要过于笼统,像 computation, fluid mechanics, mathematics,也不要包含像 new, interesting, best 这样的形容词。最好放上一两个包含文章论题范围较大、笼统一点的词, 另外加上几个比较贴切的范围相对较窄的词,比如 Numerical approximation, finite element method, mesh adaptation, local time stepping。

关键词不仅仅只是一个词,有时是一个短语,如上面说的 finite element method。所有的 名词最好只写单数形式,如上面列举的有限元法不必写出 finite element methods。但是,写 成复数也无妨大雅,全凭作者爱好,如下面的例 1.8.1。当然,有的词看上去像复数,其实是 不可数的单数,例如 statistics 和 chaos,不要以为是复数,或以为是可数名词的单数而再写 成复数。

有些杂志要求投稿文章提供美国数学会数学学科分类号 (AMS Mathematics Subject Classification Number, 简记为 MSC;由于这个分类系统是2000年制定的,也写成 MSC(2000))。 这个权威的数学分类系统将所有数学分成九十四个主要学科 (primary classification areas), 每一学科又细分为若干子学科,这种树状分类法颇像动物学中的分类法。有了正确的分类 号,不仅你发表的论文出现在数学档案库的合适场所,而且潜在的相关读者会很快发现你的 文章,这就等于替你的文章做了一个很好的广告。 除了 AMS Mathematics Subject Classifications 关于数学的分类系统外,还有与计算科 学有关的分类系统 The Computing Reviews Classification System 等。物理学的分类系统 有美国物理研究所 (American Institute of Physics,简称 AIP) 设计的 Physics and Astronomy Classification Scheme (PACS) (例如可见登在《计算物理通讯》(*Communications in Computational Physics*)上的文章中给出的分类号)。

例 1.8.1: (Transactions of the American Mathematical Society, 356, p. 1691)
Title. Coordinates in Two Variables over a Q-algebra 2000 Mathematics Subject Classification. Primary 13B25, 14J70, 14R10. Key words and phrases. Coordinates, locally nilpotent derivations, embeddings.
题目: Q-代数上的双变量坐标 2000 数学学科分类号: 13B25、14J70、14R10。
关键词与短语: 坐标、局部幂零推导、嵌入。

例 1.8.2: (Mathematics of Computation, **75**, p. 1931)

Title. Iterated Function Systems, Ruelle Operators, and Invariant Projective Measures 2000 Mathematics Subject Classification. Primary 28A80, 31C20, 37F20, 39B12, 41A63, 42C40, 47D07, 60G42, 60J45.

Key words and phrases. Measures, projective limits, transfer operator, martingale, fixedpoint, wavelet, multiresolution, fractal, Hausdorff dimension, Perron-Frobenius, Julia set, subshift, orthogonal function, Fourier series, Hadamard matrix, tiling, lattice, harmonic function.

题目: 迭代函数系统、Ruelle 算子和不变投影测度 2000 数学学科分类号: 28A80、31C20、37F20、39B12、41A63、42C40、47D07、 60G42、60J45。 关键词与短语: 测度、投影极限、转移算子、鞅、不动点、小波、多分辨率、分形、 豪斯道夫维数、佩农-弗罗比尼斯、朱利亚集、子移位、直交函数、傅里叶级数、阿达 玛矩阵、拼接、格、调和函数。

1.8.4 文章的章节标题

章节的标题是文章的骨骼。对读者来说, 文章的结构或小标题

- (1) 使读者更容易找到他们感兴趣的部分;
- (2) 使读者更容易找到作者的主要贡献或文章的亮点;
- (3) 使读者从逻辑上更理解作者的写作意图。

而对作者来说,章节小标题

- (1) 对相应的章节起到画龙点睛的作用;
- (2) 帮助作者自己写作前给出好的提纲;
- (3) 把文章划分成相对独立的部分使目的性强的读者直奔所需要的部分。

本章总结

41

1.9 本章总结

我们已经对英文数学文章的结构与写法进行了一般分析。这仅提供了怎样写数学的基本格 式。要想把学术论文越写越好,就要在掌握写作基础知识的同时,多多阅读欧美数学家的英 文作品,不断扩充英文数学词汇量,在头脑中反复练习一些常用短语和习惯用法(下一章有 详细介绍)。这样就能迅速提高专业英语写作能力,成为一个训练有素的英文数学写作者。 在结束本章之前,我们再提供一些好的句子或段落。

例 1.9.1: Why is the Discontinuous Galerkin Method Important?

The Discontinuous Galerkin method is somewhere between a finite element and a finite volume method and has many good features of both. It provides a practical framework for the development of high-order accurate methods using unstructured grids. The method is well suited for large-scale time-dependent computations in which high accuracy is required. An important distinction between the DG method and the usual finite-element method is that in the DG method the resulting equations are local to the generating element. The solution within each element is not reconstructed by looking to neighboring elements. Its compact formulation can be applied near boundaries without special treatment, which greatly increases the robustness and accuracy of any boundary condition implementation.

为什么间断迦辽金方法重要?

间断迦辽金方法大约处于有限元法和有限体积法之间,并有两者的许多好特色。它提供 了利用非结构化网格发展高精度方法的一个实用框架。该法非常适于大规模时间依赖的 计算,在其中需要高精度。间断迦辽金方法和通常的有限元法的一个重要区别在于,前 者导致的方程对生成的单元来说是局部的。在每个单元内的解不要通过其周围的单元来 重建。其紧凑的制定能用到边界而无需特殊处理。这就大大提高了任何边界条件实施的 鲁棒性和准确性。

例 1.9.2: 下面是一篇综述性文章中的一段;作者通过一些大家比较熟知的道理来叙述自适应计算 方法的必要性。此段很多地方用词不难,但都比较恰到好处。

(C.J. Budd, W. Huang and R.D. Russell, Adaptivity with moving grids, Acta Numerica, (2009), 111-241.)

Time-dependent systems of partial differential equations (PDEs) often have structures evolve significantly as the integration of the PDEs proceeds. These can be interfaces, shocks, singularities, changes of phase, high vorticity or regions of complexity. Associated with such structures are the evolution of small length (and time) scales, rapid movement of the solution features and the possibility of finite time blow-up of a component of the solution. Frequently associated are also conservation laws, usually linked to underlying symmetries. Examples of these phenomena occur in many applications, such as gas and fluid dynamics, conservation laws, free boundary problems, combustion, detonation, meteorology, mathematical biology and nonlinear optics. To solve such PDEs numerically it is typical to impose some form of spatial mesh and then to discretize the solution on this mesh by using a finite element, finite volume, finite difference, or collocation method. However, this strategy may not be effective in the case of structures that involve small length scales, leading to large localized errors. In such cases it is often beneficial to use some form of non-uniform mesh, adapted to the solution, on which to perform all of the computations. The advantages of doing this can be a reduced overall error, better conditioning of the system, and better computational efficiency. Unfortunately, introducing the extra level of complexity to the system through adaptivity can also lead to additional computational cost and possible numerical instability. Mesh adaptation should thus be used with care and appropriate analysis where possible.

偏微分方程的时间依赖系统具有随着偏微分方程积分的行进而演变显著的一些结构。它 们可以是界面、冲击、奇点、相变、高涡和复杂域。与这些结构相关的是小长度(和时 间)尺度的演化、解特性的迅速移动以及某个解分量的有限时间爆破可能性。经常有关 的也有通常与底层对称性连在一起的守恒律。这些现象的例子出现在众多应用中,比如 气体或流体动力学、守恒律、自由边界问题、燃烧、爆炸、气象、数学生物学及非线性 光学。为数值求解这样的偏微分方程,典型的做法是施加某些形式的空间网格,然后在 这个网格上将解用有限元、有限体积、有限差分、或配点法来离散化。然而,这个策略 在涉及小长度尺度结构的情形未必有效,导致大的局部化误差。在这些情况下,常常有 效的是采用某些形式与解相适应的非一致网格,在其上执行所有的计算。这样做的优势 可以是减少的总误差、系统更好的条件性和更佳的计算有效性。不幸的是,通过适应性 来引进额外一级复杂性也会导致额外的计算成本和可能的数值不稳定性。网格适应性因 此要小心用之,并且一有可能就要适当分析。

例 1.9.3: 下面的一篇文章研究空气动力学计算方法中的一类重要算法,叫迎风格式(upwind scheme)。作者用比较清晰的叙述方法描述了这一方法的历史,以及它在多维计算中的 挑战性问题(见最后一段)。

(B. van Leer, Upwind and high-resolution methods for compressible flow: From donor cell to residual-distribution schemes. Commun. Comput. Phys., 1 (2006), 192-206.)

Upwind differencing is a way of differencing the spatial-derivative terms in the advection equation, and is almost as old as CFD, starting with the work of Courant, Isaacson and Rees (1952 [12]). In their paper, the choice of an upwind-biased stencil follows rather naturally from the "backward" variant of the Method of Characteristics. In the course of the decades further evidence has been gathered in support of upwind discretizations.

- Godunov, 1959. The Russian mathematician S. K. Godunov [18] favored the firstorder-accurate upwind scheme among a family of simple discretizations, because it is the most accurate one that preserves the monotonicity of an initially monotone discrete solution.
- Fromm, 1968. IBM researcher Jacob Fromm [16] constructed higher-order advection schemes with low dispersive error, by combining schemes with predominantly negative and predominantly positive phase errors: "Zero Average Phase Error Method." The resulting schemes turn out to be upwind biased.
- Wesseling, 1973. Dutch aerospace engineer (turned numerical analyst) Pieter Wesseling [64] used Parseval's theorem to relate the numerical error committed by advection schemes to the Fourier transform of the initial-value distribution. For two different families of advection schemes he found it is an upwind scheme that minimizes the L^2 -error made in one time step if the initial values contain a discontinuity. This would indicate upwind schemes may be the preferred choice for

本章总结

43

compressible flows, where shock discontinuities are common and arise even from the smoothest initial data.

- van Leer, 1986. Reversing Fromm's procedure, Dutch astrophysicist (turned aerospace engineer) Bram van Leer [35] developed an operational definition of upwind schemes.
- Jeltsch, 1987. Mathematicians including Swiss Rolf Jeltsch [30], searching for advection stencils with the greatest potential accuracy for a given number of grid-points, have proved that these stencils are upwind biased.

The price one has to pay for all this goodness is the computational effort in determining the advection direction. That is trivial for a linear 1-D advection equation, but a major effort for nonlinear advection operators hidden in nonlinear systems of multidimensional conservation laws.

迎风差分是差分平流方程中空间-导数项的一种方式,它几乎和计算流体力学一样老,从 Courant, Isaacson 和 Rees 的工作(1952【12】)开始。在他们的论文中,一个偏向 迎风的模板选取相当自然地来自于特征线法的"向后"变种。过去的几十年间聚集了进一步的证据支持迎风离散。

- Godunov, 1959. 俄罗斯数学家 S. K. Godunov 【18】在一族简单离散中青睐一阶精度迎风格式,因为它是保持初始单调离散解单调性最精确的方法。
- Fromm, 1968. IBM 的研究者 Jacob Fromm 【16】通过合并相位误差以负为主和以 正为主的格式而构造了低色散误差的高阶平流格式: "零平均相位误差方法"。由 此产生的格式原来是偏向迎风的。
- Wesseling, 1973. 丹麦航空航天工程师(转为数值分析学家) Pieter Wesseling 【64】利用 Parseval 定理将平流格式导致的数值误差与初始值分布的傅里 叶变换联系起来。对两族不同的平流格式他发现,若初始值包含不连续点时是一个 偏向迎风格式将一个时间步产生的 L²-误差极小化。这似乎表明迎风格式对可压缩 流可能是首选,在那里冲击不连续性司空见惯,甚至出现于最光滑的初始数据。
- van Leer, 1986. 将 Fromm 的程序反过来,丹麦天体物理学家(转成航空航天工程师)Bram van Leer【35】发展出迎风格式的一个操作性定义。
- Jeltsch, 1987. 包括 Rolf Jeltsch 【30】的数学家们,在寻找对于给定数目的网格点具有最大潜在精度的平流模板之时,已经证明这些模板是偏向迎风的。

对所有这些好处所付的代价是决定平流方向的计算努力。它对线性一维平流方程是平凡 的,但对隐藏在多维守恒律的非线性系统的非线性平流算子却是主要的努力。

应当知道,不是杂志上刊登的所有论文其语言部分都写得好。欲从阅读其它论文获得写作 技巧,要在那些有名望的期刊上找,如美国数学会出版的数学杂志。如今世界各地的学术界 出版物良莠不齐,某些新生的杂志要么以盈利为宗旨,要么以滥发文章为目的。不能指望在 这类杂志中读到太多的好文章。

令人乐观的是,好文章无处不在,甚至有很多公认的佳作。我们建议经常浏览或精读好刊 物上的好文章,不光及时了解研究前沿的状况,也能从这些作者的文章字句中学会写作的技 巧。

下面对每一个范畴按字母顺序列出约五本知名数学期刊的名称:

- 综合读物: The American Mathematical Monthly; Mathematical Intelligencer; Notices of the American Mathematical Society; SIAM News; SIAM Review.
- 数学: American Journal of Mathematics; Annals of Mathematics; Inventiones Mathematicae; Journal of the American Mathematical Society; Transactions of the American Mathematical Society.
- 数论与逻辑: Algebra and Number Theory; International Journal of Number Theory; Journal of Mathematical Logic; Journal of Combinatorics and Number Theory; Journal of Number Theory.
- 代数与几何: Communications in Algebra; Journal of Algebra; Journal of Algebra; Journal of Algebra; Journal of Croup Theory.
- 分析与拓扑: Geometric and Functional Analysis; Journal of Fourier Analysis and Applications; Journal of Functional Analysis; Journal of Operator Theory; Topology.
- 微分方程与动力系统: Differential Equations with Applications; Ergodic Theory and Dynamical Systems; Fractals; Journal of Differential Equations; Journal of Dynamics and Differential Equations.
- 概率与统计: Annals of Probability; Annals of Statistics; Journal of American Statistical Society; Biometrika.
- 应用数学: Communications on Pure and Applied Mathematics; Journal of Approximation Theory; Multiscale Modeling and Simulation; SIAM Journal on Applied Mathematics; SIAM Journal on Mathematical Analysis.
- 计算数学: Mathematics of Computation; Numerische Mathematik; SIAM Journal on Numerical Analysis; SIAM Journal on Scientific Computing; Journal of Scientific Computing.
- 离散数学: Annals of Combinatorics; Discrete Mathematics; Journal of Combinatorial Theory; Journal of Graph Theory; SIAM Journal on Discrete Mathematics.
- 最优化与控制: Journal of Global Optimization; Mathematics of Operations Research; Mathematical Programming; SIAM Journal on Control and Optimization; SIAM Journal on Optimization.
- 计算物理: Journal of Computational Physics; Journal of Mathematical Physics; Journal of Statistical Physics; Communications in Computational Physics.

在欧美,有一些最佳论文的评选,下面列举奖项名称及其相关的网页供读者参考:

 《美国数学月刊》(The American Mathematical Monthly)的 Lester R. Ford 论文奖: http://www.maa.org/Awards/ford.html 这一奖项自1965年开始,现已颁发近40年。 本章总结

- 美国工业和应用数学协会优秀论文奖 (The SIAM Outstanding Paper Prizes): http://www.siam.org/prizes/outstanding.htm 这一奖项自1999年开始。
- 美国数学会的 Levi L. Conant 奖 (Levi L. Conant Prize): http://www.ams.org/prizes/conant-prize.html 主要奖励在 Notices of the American Mathematical Society 或 Bulletin of the American Mathematical Society 发表的文章。这一奖项自2001年开始。
- 《复杂性杂志》优秀论文奖 (Best Paper Award for the Journal of Complexity): http://www.ibc-research.org/prizes.html#BPA 这一奖项自1996年开始。

最后我们指出,本章的所有讨论对于撰写学位论文也有帮助。学位论文和学术论文的区别,就好像电视剧和电影的区别-前者大大长于后者。学位论文应能提出创见,如历史上最佳硕士论文之一是信息论之父香农 (Claude Shannon, 1916-2001)于1937年在麻省理工学院撰写的的硕士论文 Symbolic Analysis of Relay and Switching Circuits (中继和开关电路的符号分析)。但一般而言,学位论文的大部分内容往往是本学科发展和现状的一个综述。在这个意义下,它更像一本书。我们在第四章将讨论怎样写书。

数学文章的结构

Chapter 2

数学文章的词句

由前一章我们已经了解了一篇数学文章的基本结构和写作要领。在这一章我们着重引进基 本英文数学词汇,介绍常用句法和短语的应用。

词汇是语言的基本单位。无论用什么语言写作,我们常有这样的感触:尽管我们的脑袋 里装了不少的常用词,但写作时保证用词的恰到好处却不是一件容易做到的事。西方的大学 人文通识教育的一般做法能给我们启发:无论学理、学工、学文或学其它科目,大学一、二 年级学生的人文学科 (humanities) 广泛阅读是增强作文措词能力的极好训练。具体到数学写 作中的正确用词,哈尔莫斯也告诫我们: Think about and use with care the small words of common sense and intuitive logic, and the specifically mathematical words (technical terms) that can have a profound effect on mathematical meaning.(多想想并小心使用常识和直觉逻 辑的小词,特别是对数学含义有深远影响的数学词汇(技术术语)。)对慎用技术名词,他 进而给出三个更加具体的忠告:

(1) Avoid technical terms, and especially the creation of new ones, whenever possible.

尽可能避免技术词汇,尤其是新造的。

(2) Think hard about the new ones that you must create; consult Roget; and make them as appropriate as possible.

多思索你一定要创造的新词;翻查罗瑞词典;令它们尽可能合适。

(3) Use the old ones correctly and consistently, but with a minimum of obtrusive pedantry

正确并连贯使用旧词,但是尽量不突兀迂腐。

我们在本章介绍数学词句之前引述哈尔莫斯的如上忠告,就是希望年轻的读者能把它们视 为数学写作中遣词用句的座右铭。

在用英语写作科技文章时,经常涉及到各种句型和语法的使用。这些问题在英语语法书 中有比较详尽的介绍,但很少有中文书籍专门对数学论文的写作给与比较仔细的介绍。这方 面的英文文章和书籍相对则比较多,比如说英国曼切斯特大学著名数值代数专家 Nicholas J. Higham 已再版的书 Handbook of Writing for Mathematical Sciences [13] 和美国圣路易华盛 顿大学调和分析学家 Steven G. Krantz 出版的 A Primer of Mathematical Writing [17] 是关于数学写作的优秀读本。对更一般的科技英文写作,我们推荐 Jean-Luc Lebrun 近年来出版的书 Scientific Writing [20]。

科技英语不像普通英语那样具有感性形象思维,一般不具感情色彩,表达比较直接了当, 其目的是使读者容易理解而不产生与题无关的太多想象。也不经常运用比喻、排比、夸张等 修辞手段,而是要准确表达客观规律,按逻辑思维清晰地描述问题。科技英语的词汇意义比 较专一、稳定,特别是大量的专业名词其词义很固定、专门。即使是象 do, take, make 这样 的多词义普通动词,在科技英语中它们的意思亦比较确定,其表达方式也比较容易理解。科 技英语主要是一种书面语言,它要求准确、严谨、简洁、流畅,并不要求在文中堆砌华丽的 词藻,它也不要求考虑便于朗读和吟诵的写作效果。在语法结构上,它经常使用被动语态。 科技英语使用被动语态的好处是可以使描述减少主观色彩,增强客观性,而且通过隐去人称 主语而使句子尽可能简洁。相比其它学科,数学文章的主动语态用得更多一些,也更受写作 名家的青睐。另一方面,数学写作中的有些用词变化不是很大(不像其它科技学科的一些词 汇随着科学的进步与时俱进得比较明显),所以许多常用数学词汇应该一劳永逸地记在心 中。

就语言要素的词汇方面而言,科技英语反映的是日新月异的科学技术领域内的发展与创 新。为了准确、科学地对这些新的发现、发明、理论与进展加以阐述,科技工作者们在遣词 方面下了很大的功夫。但从另一个方面看,由于数学的真理经得起时间的考验,就像勾股定 理两千年前古希腊人的严格证明现在依然有效那样于不以时间的意志为转移。其自然的结果 是数学的词汇相对比较固定,绝大部分不需要与时俱进地改变意思。所以我们在本章集中介 绍数学的基本词汇和短语。

在科技英语中经常使用的语法结构相当多,如被动语态句使用得很广泛。这是因为科技 文章的主要目的是讲述客观现象,介绍科技成果等,使用被动句比使用主动句更少主观色 彩。因此在科技英语中,凡是在不需要或不可能指出行为主体的场合,或者在需要突出行为 客体的场合都使用被动语态。然而,在这方面,数学写作与其它科技写作有些不同。Krantz [17] 观察到: Most authorities believe that writing in the passive voice is less effective than writing in the active voice. (大部分权威相信用被动语态写没有用主动语态有效。) Higham [13] 也建议: Prefer the active to the passive voice (prefer "X did Y" to "Y was done by X"). (宁用主动语态而不用被动式 ("X 做 Y" 而不是"Y 被 X 做")。)在数学表达中, 直接方式总比间接方式好。读者可以比较

The vector v is multiplied by the matrix A 向量 v 被矩阵 A 乘

和

The matrix A multiplies the vector v矩阵 A 乘以向量 v

这两种写法,哪一种更合你胃口?当然,如果你强调动作的执行者,用主动式。但是,如果 上例中向量 v 的角色更受关注,就可以用被动语态了。

本章先介绍一些基本的数学词汇。数学的英语词汇比起其它学科相对少了很多,也不象生物或医学词汇那样又长又难发音,所以掌握它们相对不会太难。然后我们介绍一些数学符号

及其读法。在科技交流中(比如说作学术报告时),需要用口语表达有关的数学符号,这就 需要了解常用数学符号的文字表达。证明是数学论文中最常见的部分,当引入一个引理、定 理或推论时,常常需要加以证明。证明部分的写作有一定的规格,并有一些习惯用语可用, 本章也加以一定的讨论。

2.1 数学基本词汇

如把文章比作大厦,词汇就是建筑大厦的砖头。数学词汇虽然比较多,但相对其它学科来 说拼写还是比较简单。只要掌握一定数量的数学词汇,写一些简单的文章就应该不会有多大 困难了。在本节里,我们列举一些常用的数学词汇和词组。列出这些词汇或词组的目的不是提 供一个英汉数学词典,而是提供初学写作者掌握这些基本词汇和术语应用的一个练习场所和 实践机会。写作或者阅读文章时,如有不明白的词汇,应该参考相关的双语词典(比如《英 汉数学词汇》[2];更一般的词汇可见《新英汉词典》[3])。数学写作的常用短语或句型将在 后面几节陆续出现。

定义	definition	定理	theorem
定义合理	well defined	合乎逻辑	is logical
逻辑	logic	矛盾	contradiction
引理	lemma	推论、系	corollary
公理	axiom	命题	proposition
公设	postulate	前提	premise
猜想	conjecture	穷举法	exhaustion method
推理、推演	deduction, deduce	数学归纳法	mathematical induction
隐含、蕴涵	implication, imply	结论	conclusion, conclude
常识	common sense	必要条件	necessary condition
充分性	sufficiency	必要性	necessity
等价性	equivalency	断言	claim, assert
例子	example, e.g.	参考文献	reference
反例	counterexample	即	i.e., that is, namely
平面几何	plane geometry	图像	graph
立体几何	solid geometry	画法几何	descriptive geometry
仿射几何	affine geometry	微分几何	differential geometry
射影几何	projective geometry	积分几何	integral geometry
代数几何	algebraic geometry	非欧几何	non-Euclidean geometry
黎曼几何	Riemann geometry	双曲几何	hyperbolic geometry
球面几何	spherical geometry	几何分析	geometric analysis
解析几何	analytic geometry	计算几何	computational geometry
组合数学	combinatorics	分形几何	fractal geometry
辛几何	simplectic geometry	保面积	area preserving
算术	arithmetic	计数	count, enumerate
加	add, plus	加法	addition
可加性	additivity	可列可加的	countably additive
和	sum	求和	summation
减	subtract, minus	减法	subtraction
差	difference	差商	difference quotient
乘	multiply	乘法	multiplication
除	divide	除法	division
比、比率	ratio	被除数	dividend
可除的	divisible	可除性	divisibility
代数	algebra	三角	trigonometry

公式	formula	表达式	expression
积分号	integral sign	括号	parenthesis, bracket, brace
方程	equation	等价关系	equivalent relation
自反的	reflexive	传递	transitivity, transitive
退化的	degenerate	阻尼的	damping
对称	symmetry, symmetric	轴对称	symmetric about an axis
等价类	equivalent class	中心对称	symmetry about the origin
根	root	解	solution
根式	radical	平方根	square root
问题	question, problem	假设	hypothesis, assumption
习题	exercise	作业	homework
图形	figure	表格	table
变量	variable	常数	constant
因变量	dependent variable	自变量	independent variable
关系	relation	函数	function
结合律	associative law	交换律	commutative law
分配律	distributive law	自反律	reflexive law
对数	logarithm	自然对数	natural logarithm
奇数	odd number	偶数	even number
绝对值	absolute value	指数	exponential, exponent
角度	angle	弧度	radian
内角	interior angle	锐(钝)角	acute (obtuse) angle
余角	complementary angle	外角	exterior angle
邻角	adjacent angle	度数	degree
对顶角	vertical angle	顶角	vertex angle
补角	supplementary angle	二面角	dihedral angle
同位角	corresponding angle	内错角	alternate angle
圆心角	central angle	圆周角	circumferential angle
夹角	included angle	倾角	inclination angle
面积	area	体积	volume
直径	diameter	半径	radius
正弦定律	law of sines	余弦定律	law of cosines
正切	tangent	余切	cotangent
正割	secant	余割	cosecant
对边	opposite	邻边	adjacent
斜边	hypoteneuse	相似形	similar figure
正方形	square	长方形	rectangle
三角形	triangle	等边三角形	equilateral triangle
全等三角形	congruent triangle	等腰三角形	isosceles triangle
直角三角形	right triangle	梯形	trapezoid
等角的	isogonal	等腰四边形	isosceles quadrilateral
平行线	parallel line	欧几里得公理	Euclidean axiom
等腰梯形	isosceles trapezoid	四边形	quadrilateral, quadrangle
菱形	lozenge, rhombus	平行四边形	parallelogram
五边形	pentagon	六边形	hexagon
七边形	heptagon	八边形	octagon

九边形	nonagon	十边形	decagon
星形域	star domain	鞍状区域	saddle region
十二边形	dodecagon	<u>n-边形</u>	n-gon
多边形	polvgon	多极	multi pole
正多边形	regular polygon	距离	distance
形心、质心	centroid	等距	isometry
圆	circle	同心圆	concentric circle
内接多边形	cyclic polygon	外接圆	subscribed circle
- N W Z / y	altitude	内切圆	inscribed circle
	concyclic	共线的	collinear
	compass	直尺	ruler
切占	tangential point		diagonal
角平分线	internal bisector	中线	median line
同生	congruence congruent	相似	similarity similar to
四面休	tetrahedron	名而休	polyhedron
林 拉	prism		frustum of pyramid
正恭拚	rogular puramid	正圆锥	right circular cono
<u> </u>	ball		aircular culindor
城 冲	ollipsoid	应住体	solid of revolution
旧小	empsoid	— <u></u>	solid of revolution
	generatrix hum orb oloid	1 书优的	torsion free
风田山		拉彻面	
回征	circular cone	仪锥 町五	pyramid
回小	circular ring	回 小 囬	torus
	center	芮心平	eccentricity
閉ル	sector		irustum
回向て	perimeter	弧式	arc length
月下	circumierence	5名	cnord
水山	spnere	干球 本公	nemisphere
田	curve	且我	straight line
世里 残 サカル	vertical line	水干线	horizontal line
	ine of symmetry	十分线	bisector
工公及的	incommensurable	■ <u></u> 且父 ■	orthogonal, perpendicular
回锥田线	conic curve	単位立方 	unit cube
	interval	线权	line segment
半面	plane	田田	surface
田平	curvature	◎	parametric equation
· 纪平	torsion	■ 里兊 卒 ■ → ☆	secondary torsion
1 功线	tangent line	法线	normal line
壮祥	note, remark	村万	notation, symbol
▲ 木知重	unknown	匕郑重	known
	product	間	quotient
分丁	numerator	分母	denominator
	ratio	比例	proportion
	directly proportional	反比	inversely proportional
自分比	percentage, percent	旧数	multiple
因子	factor	因式分解	factorization

最小公倍数	least common multiple	最大公因数	greatest common factor
零	zero	无穷大	infinity
无穷小	infinitesimal	渐进线	asymptote
整数	integer	小数	decimal
二进制数	binary number	自然数	natural number
二项式定理	binomial theorem	双线性	bilinearity
数字	digit	比特	bit
素数、质数	prime number	解析数论	analytic number theory
分数	fraction	倒数	reciprocal
加号	plus sign	减号	minus sign
正数	positive number	负数	negative number
相反数	opposite number	绝对值	absolute value
有理数	rational number	无理数	irrational number
实数	real number	虚数	imaginary number
超越的	transcendental	超限的	transfinite
实部	real part	虚部	imaginary part
复数	complex number	方次	power
模	module	幅角	argument
量	magnitude, amount	量化	quantify
平方根	square root	立方根	cubic root
四元数	quaternion	二次的	quadratic
单项式	monomial	多项式	polynomial
阶、次、度	degree, order	系数	coefficient
单根	simple root	重数	multiplicity
重根	multiple root	根式	radical
综合除法	synthetic division	待定系数	undetermined coefficients
恒等式	identity	条件的	conditional
不等式	inequality	等式	equality
三角不等式	triangle inequality	勾股定理	Pythagorean theorem
丢番图方程	Diophantine equation	中国剩余定理	China's Remainder Theorem
不可解	unsolvable	超定方程	over determined equation
恒等式	identity	行列式	determinant
排列、置换	permutation	组合	combination
坐标轴	coordinate axis	平面	plane
参数	parameter	参数表示	parametric representation
象限	quadrant	割圆曲线	quadratics
射线	ray	极坐标	polar coordinates
抛物线	parabola	椭圆	ellipse
抛物型	parabolic	椭圆型	elliptical
双曲线	hyperbola	双曲型	hyperbolic
螺线	spiral	螺旋线	helix
横坐标	abscissa	纵坐标	ordinate
准线	directrix	焦点	focus
斜率	slope	点	point
截距	intercept	相交	intersection
正则点	regular point	☐ 奇异点	singular point

鞍点	saddle point	临界点	critical point
拐点	inflection point	不可微点	nondifferentiable point
极坐标	polar coordinates	柱坐标	cylindric coordinates
球的	spherical	直角坐标	Cartesian coordinates
渐近性质	asymptotic property	渐近线	asymptote
集合	set	序列	sequence
空集	empty set	子集	subset
交集	intersection	并集	union
补集	complement	紧集	compact set
上标	superscript	下标	subscript
基数	cardinal number	序数	ordinal number
可数集	countable set	不可数集	uncountable set
开集	open set	闭集	closed set
完美集	perfect set	导集	induced set
三分点集	ternary set	单点集	single point set
邻域	neighborhood	开(闭)球	open (closed) ball
邻近	proximity	真子集	proper subset
极限点	limit point	聚点	cluster point
闭包	closure	边界、边界点	boundary, boundary point
内点	interior point	孤立点	isolated point
完全集	complete set	稠密子集	dense subset
可完备化	completable	有向集	directed set
偏序的	partially ordered	全序集	totally ordered set
稀疏的	nowhere dense	康托尔三分集	Cantor's ternary set
单联通的	simply connected	约当曲线	Jordan curve
上(下)界	upper (lower) bound	无界集	unbounded set
上确界	supremum value	下确界	infimum value
最小上界	least upper bound	最大下界	greatest lower bound
极限	limit	上(下)极限	upper (lower) limit
导数	derivative	左 (右) 导数	left (right) derivative
增量	increment	不定型	indefinite form
变化率	rate of change	平均变化率	average rate of change
变差	variation	瞬时变化率	instantaneous rate of change
一阶导数	first derivative	二阶导数	second derivative
高阶的	higher order	泰勒展式	Taylor's expansion
偏导数	partial derivative	方向导数	directional derivative
方向余弦	directional cosine	连续可微	continuously differentiable
罗必塔法则	L'Hopital's rule	隐式求导	implicit differentiation
乘积法则	product rule	商法则	quotient rule
链条法则	chain rule	对数求导法	logarithmic differentiation
介值	intermediate value	中间值	mean value
无穷大	infinity	无穷小	infinitesimal
极大	maximum	极小	minimum
局部极值	local extreme value	整体极值	global extreme value
微积分	calculus	微分	differential
级数	series	积分	integral, integration

调和级数	harmonic series	马克劳林级数	Maclaurin series
交错级数	alternating series	傅立叶级数	Fourier series
幂级数	power series	泰勒级数	Taylor's series
上(下)限	upper (lower) limit	原函数	antiderivative
偏微分	partial differential	全微分	total differential
不定积分	indefinite integral	定积分	definite integral
被积函数	integrand	上(下)限	upper (lower) limit
可积	integrable	达布上积分	Darboux upper integral
广义积分	improper integral	比例因子	propositional divisor
可和	summable	可数、可列	countable
二重积分	double integral	三重积分	triple integral
多重积分	multiple integral	逐次积分	iterated integral
分部积分法	integration by parts	变量替换法	integration by substitution
部分分式	partial fraction	椭圆积分	elliptic integral
线积分	line integral	面积分	surface integral
格林公式	Green's formula	斯托克斯定理	Stokes' theorem
通解	general solution	特解	particular solution
向量场	vector field	积分曲线	integral curve
首次积分	first integral	恰当微分方程	exact differential equation
广义积分	generalized integral	基本定理	fundamental theorem
奇异积分	singular integral	边界积分	boundary integral
表示	representation	柯西积分公式	Cauchy's integral formula
整函数	entire function	解析函数	holomorphic function
亚纯函数	meromorphic function	本质奇性	essential singularity
保形映照	conformal mapping	留数定理	residual theorem
收敛	convergence	发散	divergence, divergent
一致收敛	uniformly convergent	一致有界	uniformly bounded
绝对收敛	absolutely convergent	条件收敛	conditionally convergent
逐点的	pointwise	强 (弱) 收敛	strongly (weakly) convergent
卷积	convolution	协调	coordination
一元函数	one variable function	多元函数	multi-variable function
连续	continuity	一致连续	uniformly continuous
处处连续	continuous everywhere	等度连续	equi-continuous
同胚	homeomorphism	间断的	discontinuous
间断点	discontinuous point	单连通区域	simply connected region
道路连通	path connected	跳跃间断性	jump discontinuity
向量	vector	标量	scalar
分量	component	单位向量	unit vector
数组	array	行(列)向量	row (column) vector
张量	tensor	矩量	moment
惯性	inertia	重心	barycenter
动量	momentum	角动量	angular momentum
矩阵	matrix	单位矩阵	identity matrix
方阵	square matrix	长方阵	rectangular matrix
秩	rank	列(行)空间	column(row) space
特征空间	eigenspace	广义特征空间	generalized eigenspace

	-	1 1 1	
因式分解	factorization	几何重数	geometric multiplicity
直接和	direct sum	直交补	orthogonal complement
线性方程	linear equation	基本解	fundamental solution
条件数	condition number	病态问题	ill conditioned problem
对角矩阵	diagonal matrix	可对角矩阵	diagonalizable matrix
上三角的	upper triangular	下三角矩阵	lower triangular matrix
奇异矩阵	singular matrix	非奇异矩阵	nonsingular matrix
可逆矩阵	invertible matrix	逆矩阵	inverse matrix
稀疏矩阵	sparse matrix	拟阵	matroid
指标矩阵	indicator matrix	带状矩阵	band matrix
行列式	determinant	广义逆矩阵	generalized inverse matrix
主子式	principal minor	代数余子式	algebraic cofactor
结式	discriminant	迹	trace
链	train	环面	torus
转置矩阵	transposed matrix	共轭转置矩阵	conjugated transposed matrix
伴随矩阵	companion matrix	分块矩阵	block matrix
直交矩阵	orthogonal matrix	酉矩阵	unitary matrix
循环矩阵	circular matrix	对角占优矩阵	diagonally dominant matrix
对称矩阵	symmetric matrix	正则矩阵	normal matrix
正定的	positive definite	正半定矩阵	positive semidefinite matrix
不定矩阵	indefinite matrix	负定矩阵	negative definite matrix
正矩阵	positive matrix	非负矩阵	nonnegative matrix
拟随机的	quasi stochastic	列随机矩阵	column stochastic matrix
不可约的	irreducible	本原矩阵	primitive matrix
幂零的	nilpotent	投影矩阵	projection matrix
连接矩阵	connection matrix	关联矩阵	incidence matrix
雅可比矩阵	Jacobian matrix	海森矩阵	Hessian matrix
分划	partition, division	块对角矩阵	block diagonal matrix
二次型	quadratic form	标准型	normal form
保序	isotone	反序	antitone
最小多项式	minimal polynomial	特征多项式	characteristic polynomial
特征值	eigenvalue	特征向量	eigenvector
 · 谱	spectrum	剩余谱	residual spectrum
连续谱	continuous spectrum	近似点谱	approximate point spectrum
边缘谱	peripheral spectrum	谱分解	spectral decomposition
谱半径	spectral radius	最大特征值	maximal eigenvalue
广义的	generalized	广义特征向量	generalized eigenvector
约当块	Jordan block	约当标准型	Jordan canonical form
映射	mapping	反函数	inverse function
变换	transformation	诱导映射	induced mapping
限制	restriction	扩张	extension
单射	injection, one-one	满射、映上	surjection, surjective, onto
有理函数	rational function	一一映上	bijection, bijective
单峰函数	unimodal function	奇(偶)函数	odd (even) function
对称函数	symmetric function	恒同函数	identity function
II		11 · · · · · · · · · · · · · · · · · ·	1 V

调和函数	harmonic function	阶梯函数	step function
周期函数	periodic function	光滑函数	smooth function
特征的	characteristic	指标函数	index function
集函数	set function	点-集映射	point-set mapping
恒同映射	identical mapping	映射扩张	mapping extension
包含映射	inclusion mapping	多值的	many-valued
超越的	transcendental	可微函数	differentiable function
ζ函数	zeta function	广义函数	generalized function
可积的	integrable	绝对连续的	absolutely continuous
指数函数	exponential function	对数函数	logarithmic function
幂函数	power function	三角函数	trigonometric function
初等函数	elementary function	自守函数	automorphic function
复合函数	composite function	径向基底函数	radial basis function
样条函数	spline function	分段的	piecewise
函数论的	function-theoretic	函子	functor
定义域	domain	值域	range
像	image	逆像	inverse image
平均值	average value	中值定理	mean value theorem
定向	orientation	一一对应	one to one correspondence
单调函数	monotone function	特征向量函数	eigenfunction
凸函数	convex function	凹性	concavity
拟凸函数	quasiconvex function	伪凸函数	pseudoconvex function
舒尔凸	Schur convex	严格凸函数	strictly convex function
凸集	convex set	凸组合	convex combination
凸包	convex hull	由 产生	generated by
凸化	convexification	凸闭包	convex closure
水平集	level set	相对内点	relative interior point
最优性条件	optimality condition	拉格朗日乘子	Lagrange multiplier
变分不等式	variational inequality	对偶性	duality
拐点	inflection point	平稳点	equilibrium point
梯度	gradient	散度	divergence
最速下降	steepest descent	共轭梯度法	conjugate gradient method
共轭方向	conjugate direction	最小二乘法	least squares method
牛顿法	Newton's method	拟牛顿法	quasi Newton method
预测-校正	predictor-corrector	原始-对偶	primal-dual
目标函数	objective function	半正定规划	semidefinite programming
可行集	feasible set	几何规划	geometric programming
随机规划	convex programming	组合优化	combinatorial optimization
变分法	calculus of variation	多目标规划	multi-objective optimization
线性规划	linear programming	数学规划	mathematical programming
二次规划	quadratic programming	随机规划	stochastic programming
■ 整数规划	integer programming	动态规划	dynamical programming
┃ 松弛变量	slack variable	线性相补	linear complementarity
凸分析	convex analysis	最优性条件	optimality condition
网络最优化	network optimization	邮递员问题	postman problem
非光滑分析	nonsmooth analysis	次梯度方法	subgradient method

化约梯度	reduced gradient	信赖域法	trust region method
运筹学	operations research	排队论	queuing theory
布朗运动	Brownian movement	维纳过程	Wiener's process
对策论	game theory	内点方法	interior point method
决策理论	decision theory	椭球算法	ellipsoid algorithm
复杂性	complexity	浮点运算	floating point operation
图论	graph theory	有向图	directed graph
双图	bigraph	完全图	complete graph
边	edge	顶点	vertex
循环	cycle	道路	path
回路	circuit	树	tree
关联的	incident	关联系数	incidence coefficients
点积	dot product	张量积	tensor product
内积	inner product	向量积	cross product
范数	norm	近似	approximation
修正	modification	舍入误差	round-off error
行	row	列	column
向量空间	vector space	距离空间	metric space, distance space
拓扑空间	topological space	测度空间	measure space
线性空间	linear space	可测空间	measurable space
内积空间	inner product space	希尔伯特空间	Hilbert space
赋范空间	normed space	巴拿赫空间	Banach space
完备空间	complete space	可分空间	separable space
概率空间	probability space	紧空间	compact space
乘积空间	product space	商空间	quotient space
对偶空间	dual space	自反空间	reflexive space
奇次空间	homogeneous space	辛空间	symplectic space
局部凸的	locally convex	广义函数空间	space of distributions
空间的	spacial	时空	space-time
理想	ideal	环	ring
单位	unit	陪集	coset
群	group	域	field
格	lattice	全序集	totally ordered set
基本群	fundamental group	同调	homology
辫群	braid group	自同构群	group of automorphisms
同伦	homotopy	簇	variety
交换代数	commutative algebra	置换群	permutation group
单群	simple group	有限群	finite group
半群	semigroup	生成元	generator
本原群	primitive group	循环子群	cyclic semigroup
同态	homomorphism	同构	isomorphism
等距	isometry	局部紧	locally compact
紧化	compactification	相对紧	relatively compact
覆盖	covering	换位子	commutator
代数簇	algebraic variety	代数曲线	algebraic curve
维数	dimension	一维	one dimension

二维	two dimensions	多维	multi dimensions
有穷维的	finite dimensional	无穷维的	infinite dimensional
基底	basis	直交基	orthogonal basis
线性组合	linear combination	生成子	generator
线性子空间	linear subspace	由 张成	spanned by
线性相关	linear dependence	线性无关	linear independence
单位分解	partition of unity	直交分解	orthogonal decomposition
直交投影	orthogonal projection	直交变换	orthogonal transformation
最小二乘	least squares	法方程	normal equation
最佳逼近	best approximation	极小范数解	minimal norm solution
最大值原理	maximum principle	比较原理	comparison principle
等周的	isoperimetric	最小作用原理	minimal action principle
正则性	regularity property	光滑性	smoothness property
正性	positivity	能量守恒	conservation of energy
启发式分析	heuristic analysis	严格分析	rigorous analysis
相容性	consistency	稳定性	stability
误差估计	error estimate	收敛速度分析	convergence rate analysis
离散化	discretization	步长	step size
模拟	simulation	曲线拟合	curve fitting
收敛阶	convergence order	最优性	optimality
有限差分	finite difference	有限元	finite element
协调元	conformal element	有限体积法	finite volume method
边界元	boundary element	混合元	mixed element
变分原理	variational principle	变分不等式	variational inequality
插值	interpolation	外插(推)	extrapolation
离散的	discrete	高斯求积公式	Gauss quadrature
余项	remainder	数值格式	numerical scheme
多重网格法	multi-grid method	区域分解法	domain decomposition method
辛算法	symplectic algorithm	保结构方法	structure preserving method
谱方法	spectral method	无网格法	meshless method
曲线拟合	curve fitting	电脑辅助设计	computer-aided design
样条函数	spline function	基本样条	B-spline
标准基	canonical basis	逐片线性函数	piecewise linear function
信号处理	signal processing	图像处理	image processing
小波分析	wavelet theory	数据处理	data processing
│対流	convection	扩散方程	diffusion equation
动力系统	dynamical system	偏微分方程	partial differential equation
积分方程	integral equation	算子方程	operator equation
差分方程	difference equation	时间滞后方程	time delay equation
泊松括号	Poisson bracket	发展方程	evolution equation
激波	shock wave	振幅	amplitude
庞加莱映射	Poincaré's map	迭代点、迭代	iterate, iteration
极限环	limit cycle	平稳(衡)点	equilibrium point
振动	oscillation	渐进稳定	asymptotically stable
混沌	chaos	分形	fractal
数值积分	numerical integration	数值微分	numerical differentiation

投影方法	projection method	向前差商	forward difference quotient
确定性系统	deterministic system	离散动力系统	discrete dynamical system
随机过程	stochastic process	连续动力系统	continuous dynamical system
样本空间	sample space	拓扑动力系统	topological dynamical system
信息熵	information entropy	循环、递归	recurrence
度量熵	metric entropy	热力学	thermodynamics
统计力学	statistical mechanics	量子力学	quantum mechanics
功	work	势能	potential energy
力	force	动能	kinetic energy
速度	velocity, speed	加速度	acceleration
位置	position	位移	displacement
保守场	conservative field	向心力	centripetal force
守恒律	conservation law	动力学	kinetics
拓扑熵	topological entropy	随机变量	random variable
马尔科夫链	Markov chain	期望值	expected value
数学期望	expectation	鞅	martingale
平均值	mean	条件期望	conditional expectation
中间值	median	方差	variance
标准差	standard deviation	线性回归	linear regression
协方差	covariance	关联系数	correlation coefficient
概率论	probability theory	频率	frequency
联合密度	joint density	随机游动	random walk
均匀分布	uniform distribution	正态分布	normal distribution
最大熵	maximum entropy	最优控制	optimal control
测度	measure	支集	support
测度论	measure theory	可测函数	measurable function
可测的	measurable	非奇异变换	nonsingular transformation
可积函数	integrable function	平方可积函数	square integrable function
黎曼积分	Riemann integral	勒贝格积分	Lebesgue integral
分布理论	distribution theory	弱可微	weakly differentiable
遍历理论	ergodic theory	遍历性	ergodicity
混合性	mixing	拓扑传递	topological transitivity
正合的	exact	不变测度	invariant measure
不动点	fixed point	周期点、周期	periodic point, period
周期性	periodicity	最终不动点	eventually fixed point
稳定	stable, stability	轨道	orbit, trajectory
渐进稳定	asymptotically stable	不稳定	unstable, instability
非周期的	aperiodic	吸引域	basin of attraction
排斥不动点	repelling fixed point	吸引不动点	attracting fixed point
混沌	chaos	混沌吸引子	chaotic attractor
分形	fractal	分形维数	fractal dimension
线性算子	linear operator	非线性变换	nonlinear transformation
紧算子	compact operator	有界线性算子	bounded linear operator
自共轭算子	self-adjoint operator	连续算子	continuous operator
零空间	null space, kernel	零化子	annihilator
泛函	functional	有界线性泛函	bounded linear functional

奇次的	homogeneous	弱紧	weakly compact
列紧	sequentially compact	准紧	precompact
相对紧	relatively compact	黎茨表示定理	Riesz representation theorem
开映射定理	open mapping theorem	逆映射定理	inverse mapping theorem
闭图像定理	closed graph theorem	一致有界原则	uniform boundedness principle
不动点定理	fixed point theorem	压缩映像定理	contraction mapping theorem
可测集	measurable set	控制收敛定理	dominated convergence theorem
几乎处处	almost everywhere	单调收敛定理	monotone convergence theorem
点集拓扑	point set topology	代数拓扑	algebraic topology
单形	simplex	复形	complex
摄动理论	perturbation theory	广义函数论	theory of distribution
纽结理论	knot theory	弦理论	string theory
抽象代数	abstract algebra	多重线形代数	multilinear algebra
范畴	category	函子	functor
微分形式	differential form	微分拓扑	differential topology
辛拓扑	symplectic topology	外微分	exterior differential
外微分	exterior differential	纤维丛	fibre bundle
主丛	principal bundle	协变导数	covariant derivative
切丛	tangent bundle	球极平面投影	stereographic projection
规范场	gauge field	活动标架	moving frame
参考标架	reference frame	李群 (代数)	Lie group (algebra)
仿射联络	affine connection	嘉当联络	Cartan connection
流形	manifold	微分流形	differential manifold
拓扑流形	topological manifold	拓扑等价	topologically equivalent
同胚	homeomorphism	微分同胚	diffeomorphism
芽、核	germ	除子	divisor
亏格	genus	欧拉示性数	Eular's characteristic
正则值	regular value	隐函数定理	implicit function theorem
崁入定理	imbedding theorem	索伯列夫空间	Sobolev space
迹定理	trace theorem	弱解	weak solution
共变导数	covariant derivative	测地线	geodesic
极小曲面	minimal surface	黎曼度量	Riemannian metric
■ 楔积	wedge product	微分结构	differentiable structure

Table 2.1: 基本数学名词和术语

一篇中文文章包括字、词、句、段。这些构成了文章的血和肉。同样,英文文章中也是 由词、短语、句子、段落组成。所以在写作英语文章时必须重视单词和句型的运用。应该有 意识地扩大自己的词汇量、短语量。通过实践可以品尝到积累词汇的乐趣。常言道,厚积薄 发。随着时间的推移,就会发觉自己越来越少出现以前常有的"无话可写"的毛病了。熟练 运用常用的数学词汇和词组短语,会使写作流畅;审稿人和读者读起来也会较舒服。