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CONVERGENCE ANALYSIS OF RELAXATION SCHEMES FOR

CONSERVATION LAWS WITH STIFF SOURCE TERMS

TAO TANG∗, ZHEN-HUAN TENG† , AND JINGHUA WANG‡

Abstract. We analyze the convergence for relaxation approximation applied to conservation
laws with stiff source terms. We suppose that the source term q(u) is dissipative. Semi-implicit
relaxing schemes are investigated and the corresponding stability theory is established. In particular,
we proved that the numerical solution of a first-order relaxing scheme is uniformlly l∞, l1 and TV-
stable, in the sense that they can be bounded by a constant independent of the the relaxation
parameter ε and the the Lipschitz constant of the stiff source term, and time step ∆t. Concergence
of the relaxing scheme is then established. The results obtained for the first-order relaxing scheme
can be extended to MUSCL relaxing schemes.

1. Introduction. We consider the following Cauchy problem

(1.1)





ut + f(u)x = q(u) x ∈ R, t > 0 ,

u(x, 0) = u0(x) x ∈ R ,

where f ∈ C1(R), f(0) = 0 and u0 ∈ L1(R) ∩ BV (R). The conservation law (1.1)
is stiff if the time scale introduced by the source term q is small compared with the
characteristic speed f ′ and some other appropriate length scale. It is observed that
a realistic assumption on the source term is q′(u) ≤ 0 for all u ∈ R. It is indeed the
case for many practical problems. e.g. in the model of combustion [4, 9], water waves
in presence of the friction force in the bottom [24]. This assumption is also used in
many theoretical papers, for example, Chalabi [2], Chen, Levermore and Liu [3], Tang
[19] and Schroll and Winther [14]. In the sense of Chen, Levermore and Liu [3], q′ < 0
means the dissipativity of the source term. Furthermore, as usual, we assume that
u = 0 is an equilibrium. Hence, throughout this paper we assume that

q(0) = 0, −K ≤ q′(u) ≤ 0, for some constant K � 1(1.2)

We want to approximate the global weak entropy solution of the Cauchy problem
(1.1) by relaxation schemes. The system (1.1) can be related to a singular perturbation
problem:

(1.3)





uε
t + vε

x = q(uε)

vε
t + auε

x = −1

ε

(
vε − f(uε)

)
, ε > 0 .

The relaxation limit for 2 × 2 nonlinear systems of conservation laws (without the
source term) was first studied by Liu [8], who justified some nonlinear stability crite-
ria for diffusion waves, expansion waves and traveling waves. A general mathematical
framework was analyzed for the nonlinear systems by Chen, Levermore and Liu [3].
The presence of relaxation mechanisms is widespread in both the continuum mechan-
ics as well as the kinetic theory contexts. Relaxation is known to provide a subtle
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dissipative mechanism for discontinuities against the destabilizing effect of nonlinear
response [8]. The relaxation models can be loosely interpreted as discrete velocity ki-
netic equations. The relaxation parameter, ε, plays the role of the mean free path and
the system models the macroscopic conservation law. In that sense they are a discrete
velocity analogue of the kinetic equations introduced by Perthame and Tadmor [13]
and Lions et al. [10].

On the numerical side, relaxation schemes proposed by Jin and Xin [5] are a
class of nonoscillatory numerical schemes for systems of conservation laws. They
provide a new way of approximating the solutions of the nonlinear conservation laws.
The computational results that are available, see e.g. Jin and Xin [5] as well as
Aregba-Driollet and Natalini[1], indicate that the relaxation schemes obtained in the
limit ε → 0 provide a promising class of schemes. The main advantages of these
schemes are that they require neither the computation of the Jacobians of fluxes for
the conservation laws nor the use of Riemann-solvers. This important property is
shared by other schemes such as the high resolution central schemes introduced by
Nessyahu and Tadmor [12].

For homogeneous conservation laws, there have been many recent studies con-
cerning the asymptotic convergence of the relaxation systems to the corresponding
equilibrium conservation laws as the rate of the relaxation tends to zero. Katsoulakis
and Tzavaras [6] introduced a class of relaxation systems, the contractive relaxation
systems, and established an O(

√
ε) error bound in the case that the equilibrium equa-

tion is a scalar multi-dimensional one. Kurganov and Tadmor [7] studied convergence
and error estimates for a class of relaxation systems, including (1.3) with q ≡ 0, and
concluded an O(ε) order of convergence for scalar convex conversation laws. The
novelty of their approach is the use of a weak Lip′-measure of the error, which allows
them to obtain sharp error estimates. For the relaxation system (1.3) with q ≡ 0,
Natalini [11] proved that the solutions to the relaxation system converges strongly to
the unique entropy solution of the corresponding conservation laws as ε → 0. Based
on a general framework developed in [20, 16], the O(ε) rate of convergence in L1 of
Teng [22] and pointwisely away from the shock discontinuity of Tadmor and Tang [17]
are established for (1.3) with q ≡ 0 in the case when the equilibrium solutions are
piecewise smooth. The convergence theory for the relaxing scheme (2.1) and scheme
(2.6) with g ≡ 0 can be found in [1, 18, 23, 25].

In this research, we wish to analyze a fully-discretized semi-implicit scheme for
approximating the relaxation system (1.3). It is the semi-implicit treatment that
makes the CFL condition independent of the Lipschitz constant of the stiff source
term. We show that the solutions of the numerical scheme, (un,ε

j , vn,ε
j ), are l∞, l1

and TV-bounded by a constant independent of the relaxation parameter ε and the
Lipschitz constant of the stiff source term q. Then it can be shown that (un,ε

j , vn,ε
j )

converge to the solution of the corresponding relaxed scheme. Due to the limitation
of space, the convergence rate of the numerical schemes will not be investigated in
this work. It will be reported elsewhere.

2. Numerical schemes. We choose a time step ∆t, a spatial mesh size ∆x, a pa-
rameter a which will be related to the characteristic speed of the conservation law and
a small relaxation parameter ε > 0. For these we define the mesh ratio λ = ∆t/∆x,
the CFL parameter µ =

√
aλ ∈ (0, 1) and the scale parameter k = ∆t/ε. The mesh is

given by the points (j∆x, n∆t) for j ∈ Z, u ∈ N0. The approximatate solution takes
the discrete values un,ε

j at the mesh points. Furthermore, relaxing schemes involve
the discrete relaxation fluxes vn,ε

j . For stiff problems, most of the numerical meth-
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ods are semi-implicit, which are related to operator splitting (explicit method for the
homogeneous conservation laws and implicit method for the stiff ODEs). Theoretical
analysis for the semi-implicit methods have been given by Chalabi [2], Schroll and
Winther [14], Tang [19]. In this work we will concentrate on a semi-implicit relaxing
scheme:

un+1,ε
j − un,ε

j +
λ

2

(
vn,ε

j+1 − vn,ε
j−1

)

− µ

2

(
un,ε

j+1 − 2un,ε
j + un,ε

j−1

)
= q

(
un+1,ε

j

)
∆t

vn+1,ε
j − vn,ε

j +
aλ

2

(
un,ε

j+1 − un,ε
j−1

)

− µ

2

(
vn,ε

j+1 − 2vn,ε
j + vn,ε

j−1

)
= −k

(
vn+1,ε

j − f
(
un+1,ε

j

))

(2.1)

The discrete initial data are given by averaging the initial data u0 over mesh cells
Ij =

((
j − 1

2

)
∆x,

(
j + 1

2

)
∆x
)
, i.e. taking

u0,ε
j =

1

∆x

∫

Ij

u0(x) dx, and setting v0.ε
j = f(u0,ε

j )(2.2)

In this paper we will show that the solution, (un,ε
j , vn,ε

j ), of the relaxing scheme
(2.1) converge to the solution, (un

j , vn
j ), of the relaxed scheme





vn
j = f

(
un

j

)

un+1
j − un

j +
λ

2

(
vn

j+1 − vn
j−1

)
− µ

2

(
un+1

j+1 − 2un
j + un

j−1

)
= q

(
un+1

j

)
∆t

(2.3)

with initial data

u0
j =

1

∆x

∫

Ij

u0(x) dx,(2.4)

The relaxed scheme (2.3) is a consistent, conservative and monotone scheme approx-
imating the conservation law (1.1).

The main results to be shown in this work are the following: If the constant a in
the relaxing scheme (2.1) satisfies

max
|ξ|≤M

f ′(ξ)2 ≤ a , where M := 4‖u0‖BV

then there exists a constant C independent of the relaxation parameter ε and the
Lipschitz constant of the stiff source q such that

TV (un,ε) ≤ C , TV (vn,ε) ≤ C ,

‖un,ε‖l∞ ≤ C , ‖vn,ε‖l∞ ≤ C ,

‖un,ε‖l1 ≤ C , ‖vn,ε‖l1 ≤ C .

We will further show that there exists a constant C(K) independent of the relaxation
parameter ε and time step ∆t (but may depend on the Lipschitz constant of the stiff
source q) such that

∑

j

∣∣∣un+1,ε
j − un

j

∣∣∣∆x ≤ C(K)∆t ,

∑

j

∣∣∣vn+1,ε
j − vn

j

∣∣∣∆x ≤ C(K)∆t .
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With the above estimates, we can show that the solutions of the relaxing scheme
(2.1) converge to the solutions of the relaxed scheme (2.3). Then the piewise constant
function u∆(x, t) constructed by the solution, un

j , of the relaxed scheme (2.3) converges
to the entropy solution of the Cauchy problem (1.1).

A class of more accurate schemes, the MUSCL relaxing schemes, were proposed
by Jin and Xin [5]:

(2.5)

un+1,ε
j − un,ε

j

∆t
+

1

2∆x
(vn,ε

j+1 − vn,ε
j−1)−

√
a

2∆x
(un,ε

j+1 − 2un,ε
j + un,ε

j−1)

+
1− β

4

[
(σ+,ε

j − σ+,ε
j−1)− (σ−,ε

j+1 − σ−,ε
j )

]
= q

(
un+1,ε

j

)
,

vn+1,ε
j − vn,ε

j

∆t
+

a

2∆x
(un,ε

j+1 − un,ε
j−1)−

√
a

2∆x
(vn,ε

j+1 − 2vn,ε
j + vn,ε

j−1)

+

√
a(1− β)

4

[
(σ+,ε

j − σ+,ε
j−1) + (σ−,ε

j+1 − σ−,ε
j )

]

= −1

ε
(vn+1,ε

j − f(un+1,ε
j ))

where σ±,ε
j and θ±,ε

j are defined by

σ±,ε
j =

1

∆x
∆+(vn,ε

j ±
√

aun,ε
j )φ(θ±,ε

j )

θ±,ε
j =

∆−(vn,ε
j ±√aun,ε

j )

∆+(vn,ε
j ±√aun,ε

j )

and β = µ =
√

a∆t/∆x, and ∆±uj = ∓(uj − uj±1). The corresponding relaxed
scheme as ε → 0 limit of (2.5) is as follows

(2.6)

vn
j = f(un

j )
∆
= fn

j ,

un+1
j − un

j

∆t
+

1

2∆x
(vn

j+1 − vn
j−1)−

√
a

2∆x
(un

j+1 − 2un
j + un

j−1)

+
1− β

4

[
(σ+

j − σ+
j−1)− (σ−j+1 − σ−j )

]
= q

(
un+1

j

)
.

To gurantee the entropy consistency of the relaxed scheme (2.6) the following slightly
stronger conditions are proposed in Tang et al. [21]:

√
a

∆t

∆x
= µ < 1; CFL condition(2.7)

sup
u
|f ′(u)| ≤ 1

α

√
a; subcharacteristic condition(2.8)

0 ≤ φ(θ)

θ
≤ X , 0 ≤ φ(θ) ≤ X , limiter function condition.(2.9)

The parameters α and X in the conditions (2.7)-(2.9) are required to satisfy

(2.10) α > 1, 0 < X < 2, 1− 1

α
≥ X(1− µ) .
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In [21], it has been shown that under the assumptions (2.7)-(2.9) the second-order re-
laxed scheme (2.6) with q ≡ 0 satisfies the cell entropy inequalities. As a consequence,
the L1 convergence rate O(

√
∆t) for the relaxed scheme is established.

In this work, we will restrict our attention to the study of the relaxing scheme
(2.1) and its corresponding relaxed scheme (2.3). We wish to point out that the results
obtained in this work can be extended to the MUSCL relaxing schemes (2.5)-(2.6).

3. Stability Properties of the Relaxing Scheme. This section is devoted to
establishing the l∞-stability, the bound of the total variation, and the l1-stability of
the numerical solution for the relaxing scheme (2.1) with initial data (2.2). To begin
with, we take the Riemann invariants

(3.1)

(
Rn,ε

1,j

Rn,ε
2,j

)
=




1

2

(
un

j −
vn,ε

j√
a

)

1

2

(
un

j +
vn,ε

j√
a

)




.

It follows from the above equations that

un,ε
j = Rn,ε

1,j + Rn,ε
2,j , vn,ε

j =
√

a

(
Rn,ε

2,j −Rn,ε
1,j

)
.(3.2)

Then the relaxing scheme (2.1) can be rewritten as

(3.3)





Rn+1,ε
1,j = R

n+ 1
2
,ε

1,j +
k

2

[
Rn+1,ε

2,j −Rn+1,ε
1,j − 1√

a

f
(
Rn+1,ε

1,j + Rn+1,ε
2,j

)]

+
∆t

2
q
(
Rn+1,ε

1,j + Rn+1,ε
2,j

)

Rn+1,ε
2,j = R

n+ 1
2
,ε

2,j − k

2

[
Rn+1,ε

2,j −Rn+1,ε
1,j − 1√

a

f
(
Rn+1,ε

1,j + Rn+1,ε
2,j

)]

+
∆t

2
q
(
Rn+1,ε

1,j + Rn+1,ε
2,j

)

with

 R

n+ 1
2
,ε

1,j

R
n+ 1

2
,ε

2,j


 =

(
(1− µ)Rn,ε

1,j + µRn,ε
1,j+1

(1− µ)Rn,ε
2,j + µRn,ε

2,j−1

)
.(3.4)

It follows from u0 ∈ BV (R) that there exists a constant M1 such that

‖u0‖BV ≤ M1 .(3.5)

By the definition of the initial data u0,ε
j ,

TV (u0) =
∑

j

∣∣u0
j+1 − u0

j

∣∣ ≤ M1 .(3.6)

We first assume that

max
|ξ|≤‖u0‖∞

f ′(ξ)2 ≤ a,(3.7)
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where the constant a will be determined latter. It follows from (3.6)-(3.7) and the
definition of the initial data u0,ε

j that

(3.8)

TV (R0
1, R

0
2) :=

∑

j

(∣∣∣R0,ε
1,j+1 −R0,ε

1,j

∣∣∣+
∣∣∣R0,ε

2,j+1 −R0,ε
2,j

∣∣∣
)

≤
∑

j

(∣∣∣u0,ε
j+1 − u0,ε

j

∣∣∣+
1√
a

max
|ξ|≤‖u0‖∞

|f ′(ξ)|
∣∣∣u0,ε

j+1 − u0,ε
j

∣∣∣
)

≤ 2M1 .

Next, we choose the parameter a satisfying the following subcharacteristic condition
(cf. Liu [8])

max
|ξ|≤M

f ′(ξ)2 ≤ a(3.9)

where M = 4M1 = 4‖u0‖BV . Since

|u0(x)| ≤ ‖u0‖BV + u0(−∞) ≤ M1 < M,

the condition (3.9) also includes our earlier assumption (3.7). In the remaining of this
section, we will need the following facts:

u0(−∞) = 0 and v0(−∞) = f(u0(−∞)) = 0 .(3.10)

They are justified by assumptions u0 ∈ L1(R) ∩BV (R) and f(0) = 0.

Lemma 3.1. Under the subcharacteristic condition (3.9), the relaxing scheme
(3.3) is TVD (total variation diminishing), i.e.

(3.11)

TV
(
Rn+1,ε

1 , Rn+1,ε
2

)
:=

∑

j

(∣∣∣Rn+1,ε
1,j+1 −Rn+1,ε

1,j

∣∣∣+
∣∣∣Rn+1,ε

2,j+1 −Rn+1,ε
2,j

∣∣∣
)

≤ TV (Rn,ε
1 , Rn,ε

2 ) ≤ 1

2
M .

Proof. We prove the lemma by induction. We need to prove the following: If

TV (Rn,ε
1 , Rn,ε

2 ) ≤ 1

2
M ,(3.12)

sup
j∈Z

∣∣un,ε
j

∣∣ ≤ M ,(3.13)

then the following estimates will hold:

TV
(
Rn+1,ε

1 , Rn+1,ε
2

)
≤ TV (Rn,ε

1 , Rn,ε
2 ) ≤ 1

2
M ,(3.14)

sup
j∈Z

∣∣∣un+1,ε
j

∣∣∣ ≤ M .(3.15)

We first observe that the assumption (3.12) with n = 0 is true due to the estimate
(3.8), and the assumption (3.13) with n = 0 is true due to (3.6) and (3.10). Adding
the two equations of (3.3) gives

un+1,ε
j = (1− µ)

(
Rn,ε

1,j + Rn,ε
2,j

)
+ µ

(
Rn,ε

2,j−1 + Rn,ε
1,j+1

)
+ q(un+1,ε

j )∆t(3.16)
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where the equations (3.1) and (3.4) are used. The induction assumption (3.12) yields

(3.17)

∣∣Rn,ε
1,j

∣∣+
∣∣Rn,ε

2,j

∣∣ ≤ TV (Rn,ε
1 , Rn,ε

2 ) + lim
j→−∞

∣∣Rn,ε
1,j

∣∣+ lim
j→−∞

∣∣Rn,ε
2,j

∣∣

≤ TV (Rn,ε
1 , Rn,ε

2 ) ≤ 1

2
M ,

where we have used the facts that

lim
j→−∞

∣∣Rn,ε
i,j

∣∣ = lim
j→∞

∣∣∣R0,ε
i,j

∣∣∣ = lim
x→−∞

1

2

(
u0(x) + (−1)i f(u0(·))√

a

)
= 0, i = 1, 2 .

It follows from the above two results, i.e. (3.16) and (3.17) that
∣∣∣un+1,ε

j − q
(
un+1,ε

j

)
∆t
∣∣∣ ≤ M.

Then it follows from the assumption q(0) = 0 and q′(u) ≤ 0 for u ∈ R that
∣∣∣un+1,ε

j

∣∣∣ =
(
1− q′

(
ξn+1,ε
j

)
∆t
)−1

M ≤ M, j ∈ Z ,(3.18)

which verifies (3.15). Set Ri,j = Ri,j+1 − Ri,j , i = 1, 2. Subtracting (3.3)j from
(3.3)j+1 gives

(3.19)





(
1 +

k

2

(
1 +

f ′(ζ)√
a

)
− q′(η)

∆t

2

)
R

n+1,ε

1,j

−
(

k

2

(
1− f ′(ζ)√

a

)
+ q′(η)

∆t

2

)
R

n+1,ε

2,j = R
n+ 1

2
,ε

1,j ,

−
(

k

2

(
1 +

f ′(ζ)√
a

)
+ q′(η)

∆t

2

)
R

n+1,ε

1,j

+

(
1 +

k

2

(
1− f ′(ζ)√

a

)
− q′(η)

∆t

2

)
R

n+1,ε

2,j = R
n+ 1

2
,ε

2,j

where ζ is an intermediate value between un+1,ε
j+1 and un+1,ε

j , which and (3.18) yield
that |ζ| ≤ M. Thus the subcharacteristic condition (3.9) can be applied to obtain

α =
k

2

(
1− f ′(ζ)√

a

)
≥ 0 ,

γ =
k

2

(
1 +

f ′(ζ)√
a

)
≥ 0 .

Solving the equation (3.19) gives

R
n+1,ε

1,j =
1

A
[
(1 + α− q′(η)∆t/2) R

n+ 1
2
,ε

1,j + (α + q′(η)∆t/2) R
n+ 1

2
,ε

2,j

]
,

R
n+1,ε

2,j =
1

A
[
(γ + q′(η)∆t/2) R

n+ 1
2
,ε

1,j + (1 + γ − q′(η)∆t/2) R
n+ 1

2
,ε

2,j

]
,

where A = (1 + k)(1− q′(η)∆t). Using the above equations gives
∣∣∣Rn+1,ε

1,j

∣∣∣+
∣∣∣Rn+1,ε

2,j

∣∣∣ ≤ 1

A
{

[1 + α− q′(η)∆t/2 + |γ + q′(η)∆t/2| ]
∣∣∣Rn+ 1

2
,ε

1,j

∣∣∣

+ [1 + γ − q′(η) + |α + q′(η)∆t/2| ]
∣∣∣Rn+ 1

2
,ε

2,j

∣∣∣
}

(3.20)
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where we have used the facts thatα ≥ 0, γ ≥ 0 and q′(η) ≤ 0. Observe that

1 + α− q′(η)∆t/2 + |γ + q′(η)∆t/2|
≤ max (1 + k, 1 + α− γ − q′(η)∆t)

≤ (1 + k)(1− q′(η)∆t) = A ,

and

1 + γ − q′(η)∆t/2 + |α + q′(η)∆t/2|
≤ max (1 + k, 1 + γ − α− q′(η)∆t) ≤ A .

The above results, together with (3.20), yield
∣∣∣Rn+1,ε

1,j

∣∣∣+
∣∣∣Rn+1,ε

2,j

∣∣∣ ≤
∣∣∣Rn+ 1

2
,ε

1,j

∣∣∣+
∣∣∣Rn+ 1

2
,ε

2,j

∣∣∣

≤ µ
∣∣∣Rn,ε

2,j−1

∣∣∣+ (1− µ)
(∣∣∣Rn,ε

1,j

∣∣∣+ |Rn,ε

2,j |
)

+ µ
∣∣∣Rn,ε

1,j+1

∣∣∣ .(3.21)

Summation of (3.21) over j gives (3.14). This finishes the induction and the proof of
this lemma is thereby complete.

Having the above lemma, we are now ready to state and prove the following
theorem on the uniform boundedness of the relaxing solutions (un,ε

j , vn,ε
j ).

Theorem 3.1. Under the subcharacteristic condition (3.9), the numerical solu-
tions (un,ε

j , vn,ε
j ) of the relaxing scheme (2.1) satisfy the following estimates:

• TV-stability:

(3.22)

TV (un,ε) =
∑

j

∣∣un,ε
j+1 − un,ε

j

∣∣ ≤ 1

2
M ,

TV (vn,ε) =
∑

j

∣∣vn,ε
j+1 − vn,ε

j

∣∣ ≤
√

a

2
M ;

• l∞-stability:

sup
j
|un,ε

j | ≤ 1

2
M, sup

j
|vn,ε

j | ≤ 1

2

√
aM;(3.23)

• l1-stability:

(3.24)
∑

j

|un,ε
j |∆x ≤ 2‖u0‖L1 ,

∑

j

|vn,ε
j |∆x ≤ 2

√
a‖u0‖L1 .

Proof. The TV-stability (3.22) follows directly from the transformation (3.2) and
Lemma 3.1. The TV-bounds and the facts un,ε

j → 0 and vn,ε
j → 0 as j → ∞ lead to

the l∞ estimates of the numerical solutions. We now need to prove the l1-stability
(3.24). Using the assumptions f(0) = q(0) = 0 and the mean value theorem for
f(un+1,ε) and q(un+1,ε) in the scheme (3.3) we obtain

(1 + γ − q′(η)∆t/2) Rn+1,ε
1,j − (α + q′(η)∆t/2) Rn+1,ε

2,j = R
n+ 1

2
,ε

1,j ,

− (γ + q′(η)∆t/2) Rn+1,ε
1,j + (1 + α− q′(η)∆t/2) Rn+1,ε

2,j = R
n+ 1

2
,ε

2,j ,
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with

α =
k

2

(
1− f ′(ξ)√

a

)
≥ 0 ,

γ =
k

2

(
1 +

f ′(ξ)√
a

)
≥ 0 ,(3.25)

where ξ and η are intermediate values between un+1,ε
j and 0. Similar to the proof for

(3.11) we can obtain from the above equations that

∑

j

(
|Rn,ε

1,j |+ |Rn,ε
2,j |
)
∆x

≤
∑

j

(
|Rn−1,ε

1,j |+ |Rn−1,ε
2,j |

)
∆x

≤
∑

j

(
|R0,ε

1,j |+ |R0,ε
2,j |
)

∆x .

By using the relation un,ε
j = Rn,ε

1,j + Rn,ε
2,j , we have

∑

j

|un,ε
j |∆x ≤

∑

j

(
|Rn,ε

1,j |+ |Rn,ε
2,j |
)
∆x

≤
∑

j

(
|R0,ε

1,j |+ |R0.ε
2,j |
)

∆x

≤
∑

j

(
|u0,ε

j |+
∣∣∣∣∣
f(u0,ε

j )
√

a

∣∣∣∣∣

)
∆x

≤
∑

j

(
1 +

|f ′(ξ)|√
a

)
|u0,ε

j |∆x ≤ 2‖u0‖L1 .

Similarly, using vn,ε
j =

√
a(Rn,ε

1,j −Rn,ε
2,j ) leads to the second equation of (3.24).

4. Convergence Analysis. In this section, we will discuss the convergence of
the relaxing scheme. In order to carry out the convergence analysis, the continuity of
the numerical solution in time and the difference between vn,ε and f(un,ε) need to be
investigated.

Lemma 4.1. Under the subcharacteristic condition (3.9), the solutions of the
relaxing scheme (3.3) satisfy:

∑

j

(∣∣∣Rn+1,ε
1,j −Rn,ε

1,j

∣∣∣+
∣∣∣Rn+1,ε

2,j −Rn,ε
2,j

∣∣∣
)

∆x

≤
{
2K‖u0‖L1 + (Kµ + 3

√
a)M

}
∆t, n ∈ N0.

(4.1)

Proof. Set R̃n+1,ε
i,j = Rn+1,ε

i,j −Rn,ε
i,j , i = 1, 2. Substracting (3.3)n from (3.3)n+1
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gives

(4.2)





(
1 + γ − q′(η)

∆t

2

)
R̃n+1,ε

1,j −
(

α + q′(η)
∆t

2

)
R̃n+1,ε

2,j

= R̃
n+ 1

2
,ε

1,j = µR̃n,ε
1,j+1 + (1− µ)R̃n,ε

1,j ,

−
(

γ + q′(η)
∆t

2

)
R̃n+1,ε

1,j +

(
1 + α− q′(η)

∆t

2

)
R̃n+1,ε

2,j

= R̃
n+ 1

2
,ε

2,j = µR̃n,ε
2,j−1 + (1− µ)R̃n,ε

2,j .

where

α =
k

2

(
1− f ′(ξ)√

a

)
, γ =

k

2

(
1 +

f ′(ξ)√
a

)
,

and ξ is an intermediate value between un+1,ε
j and un

j . Therefore |ξ| ≤ M/2 by (3.23).
Thus the subcharacteristic condition (3.9) implies α ≥ 0, γ ≥ 0. Using the techniques
similar to those used in the last section we can show that

In+1 :=
∑

j

(∣∣∣R̃n+1,ε
1,j

∣∣∣+
∣∣∣R̃n+1,ε

2,j

∣∣∣
)
≤
∑

j

(∣∣∣R̃n,ε
1,j

∣∣∣+
∣∣∣R̃n,ε

2,j

∣∣∣
)

.(4.3)

Now we need to estimate I1. Using (3.3) and (3.4), i.e. the relaxing scheme for Rn,ε
1

and Rn,ε
2 , with n = 0 we obtain

I1 ≤
∑

j

µ
(∣∣∣R0,ε

1,j+1 −R0,ε
1,j

∣∣∣+
∣∣∣R0,ε

2,j −R0,ε
2,j−1

∣∣∣
)

+
∑

j

k
∣∣∣
(
R1,ε

2,j −R1,ε
1,j

)
− f(R1,ε

1,j + R1,ε
2,j)/

√
a

∣∣∣

+
∑

j

∣∣∣g
(
R1,ε

1,j + R1,ε
2,j

)
∆t
∣∣∣

= I1
1 + I1

2 + I1
3 .

(4.4)

The initial condition v0,ε
j = f(u0,ε

j ) in (2.2) is equivalent to

(R0,ε
2,j −R0,ε

1,j)− f(R0,ε
1,j + R0,ε

2,j)/
√

a = 0.

Using the above identity we obtain

k
[ (

R1,ε
2,j −R1,ε

1,j

)
− f(R1,ε

1,j + R1,ε
2,j)/

√
a

]

= k
[ (

R1,ε
2,j −R1,ε

1,j

)
− f(R1,ε

1,j + R1,ε
2,j)/

√
a−

(
R0,ε

2,j −R0,ε
1,j

)
+ f(R0,ε

1,j + R0,ε
2,j)/

√
a

]

= −2γjR̃
1,ε
1,j + 2αjR̃

1,ε
2,j ,

with

αj =
k

2

(
1− f ′(ξj)√

a

)
, γj =

k

2

(
1 +

f ′(ξj)√
a

)
,
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where ξj is an intermediate value between u1,ε
j and u0,ε

j . Therefore, it follows from
the subcharacteristic condition (3.9) that

0 ≤ αj , γj ≤ k, |αj − γj | ≤ k.

Using the relaxing scheme (3.3) with n = 0, we obtain

k
[ (

R1,ε
2,j −R1,ε

1,j

)
− f

(
R1,ε

2,j + R1,ε
1,j

)
/
√

a

]

= −2µ
(
γj(R

0,ε
1,j+1 −R0,ε

1,j) + αj(R
0,ε
2,j −R0,ε

2,j−1)
)

−k(γj + αj)
[ (

R1,ε
2,j −R1,ε

1,j

)
− f

(
R1,ε

2,j + R1,ε
1,j

)
/
√

a

]

+(αj − γj)q
(
R1,ε

1,j + R1,ε
2,j

)
∆t ,

which gives that

k
∣∣∣
(
R1,ε

2,j −R1,ε
1,j

)
f
(
R1,ε

2,j + R1,ε
1,j

)
/
√

a

∣∣∣

≤ 2µk

1 + k

(∣∣∣R0,ε
1,j+1 −R0,ε

2,j

∣∣∣+
∣∣∣R0,ε

2,j −R0,ε
2,j−1

∣∣∣
)

+
k

1 + k

∣∣∣q
(
R1,ε

1,j + R1,ε
2,j

)∣∣∣∆t
(4.5)

Summation of the inequality in (4.5) over j gives

I1
2 ≤

k

1 + k

(
2I1

1 + I1
3

)
(4.6)

Using the definition of the discrete initial data (2.2), the assumption on the source
term of −K ≤ q′(u) ≤ 0 and the relaxing scheme on un,ε

j (2.1) with n = 0 we obtain

u1,ε
j (1−∆tg′(ξ)) = u0,ε

j + µ
(
R0,ε

1,j+1 −R0,ε
1,j

)
− µ

(
R0,ε

2,j −R0,ε
2,j−1

)

where ξ is an intermediate value between 0 and u1,ε
j . Therefore,

∣∣∣un+1,ε
j

∣∣∣ ≤
∣∣∣un,ε

j

∣∣∣+ µ
(∣∣∣Rn,ε

1,j+1 −Rn,ε
1,j

∣∣∣+
∣∣∣Rn,ε

2,j −Rn,ε
2,j−1

∣∣∣
)

and

(4.7)

I1
3 = λ

∑

j

∣∣∣q(u1,ε
j )
∣∣∣∆x

≤ λK
∑

j

∣∣∣u1,ε
j

∣∣∣∆x

≤ λK
(∑

j

|u0,ε
j |∆x + µ∆x

∑

j

∣∣∣R0,ε
1,j+1 −R0,ε

1,j

∣∣∣+
∣∣∣R0,ε

2,j −R0,ε
2,j−1

∣∣∣
)

≤ λK
∑

j

∣∣∣
∫

Ij

u0(x)dx
∣∣∣+ λKµ∆xTV

(
R0,ε

1 , R0,ε
2

)

≤ λK (‖u0‖L1 + µ∆xM/2)

Substitute (4.6) and (4.7) into (4.4) gives

I1 ≤ I1
1 +

k

1 + k

(
2I1

1 + I1
3

)
+ I1

3

≤ 2λK‖u0‖L1 + (λKµ + 3µ)M ,(4.8)
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provided that ∆x ≤ 1. Then the estimate (4.1) follows from (4.3) and (4.8).
By the transformation (3.2), the following corollary is an immediate consequence

of Lemma 4.1.

Corollary 4.1. Assume that the subcharacteristic condition (3.9) holds. Then
the solutions of the relaxing scheme (2.1) satisfy

∑

j

∣∣∣un+1,ε
j − un,ε

j

∣∣∣∆x ≤
{

2K‖u0‖L1 + (Kµ + 3
√

a)M
}

∆t ,(4.9)

∑

j

∣∣∣vn+1,ε
j − vn,ε

j

∣∣∣∆x ≤
√

a

{
2K‖u0‖L1 + (Kµ + 3

√
a)M

}
∆t .(4.10)

Next, we consider the difference between vn,ε and f(un,ε). The following result
will be useful in the convergence analysis for ε tends to zero.

Lemma 4.2. Assume that the subcharacteristic condition (3.9) holds. Then the
solution of the relaxing scheme (2.1) with initial data (2.2) satisfy

(4.11)
‖vn,ε − f (un,ε)‖1 :=

∑

j

∣∣∣vn,ε
j − f

(
un,ε

j

) ∣∣∣∆x

≤ √
a

(
2K‖u0‖L1 + (Kµ + 4

√
a)M

)
ε .

Proof. It follows from the second equation of the scheme (2.1) that

k
∑

j

∣∣∣vn+1,ε
j − f

(
un+1,ε

j

) ∣∣∣∆x

≤
∑

j

∣∣∣vn+1,ε
j − vn

j

∣∣∣∆x +

√
aµ

2

∑

j

∣∣∣un
j+1 − un

j−1

∣∣∣∆x +
µ

2

∑

j

∣∣∣vn
j+1 − 2vn

j + vn
j−1

∣∣∣∆x .

Note k = ∆t/ε and µ ∈ (0, 1). Then the desired estimate (4.11) follows from the
BV-boundedness of un,ε and vn,ε and Corollary 4.1.

We are now ready to state and to prove the following main theorem of this section.

Theorem 4.1. Under the subcharacteristic condition (3.9), the solutions of the
relaxing scheme (3.3) converge to the solutions of the relaxed scheme (2.3) as ε tends
to zero for fixed ∆t. Furthermore, the solutions of the relaxed scheme (2.3) satisfy the
following estimates

‖un‖l∞ ≤
1

2
M, ‖vn‖l∞ ≤

1

2

√
aM ,(4.12)

TV (un) ≤ 1

2
M , TV (vn) ≤ 1

2

√
aM ,(4.13)

∑

j

∣∣∣un+1
j − un

j

∣∣∣∆x ≤
{
2K‖u0‖L1 + (Kµ + 3

√
a)M

}
∆t,(4.14)

∑

j

∣∣∣vn+1
j − vn

j

∣∣∣∆t ≤
√

a

{
2K‖u0‖L1 + (Kµ + 3

√
a)M

}
∆t ,(4.15)

for all nonnegative integer n.
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Proof. Define the linear interpolant of the relaxing solutions:

(un,ε(x), vn,ε(x)) =
∑

j

(
un,ε

j , vn,ε
j

)
χ[xj−∆x/2,xj+∆x/2)(x),

where χ[a,b) is the characteristic function on the interval [a, b). It follows from The-
orem 3.1 that (un,ε(•), vn,ε(•)), n ∈ N0 are bounded piecewise constant functions of
bounded variation uniformly with respect to n and ε. By Helley’s theorem for each
fixed n and a standard diagonal process, there exists a subsequence (un,εi(x), vn,εi(x))
such that (un,εi(x), vn,εi(x)) converges to a piecewise constant function

(un(x), vn(x)) =
∑

j

(un
j , vn

j )χ[xj−∆x/2,xj+∆x/2)(x)

pointwisely for n ∈ N0 as εi → 0. Therefore (un,εi

j , vn,εi

j ) converges to (un
j , vn

j ) as
εi → 0 for j ∈ Z, n ∈ N0 . Furthermore, it follows from (4.11) in Lemma 4.2 that

∑

j

∣∣vn,εi

j − f
(
un,εi

j

)∣∣∆x ≤
√

a

(
2K‖u0‖1 + (Kµ + 4

√
a)M

)
εi .

Then by letting εi → 0 we obtain
∑

j

∣∣vn
j − f

(
un

j

)∣∣∆x = 0 ,

which implies that

vn
j = f(un

j ) for j ∈ Z, n ∈ N0.(4.16)

Then taking the limit εi → 0 in the first equation of the relaxing scheme (2.1) we
obtain

un+1
j − un

j +
λ

2

(
vn

j+1 − vn
j−1

)
− µ

2

(
un

j+1 − 2un
j + un

j−1

)
= q

(
un+1

j

)
∆t.(4.17)

The above two equations are exactly the relaxed scheme (2.3). The estimates (4.12)-
(4.14) for the relaxed solutions follow from the results in Theorem 3.1 and Corollary
4.1 .

Remark 4.1. Note that
(
un

j , vn
j

)
is uniquely determine by the relaxed scheme

(2.3) and initial data (2.4). So the whole sequence
(
un,ε

j , vn,ε
j

)
converges to (un

j , vn
j ).

Remark 4.2. Consider the piecewise constant function

u∆(x, t) =
∑

j

∑

n

un
j χ[xj−∆x/2,xj+∆x/2)(x)χ[tn,tn+1)(t) ,

for −∞ < x < ∞, 0 ≤ t < ∞. Using the estimates for un
j in Theorem 4.1 and

standard arguments of Helley’s theorem, see e.g. Chapter 17 Smoller [15], we can
show that the solution u∆(x, t) given by the relaxed scheme (2.3) converges to the
entropy solution of conservation law (1.1).
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